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The article proposes a method of magnetic fluctuation measurement using a heavy ion beam probe
sHIBPd in an axisymmetric torus configuration. The method is based on the detection of the toroidal
position snot velocityd of the secondary beam in the analyzer. However, the method needs careful
consideration with respect to path integral fluctuations along the probing beam orbit to evaluate
local magnetic fluctuation, similarly to density fluctuation measurements with a HIBP. Here, we
present an analytic formula to estimate and calculate the path integral effects for different fluctuation
patterns in the profile, the correlation length, the radial wavelength, and the poloidal mode number.
As a result, it is found that a large distance between the plasma and the detector lessens the
importance of the path integral effect, and that local fluctuation of the magnetic field can be properly
detected with a HIBP.© 2005 American Institute of Physics.fDOI: 10.1063/1.1889230g

I. INTRODUCTION

Heavy ion beam probessHIBPsd have been applied to
many kinds of plasma confinement devices, such as mirrors
fTandem Mirror ExperimentsTMX d1, GAMMA102g, a
bumpy torusfNagoya Bumpy TorussNBTd3g, a reversed
field pinch fMadison Symmetric TorussMSTd4g, tokamaks
fImpurity Study ExperimentsISX-Bd5, Texas Experimental
TokamaksTEXTd6, Japan Institute for Plasma Physics Toka-
mak sJIPP-TIIUd7, T-108, JAERI’s Fusion TorussJFT-2Md9g,
and stellaratorsfAdvanced Toroidal FacilitysATFd10, Com-
pact Helical System sCHSd11, Large Helical Device
sLHDd12g. This is because a HIBP has the unique capability
of being able to simultaneously sense potential, density, and
magnetic fields in the interiors of high temperature plasmas.
As well, the highly temporal and spatial resolution with a
HIBP allows for the detection of the fluctuations of these
physical quantities. Until now, HIBPs have been mainly used
to measure density and potential fluctuations13 and the poten-
tial profile, and the results have contributed to the clarifica-
tion of phenomena associated with plasma confinement, e.g.,
anomalous transport, barrier formation,14 bifurcation and,
transition.15 However, few attempts have been made to use a
HIBP to measure density profile,16 magnetic field profile, and
magnetic field fluctuations,17,18 even though measurements
of these physical quantities would be fascinating.

The measurement of a magnetic field is very attractive,
because few diagnostics can measure the magnetic field in
plasma. With HIBP measurements, the variation in the struc-
ture of a magnetic field is obtained from changes in beam

orbits; however, it is difficult to ascertain the full orbit
change. On the other hand, it is easy to measure the toroidal
beam displacement at the detector, a displacement that is
largely caused by magnetic fluctuation localized to the HIBP
sample volume in an axisymmetric toroidal device. However,
the problem is that some of the beam displacement reflects
fluctuation along the beam orbit; a situation that is similar to
that of density fluctuations. There are a number of reports
regarding this contamination, called the “path integral
effect”19–21; however, there are few reports regarding the
path integral effects of magnetic field fluctuation measure-
ments with a HIBP.

In this article, a model of the path integral effect is pre-
sented after a brief description of HIBP diagnostics. The
model is used with several assumed profiles of magnetic
fluctuations to predict the motion of the HIBP ions at the
detector, and to determine the component of the signal due to
local magnetic fluctuation at the sample location and the
component due to the path effect. It is shown that the sensi-
tivity to local fluctuations relative to the path effect can be
improved by choosing a suitable position for the energy ana-
lyzer. The feasibility of the method is discussed, in terms of
the minimum detectable fluctuation level with this method.

