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A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature
gradient driven turbulence is made. The nondissipative closure niN@) for linearly unstable
modes, which is presented by Sugama, Watanabe, and Hé&tys. Plasma8, 2617(2001)], and

the dissipative closure model by Hammett and Perkdit®) [Phys. Rev. Lett64, 3019(1990] are

used in separate fluid simulations. The validity of these closure models for quantitative prediction
of the turbulent thermal transport is examined by comparing nonlinear results of the fluid
simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results
show that, in the saturated turbulent state, the turbulent thermal diffugivatytained from the HP
model is significantly larger than the given by the NCM which is closer tg measured in the
kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed
in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable
wave number, the imaginary part of the ratio of the parallel heat flgx to the temperature
fluctuationT, is a oscillatory function of time and sometimes takes positive values. The positive
values of Im@,/T,), imply the negative parallel heat diffusivity, correlate with the occasional
inward heat flux occurring for the wave numbérsand reduce the totgf. © 2003 American
Institute of Physics.[DOI: 10.1063/1.1544664

I. INTRODUCTION well as for any linear combination of these solutions. Thus,
in the NCM, the phase of the parallel heat flux with respect
to the temperature fluctuation in the unstable wave number

microinstabilities such as the ion temperature gradisi®) region can take either of positive and negative signs in the
mode? have actively been done in order to predict theturbulent states while it takes only the one-sided sign in dis-

anomalous transport coefficients in magnetically confinedPative closure models such as the HP model. These differ-
plasmas from the first principle. Since the gyrofluid ent closure schemes lead to different nonlinear behaviors of

simulationé5 consume less computer memory and timet_he fluid variables even thpugh they give almost th(_a same
than the gyrokinetic simulatiorfs? the former is useful for linear results. In fact, a fluid system of equations using the
doing many runs to establish the scaling model of theNCM theory for unstable modes reproduces the exact non-
anomalous transport coefficients. However, in the gyrofluidinear kinetic solution of the three-mode ITG probfeffi
model, some closure relatiofis'2are assumed to construct a found by Watanabe, Sugama, and Satwhile the HP model
truncated system of fluid equations from the gyrokineticfails in representing that solution. Then, the next question is
equation and their validity in nonlinear or turbulent regimesWhether the NCM can successfully describe strongly turbu-
is not clear because conventional gyrofluid closure modeldent states of collisionless kinetic systems with a higher num-
such as the Hammett—PerkittsP) modell® were originally ~ ber of degrees of freedom. In the present work, in order to
derived so as to accurately reproduce gyrokinetic dispersioghswer this question, we do both fluid and kinetic simula-
relations for linear modes. In fact, there exist some cases, ifions of the two-dimensional slab ITG turbulence and inves-
which the gyrokinetic and gyrofluid simulations show dis- tigate how accurately the fluid simulation using the NCM or
agreements in their nonlinear results, such as the saturatée HP model can reproduce results of the collisionless ki-
fluctuation levels and the turbulent transport coefficiédts. netic simulation under the same conditions.

In our previous work we have presented the nondissi- Zonal flows have been attracting much theoretical and
pative closure modelNCM), which takes into account the experimental attention as one of important factors affecting
time reversal symmetry of the collisionless kinetic equationthe turbulence saturation level and the anomalous tran¥port.
The NCM relates the parallel heat flux to the temperaturéA wrong description of zonal flow damping in the original
and the parallel flow in terms of the real-valued coefficientsgyrofluid model was once suspected as a cause of difference
in the unstable wave number space. The NCM was derivetietween the gyrokinetic and gyrofluid simulation restits.
such that the closure relation is valid both for the unstabléSubsequently, the gyrofluid model was improved to correctly
normal-mode solution and its complex-conjugate solution asreat the zonal flow dampintf. However, our work shows

In recent years, gyrokinetic and gyrofluigr gyro-
Landau-fluid simulation$ of plasma turbulence driven by
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that the closure relations for the fluctuations other than thgerpendicular velocityv, , the ion gyrofrequency();
zonal flow component are important, as well, because the=eB/(m;c), and the unit vectob parallel toB.