II. MATHEMATICAL PREPARATION AND
CALCULATION MODEL

A. Principles of magnetic fluctuation measurements

A HIBP system consists of a beam injector or accelerator
and an energy analyzer, as shown in Fig. 1sad. Usually, a
single ionized heavy ion beamsor a primary beamd is in-
jected into the plasma from a beam gun, and doubly ionized
ions are created through electron impact ionization in the
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plasma. The doubly ionized beamsor secondary beamd
comes out from the plasma and is detected at the energy
analyzer. Usually a Proca and Green-type analyzer22 is used
as the energy analyzer, and the beam is detected with a so-
called split plate detectorfsee Fig. 1sbdg. The detected beam
intensity contains information on the plasma density at an
observation point, while the vertical and horizontal move-
ments on the detector plates give information on the potential
and the magnetic field, respectively.

If the magnetic configuration is axisymmetric, as it is for
an ideal tokamak, then the horizontal movement can be de-
scribed in an analytic form, since the canonical momentum
of the toroidal direction is conserved. The relation of mo-
mentum conservation along the primary orbit is written as

mR2ḟ + qRAf = qRgAfg. s1d

Here, m is the beam ion mass,R the major radius,f the
toroidal angle, dot means the time derivative,q the charge of
an electron, andAf the toroidal component of the vector
potential. The right hand side shows an initial value, andAfg,
Rg are the toroidal component of the vector potential and the
major radius at the beam gunsor beam injection pointd, re-
spectively. For conciseness, the initial velocity in the toroidal
direction is assumed to be zero, i.e.,ḟg=0. On the other
hand, the law of conservation along the secondary orbit is
expressed as follows:

mR2ḟ + 2qRAf = qRsAfs + qRgAfg, s2d

whereRs andAfs represent the major radius and the vector
potential at an observation point, respectively. After ioniza-
tion, the beam ions experience an increase in the vector po-
tential byqRsAfs. The toroidal displacement of the beam at
the detector position can be obtained by integrating these two
equations. Then, the toroidal angle displacement can be ex-
pressed in the following form:
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where y is the magnitude of the velocity of a beam ion,
which is assumed to be constant; namely, the effect of the

plasma potential is neglected, andtd is the time at which a
beam ion reaches the detector position. The integral of time,
t, is replaced by an integral about path length,,, in this
equation. The terms,s and ,d are the path length on the
beam orbit from the beam gun to the observation point and
from the beam gun to the detector position, respectively. The
fluctuated component of the toroidal angle of beam displace-
ment can be written as
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Therefore, the fluctuation of the beam movement on the de-
tector plate can be estimated using this formula by multiply-
ing the major radius of the detector positionRd by the toroi-
dal angle displacementf̃D.

B. Calculation model

For normalization and to use nondimensional variables
in the calculation, Eq.s4d is transformed into the following
form:

f̃D =
R0

rL
d0f̂D,
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Here, rL=my / sqB0d, R̂=R/R0, R̂s=Rs/R0, R̂d=Rd/R0, ,̂
=, /R0. The parametersR0 and B0 are the major radius and
toroidal magnetic field strength that characterize an experi-
mental device, respectively. The functionãf is the normal-
ized vector potential, of which the maximum is one, withd0

being the maximum level ofÃf / sB0R0d. Hence, d0ãf

; Ãf / sB0R0d. Note thatãf is a function of the position vec-
tor r̂ ; r̂ s and r̂ g are the position vectors at the observation
point and at beam gun, respectively.f̂D is the beam angle
displacement to the toroidal direction normalized by
R0d0/ rL. Then, the fluctuation power is written as

FIG. 1. sad A schematic view of a HIBP system consist-
ing of a beam injector, an energy analyzer, and beam
sweep plates, and the assumed orbits in our calcula-
tions. The rectangular termed electric field means a re-
gion of a sweep plate to control the primary beam orbit
and to change the observation point.sbd A schematic
view of a split plate detector set in the energy analyzer
to detect the secondary beam.
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kf̂D
2 l = A1 + A2 + A3 + B1 + B2 + B3 + B4 + C1 + C2 + C3.

s6d

Here the bracketk¯l means the ensemble average, and the
symbols are

A1 ; k„G1R̂sãfsr̂ sd…2l, s7d

A2 ; k„G2R̂gãfsr̂ gd…2l, s8d

A3 ; 2G1G2R̂sR̂gkãfsr̂ sdãfsr̂ gdl, s9d
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,̂s
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kãfsr̂ sdãfsr̂ 2dl

1

R̂sr̂ 2d
d,̂2, s11d

B3 ; − 2G2R̂gE
0

,̂s
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In these equations,r̂ 1, r̂ 18 , r̂ 2, r̂ 28 , r̂ are the functions of

,̂1, ,̂18 , ,̂2, ,̂28 , ,̂, respectively.A1 represents the local fluctua-
tion power of the magnetic field to be observed, while the
other terms are considered contaminations;A2 is the local
fluctuation power at the beam gun,A3 is the correlation be-
tween two localA terms, Bi the cross terms between the
fluctuation in the orbits and at local points, andCi the cross
terms between primary and secondary orbits.G1 andG2 are
geometrical factors which only depend on the beam orbit.

C. Model of cross correlation terms

In Eqs.s7d–s18d, the path integral terms can be evaluated
if the cross correlations with the vector potentials are given.
The correlation term ofkãfsr̂ idãfsr̂ jdl is assumed as

kãfsr̂ idãfsr̂ jdl = Psr̂ i, r̂ jdgsr̂ i, r̂ jdCsr̂ i, r̂ jd. s19d

Here,P is the product of the amplitude of normalized fluc-
tuationsãfsr̂ id, and ãfsr̂ jd, g and C are the coherence and
the cosine of the phase difference, respectively, between
these fluctuations. A radial profile of amplitude ofãfsr̂ id,
which is written asP̂i in this article, is assumed to be, exps
−sr̂ − r̂0d2/ r̂w

2d in plasma;r is the minor radius, andr0 is the
radial position where the amplitude is a maximum;rw is the
width of the amplitude. The hat symbol of these variables
means normalization byR0. Outside the plasma, the radial
profile of amplitude of ãf is assumed to be exps−sâ
− r̂0d2/ r̂w

2d ·sâ/ r̂dm, as is seen in Ref. 17, whereâ is the minor
radius of outermost magnetic surface normalized byR0, m is
the poloidal mode number.

The product of the fluctuation amplitude,P, is expressed
as follows:

P = P̂i · P̂j , s20d

P̂i = Hexps− sr̂ i − r̂0d2/r̂w
2d r i ø â

exps− sâ − r̂0d2/r̂w
2d · sâ/r̂ idm ri . â

J . s21d

The coherenceg and the cosine of the difference in the
phaseC between the fluctuations are assumed as

g = exps− ur î − r j
ˆ u2/,̂c

2d, s22d

C = cos„msui − u jd… · cos„sr̂ i − r̂ jd/s2pl̂rd…. s23d

Here, ur i −r ju is the distance between two points under con-
sideration,,c the correlation length,m the poloidal mode
number,ui ,u j the poloidal angles,r i ,r j the minor radii,lr the
wavelength of fluctuation to the radial direction. The hat of
these variables means normalization byR0 as described

above. We change the values ofr̂0, ,̂c, m, l̂r and investigate
the effect of these parameters on the path integral terms in
the function,f̂D.

III. CALCULATION RESULTS

A. Path integral effects for fluctuation patterns

Here we calculate path integral effects or contaminations
for three fluctuation patterns to show the possibility of mag-
netic field measurements with a HIBP. The assumed HIBP
geometry and orbits for the calculation are shown in Fig.