gyrokinetic and gyrofluid simulations can show significant The distribution functionf is given by the sum of a
disagreements even for no zonal flow case. In this paper, wgackground Maxwellian part fy=ny(m,/27T;)%?
consider the no-flow case to examine the pure effects of thg exp(—mu¥2T,) and a perturbation paTt wheren, andT,

closure relations on the turbulence saturation. Addin_g th&jenote the background density and temperature, respectively,
complexity caused by the feedback—feedforward coupling ofhich macroscopically depend on a coordinate the per-

zonal flows obscures the role of the closure problem for theyengicular direction. Furthermore, in order to make numeri-
fluctuations. Simulation results with flows included are notCal simulation easy, we assure-dependence of to be

shown here also because only qU|et.steady states with turbgTso given in the Maxwellian form. Then, the fluctuation
lence transport suppressed are obtained by both of our gyro-~~ 7" : . .
kinetic and gyrofluid simulations of the two-dimensional slabq,uantItIeSf and ¢ are written in terms of the Fourier expan-
ITG turbulence when the zonal flow component is sion as

included?® In toroidal configurations, such effects as the col-  _ m, mivf )

lisionless transit time magnetic pumping and the neoclassical ~ f(X.vj,u.0)= 5= exp( - f) > fi(oy, e,
viscosity would cause stronger damping of the zonal ffow ' LK

and acc;ordmgly larger turbulence transport than in the two- dJ(X,t):E bt )
dimensional case. k

The rest of this work is organized as follows: In Sec. Il, 1,00 macroscopic variations nf§ andT; in the x-direction

the basic kinetic and fluid equations for simulating the colli- ;¢ ¢ongidered separately from microscopic spatial variations

sionless slab ITG turbulence are presented. There, a deta”‘?gpresented by the wave number vedtorSubstituting Eq
expression of the NCM used for the parallel heat flux in the(z) into Eq. (1) and integrating ovev, -space, we obtain '
temperature evolution equation is given. Also, the kinetic ' - ’

and fluid entropy balance equations are derived from thos . C C iy
basic equations in order to describe the quasisteady turbt?—tfkﬂk”v”fk_ B k,;k;,:k [b- (k™K W i
lence state in which the entropy variable associated with fine
velocity-space structures monotonically grows but the low-
order-moment fluid variables’ fluctuations and the turbulent
transport are saturated. In Sec. lll, results of the kinetic and 3
fluid simulations of the two-dimensional slab ITG turbulence\yhere k=k-b is the parallel wave number, ¥,

are shown. Two different types of fluid simulations are done= , exp(—b,/2) is the wave-number-space representation of
to separately examine the validity of the NCM and HP clo-the electrostatic potential averaged with respect to the gy-
sure models compared with the kinetic simulation resultsropr1ase and, , b=Kk>T;/(m,Q?) is the square of the per-
The quasisteady state is realized by the kinetic simulatiorf_o,endicmar wave number multiplied by the thermal gyrora-
with no zonal flow component. The saturated fluctuationgjys and Fu=/d%, fy=no(m/2aT;) Yexpmu?/2T)).
level, the turbulent heat diffusivity, and the ratio of the par-yere, the parallel nonlinearity —(elmy)b-V{p(x

allel heat flux to the temperature fluctuation obtained by the+
fluid simulations are directly compared with those in the ki-
netic simulation, and effects of the closure models on th
resultant transport are specified. Finally, conclusions are:O
given in Sec. IV. N

p))dflav, included in Eq.(1) is neglected based on the
yrokinetic ordering, /k, ~k;p<<1, and inhomogeneities in
and T, are taken into account only through,
(cT;/eB)k-bxXV Inny and »;=d In T;/d In ny while ng
andT; in other places as well as, ; and »; are regarded as