1sad; The beam injection pointsR̂g,Ẑgd is s1.0, 0.7d, the de-

tection point sR̂d,Ẑdd is s1.7, 0.05d respectively. The cross
section of the torus is circular, and the toroidal magnetic field

is proportional to 1/R̂. The ratio of the major radius to the
Larmor radius,R0/rL, is 2.3. Figure 2 upper shows assumed
fluctuation patterns of vector potentialãfsr̂ d in the power

function, P̂i. Here, we defineP̂i ;exps−sr̂ − r̂0d2/ r̂w
2d, and

consider three cases forr̂0, r̂w: sAd r̂0=0.05, r̂w=0.03, the
fluctuation profile has a peak near the center,sBd r̂0=0.11,
r̂w=0.05, a peak at the half radius,sCd r̂0=0.17, r̂w=0.05, a
peak near the edge. In order to give a perspective, the lower
part of Fig. 2 shows the calculation results of the angle dis-

placement,Îkf̂D
2 l, and the local termÎA1, which are shown

as thick and thin lines, respectively. The assumed parameters
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arem=2, ,̂c=0.1, l̂r =0.1 in this calculation. In casesAd, no
significant contamination can be found in either the central
or the outer regime. This is becauseãf<0 is valid except in
the central regime and the path integral becomes small for
the orbit to observe the outer regime of the plasma. However,
in casesCd the path integral effect is large in the central
regime. The beam orbit to observe the plasma center passes
through the outer regime of the plasma whereãf has a sig-
nificant value.

The sensitivity of the path integral effects is examined
with respect to variations of the fluctuation parameters, cor-
relation length, radial wavelength, and poloidal mode num-

bers. First, the effect of the correlation length,̂c is investi-

gated;,̂c is changed from 0.01 to 0.2. The other parameters,

l̂r, m are fixed to 0.1, and 2, respectively. The calculated
angle displacements for the profiles of fluctuation are shown

in Fig. 3sad. The square root of the local term,ÎA1, is also
expressed as thin solid lines. In casesAd, the difference be-
tween the beam angle displacement and the local term is

small for any value of,̂c. In casessBd and sCd, if ,̂cø0.01,
the beam angle displacement shows good agreement with the
local term at the peak of the fluctuation. However, around the
center of the plasma in casesCd the beam angle displacement
does not show agreement with the local term.

Second, the results of a scan ofl̂r are shown in Fig. 3sbd,
and are similar to a scan of,̂c. In this scan,m and ,̂c are
fixed to 2 and 0.1, respectively. In casesAd, the path integral
effect is small; however, in casesCd it becomes larger. As the
radial wavelength becomes smaller, the results show that the
path integral effect becomes smaller. The path integral con-

tribution around the center is more sensitive tol̂r than ,̂c. If

l̂r ø0.01, the path integral terms become small in all cases

from sAd to sCd. For l̂r ø0.01, the difference that remains
near the plasma center in casesCd is due to the effect of the
local term at the beam gun,A2.

Finally, the results of a scan ofm are shown in Fig. 3scd.
The poloidal numberm is changed from 1 to 3. In this case,

,̂c, l̂r are fixed to 0.1, 0.1, respectively. In casesAd, the
difference of the beam angle displacement and the local term
is small, and its dependence onm is also very small. How-
ever, in casesCd, the difference at the plasma center form
=1 is very large. The angle between a primary and a second-
ary beam orbit is aboutp /4 radian in our case. Whenm=1,
this angle corresponds to only one fourth of the wavelength;
therefore, a reduction of the path integral cannot be expected.
For m=2, the angle corresponds to one half of the wave-
length, and so a reduction of path integral can be expected.

It is interesting to determine which terms are large in
path integral terms. The profiles of these terms are shown in

Fig. 4. In this case, the parameters for fluctuation,,̂c, l̂r and
m are set to 0.1, 0.1 and 2, respectively. The largest term in
path integral terms isB2, which is the first order path integral
term on the secondary beam path. Since the charge number
of the secondary beam is twice of that of the primary beam,
B2 is 2 factors larger thanB1. The second largest term isB1,
which is of the same magnitude but the opposite sign ofC2

FIG. 2. Upper: Profiles of normalized fluctuation amplitude,P̂i =exps−sr̂
− r̂0d2/ r̂w

2d; r̂0 andr0 mean the minor radius normalized byR0 and the minor
radius normalized bya, respectively, where the profile is a maximum. The
profiles of three cases in whichr̂0,rw=sAd 0.05, 0.03,sBd 0.11, 0.05,sCd
0.17, 0.05, are shown. Lower: Profiles of normalized beam angle displace-

ment to the toroidal direction,Îkf̂D
2 l sthick solid linesd and the square root

of the local termA1 in Eq. s7d sthin solid linesd. The poloidal mode number

m=2, correlation length,̂c=0.1, radial wave lengthl̂r =0.1 are assumed in
the calculation.