constants.
Taking the velocity moments of E@3), we obtain fluid
1. BASIC EQUATIONS equations,
The collisionless electrostatic gyrokinetic equation foran KNl —iw. N (1_ﬁ ) eV,
ions in the uniform magnetic fielB is written ag* kT TR0 k™ 1 @xillo 2 )T,
of c c
—+|vb+ =bXV((x+p)) |- Vf —= > [b-(k'XK")]¥/nw=0, (4)
at B B fr=k
—Eb-V((ﬁ(X-I—p) i:Q n NoM; dyUy+ ik (Ting+ Ng T+ npeW )
m; 07UH NoM;C
wheref=f(x,v,,u,t) represents the ion gyrocenter distribu-  ~— g k’-%—Ek”fk [b- (k" XKk") ¥ uer=0, 5

tion function, x is the ion gyrocenter position,, is the ve-
locity component parallel t8, u=m;v2/2B is the magnetic  Nod; T ik (2ngTiUx+ ) =i w4 7NV
moment, and ¢(x+p)) is the electrostatic potential aver-

. . . . neC
aged with respect to the gyrophase included in the ion gyro-  — — ' [b-(k’Xk") ¥ Tw=0, (6)
radius vectolp. Here,p is defined byp=bXv, /Q,; with the B o=«
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where N ()= [Z.dvfi (v 1), Nou(t)=/=..dv;,  heat flowq, in Eq. (6) in terms of the lower-order moment
X (v oy, neTy(t)=S"dv,f (v, ) (muf—T;), and  fluid variablesn,, u,, and T,. In the HP model® q, is
qk(t)Effocdefk(vH ,t)(mivﬁ—3Tiv”). Here all nonlinear written in the diffusive form as

terms result from thé& X B drift.

Assuming the adiabatic electron response and using the Ak =~ Noxitki T, (11
guasineutrality condition give where the parallel heat diffusivity is given by,
” " =2(2l7)Y |k, with the ion thermal velocity v,
_ 12
exp(—bk/2)nk—no—k[1—Fo(bk)]= =7k (for k,#0), =(T;/m;) ™ Then, Eqgs(4)—(7) for k;#0, Eq. (10) for k;
T Te =0, and Eq.(11) give a closed fluid system of equations in

(7) " the HP model. In the NCM, the parallel heat flay in the
where T, is defined byl'y(b,)=1,(b)expb) with the unstable wave number region is givert‘as

zeroth-order modified Bessel functiop. Here, the left and k= CriNov T+ CuxNo T U
right-hand sides represent the ion and electron particle den- _
sity fluctuations, respectively. In the left-hand side of &, (for linearly unstable modes (12)

the ion gyrocenter densityy is multiplied by the factor \yhile the dissipative closure relation as written in Etf)
exp(-hy/2) due to the finite-Larmor-radiu§LR) effect and  should still be used in the stable wave number region. Re-
the second term with the electrostatic potental results  quiring that the closure relation in E¢L2) should exactly
from the ion polarization. Dorland and Hamniegmployed  reproduce the kinetic dispersion relation, the real-valued co-

[To(by)]*? instead of exptb/2) for the FLR factor in-  efficientsCy, andC,, are determined as
cluded in Eq.(7) and in ¥, which gives the same linear

dispersion relation as that obtained by a rigorous treatment of Re( &Lk )

v, -dependence df. The difference between expb,/2) and Cre=Cure Cuix IM(&LF) ’

[To(b) ]2 is small forb,<1. For the purpose of compari-

son between nonlinear results of the kinetic and fluid simu- _ |¢l?

lations under the same conditions, it is not essential which uk™ Lik|m(§k§:)’ (13
FLR factor is used. )

For the fluctuations witt, =0, the electron density per- Where C=Ci+iCy=—Z® e /(\2kw))/[V2Z?)
turbation is often assumed to vanish and then the quasineds (@Lk/(V2kjvy))] [Z™: is thenth derivative of the plasma
trality condition gives dispersion functioh &=¢&+i&=[w {1+ (Te/T)(1

ed _Fo(bk))}_a;a(cﬁ(l)_bkﬂi/(z)e/bk)]é(k||111£)y(b )and b§|)<5 Lrk
k _ _ +idik= o (k) —1—=(T/T)(1-To(by) +e7 ) are
exp(~ bi2)my = nOT[l_FO(bk)J_O (for k;=0). used. The com!)Iex—vaIued eigenfrequenay,, is deter-
(8) mined by the dispersion relatiddy (w, ) =0, where the dis-