FIG. 3. sad The calculation result of a scan of,̂c with m

and l̂r being fixed to 2 and 0.1, respectively.ÎA1 is
shown as solid lines. Dashed lines are the square of the
normalized beam angle displacement,kf̂D

2 l. sbd The cal-

culation result of a scan ofl̂r with m and,̂c being fixed
to 2 and 0.1, respectively.scd The calculation result of a

scan ofm with ,̂c, l̂r being fixed to 0.1, and 0.1, re-
spectively. The poloidal mode numberm is changed
from 1 to 3.
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in this case; thereforeB1 is cancelled out withC2. C1, C3 are
small but cannot be ignored. Other terms are very small and
can be ignored, exceptA2 in casesCd. Because the amplitude
of the fluctuation is proportional to 1/r̂m outside of the
plasma, the amplitude at the beam gun does not become
sufficiently small in casesCd. In the region near the plasma
center, this term is the dominant one for beam angle dis-
placement.

B. Effect of diagnostic position on magnetic
fluctuation measurement

Equations6d includes the geometrical factorsG1 andG2.
The squares of these factors appear inA1 and A2, and the
factors are linear inB1, B2, B3, and B4. Hence, asG1 be-
comes larger, the termA1 increases more rapidly thanB1, B2

and other terms. Thus,G1 has the effect of magnifying the
contribution of the local termA1 to the fluctuation amplitude
f̂D

2 , and this leads to the relative reduction of path integral
effects. The factorG1 can be enhanced by setting the detector

location farther away from the plasma, because the length of
the path then becomes longer. Noteãf becomes negligibly
small outside of the plasma; hence, the integral terms includ-
ing ãf do not significantly contribute.

To investigate this geometricalsor HIBP configurationd
effect, the path integral effect is calculated for several cases
in which the major radii of the diagnostics points are differ-
ent. The calculation results are shown in Figs. 5sad and 5sbd.
The parameters of fluctuation are,,c=0.1,lr =0.1,m=2. We
consider two cases,sBd andsCd, because in casesAd the path
integral effect is already small. In Fig. 5sad, the profile of the

beam angle displacementÎkf̂D
2 l, and the local termA1

0.5 are

shown for the major radius of the diagnostic pointR̂
=1.53,1.87,2.38. The magnitude of displacement is larger
and the local term becomes dominant as the major radius of
the detection point increases.

Figure 5sbd shows the dependence of individual path in-
tegral terms on the detector position. All terms are normal-
ized by the square root of the local term,A1

0.5, and their
absolute values are shown in the figure. The path integral
contribution sA1−kf̂D

2 ld0.5/A1
0.5 is shown as a solid line. In

casesBd, the values of these terms atr=0.55 are shown,
where the fluctuation amplitude is maximum, and in casesCd
at r=0.85. ForR̂ù1.7, all terms decrease with the increase

of R̂, sinceG1 becomes larger, whileB2
0.5/A1

0.5 is increased

whenR̂ is changed from 1.5 to 1.7.

The geometrical factorG1 is the integral of 1/R̂2; there-

fore, for a larger value ofR̂ an improvement of the path
integral effect cannot be expected since the rate ofG1 rising
becomes slower. In fact, this tendency is seen for the region

of R̂ù2.3 in Fig. 5sbd. Consequently,R̂<2.3 is the best
detector position for the accurate measurement of magnetic
field fluctuation amplitudes.

IV. DISCUSSION

We have investigated here the feasibility of magnetic
field fluctuation measurement using HIBPs by performing
the calculation of beam movements for three assumed pat-
terns of magnetic fluctuation. The findings are as follows:s1d

FIG. 4. An example of individual contributions of path integral components,
from B1 to C3, in normalized angle displacement. The beam angle displace-
ment kf̂D

2 l is shown as a thin solid line. The largest contribution in path
integral terms comes fromB2, which is the first order path integral term on
the secondary beam path.

FIG. 5. A trial to find an appropriate position for the
energy analyzer for magnetic field fluctuation measure-
ments with a HIBP.sad The dependence of beam angle

displacementÎkf̂D
2 l on the position of the diagnostic

point. Thin solid lines are profiles of the square root of
the local termA1. sbd The ratio of path integral terms to
the local term,A1, as a function of the major radius of
the diagnostics point. The differences between the beam
angle displacement and the local term,sA1

−kf̂2ld0.5/A1
0.5, are shown as solid lines. The calculation

is performed for cases B and C. The values presented
are those atr=0.55 and atr=0.85 for cases B and C,
respectively.
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The path integral effect is so small that the fluctuation profile
can be deduced, in cases where the magnetic field fluctuation
is localized in the plasma core, independently of the fluctua-

tion properties, e.g.,,̂c, l̂r, m. s2d However, if the fluctuation
is localized in an outer region of the plasma, the path integral
effect becomes larger; particularly, a false signal appears in
the central regime of the plasma.s3d The path integral effects
can be lessened if the detector position is kept as far as
possible from the plasma.

The effect of magnetic field shielding due to a vacuum
vessel is not considered in our calculations. If this shielding
effect is taken into account, the path integral contribution
associated withA2, the fluctuation of the vector potential at
the injection point, should be smaller. Actually in the case of
edge-localized fluctuations, the signal distortion in the
plasma core comes mainly from this effect. In Fig. 2, the
false angle displacement in casesCd is reduced from 0.13 to
0.052 at the center if the termA2 is neglected. Thus, the path
integral effect is expected to be negligible for a magnetic
field fluctuation localized in an outer region.

In HIBP measurements, a so-called split plate detector is
used to measure the beam movement in the energy analyzer.
A schematic view of the detector is shown in Fig. 1sbd. In
this detector, the horizontal beam displacement,d, can be
expressed asd=sDw/2dsiR− iLd / siR+ iLd, whereiR and iL are
the beam currents on the right and left plates, andDw is the
horizontal beam width. With this method, the beam move-
ment of ,50 mm can be detected, with an assumption of
siR+ iLd=100 nA, Dw=5 mm, and a minimum detectable
current of 1 nA.

From the formula to describe the beam displacement

dmin=Îkf̂D
2 l3 sR0/ rLdd0,minRd, the minimum detectable fluc-

tuation d0,min(=Ãf / sB0R0d) is 2.6310−5 for the case ofR0

=1 m, rL<0.44 m, Rd=1.7 m, Îkf̂D
2 l<0.5. This assump-

tion corresponds to the case of a 70 keV cesium beam for a
magnetic field strengthBt=1 T. Therefore, quite high sensi-
tivity can be attained in magnetic field fluctuation measure-
ments with HIBPs.

In conclusion, we have presented considerations of the
path integral effects in magnetic field fluctuation measure-
ments with a HIBP. We show that if the HIBP geometry is
appropriately chosen, path integral effects can be negligible
for a wide variety of fluctuation patterns; and it is better if
the beam injection and detection points are located at a suf-
ficient distance from the plasma. The results detailed are
valid for axisymmetric magnetic configurations, and further
consideration will be necessary for more realistic cases of

nonaxisymmetrical configurations including toroidal ripples
or stellarator magnetic configurations. This method, how-
ever, is quite promising since it provides a high sensitivity
for magnetic fluctuations, less than 10−4, with high resolu-
tions of spaces, mmd and times, msd.
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