When using Egs(3), (7), and (8) for the two-dimensional persion functiorD(«) is defined by

slab ITG turbulence simulation, we have found that a large T. e vil(2vf)
zonal flow componentg, with k,=0, is nonlinearly gener- Di(w)=1—Tq(by)+e P+ T—'—e’bkf doj———
ated, suppresses linearly-unstable modes WithO, and re- © \/ﬂvt
sults in no turbulent transpof?. Thus, efficiency of zonal 0= 0,i[ 1+ 7:{vf/(20f) - /2= b/2}]

flow generation and resultant transport coefficients are
strongly influenced by what condition is used for the=0
modes. In more practical cases of toroidal configurations, the (14)
zonal flow would be significantly reduced by the collision- The apove dispersion function, which is derived from Egs.
less transit time magnetic pumping and by the collisional3) ang(7), differs slightly from that obtained by a rigorous
damping® although neither of these effects is included N eatment ofv, -dependence & as mentioned after Eq7),

Egs. (1) and (3). Here, in order to avoid th_e _complexity although the difference is small for low perpendicular wave
brought about by the zonal flow and get finite turbulent

o=k,

numbersh, <1.
transport, we put The closure relation given by Eq€l2) and (13) is de-
fu=¢=0 (fork,=0), (9)  rived from the assumption that the relation should be valid
for a complex-conjugate pair of the linear kinetic eigenfunc-
and tions f_(v,) andf} (v,) as well as for any linear combina-
T 4 _ tion of them[see Eqs(23)—(29) in Ref. 14]. Existence of
M=U=Ti=d=0 (fork=0), (10 this pair reflects theqtime reversal symmetry of the collision-
in our kinetic and fluid simulations, respectively. less kinetic equation, and one of the eigenfunctions corre-

Now, a closed nonlinear kinetic system of equations aresponds to a growing solution when the other corresponds to
given by Egs.(3) and (7) for k;#0 and by Eq.(9) for k a decaying one. In conventional linear problems, only the
=0, which are used for kinetic simulation of the slab ITG dominant growing solution is considered while its conjugate
turbulence in the present work. In order to obtain a correpartner is usually disregarded. However, in the three-mode
sponding closed fluid system, we need to express the paralleTG problem, which is the simplest example of nonlinear
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kinetic systems, transitions between growing and decayingd®xS,, is conserved without collisions, although the macro-
phases occur repeatedly and the nonlinear solution is givegcopic entropy Sy, or AS=3fdv(f?)/F), can increase

by the superposition C{j‘}k(vn) andf{(v;) so thatthe NCM  through the turbulent or anomalous transport processes.
is successfully applied. Numerical simulations in the next JKrommes and H¥ called SE—%fdv||<~fz>/FM(=Sm—SM

section reveal that the basic idea of the NCM mentioned, notation the entropy of the system to measure devia-
above also works for a better description of the anomalous

transport in the strong ITG turbulence. tion of the fluctuating distribution functiorf from the

Before showing simulation results, it is meaningful to €Nsemble-averaged distribution functigh) although we
consider kinetic and fluid entropy balances in the slab ITGhere regards S= Sy, — S;(= —S=F in Krommes and Hef)
turbulence based on the governing equations in the san®s the entropy associated with the fluctuations because, in the
manner as in Ref. 14. We define the microscopic enti®py collisionless system, turbulent processes produceSpdiut
and the macroscopic entrof, for ions per unit volume S,,.] Throughout the present work, we consider the system
by???% S,,=— fduv,f In f and Sy, =— fdv,FyIn Fy,, where in the uniform magnetic field, and assume the turbulent fluc-
f=Fy+Tf. [Here, bothf andf are regarded as distribu- tuations to be statistically homogeneous in sp&Bech ho-
tion functions on thev -space obtained by integrating mogeneous turbulence is actually obtained by simulations in
those in Egs.(1) and (2) on the v,-space so thatf the next section.Then, we replace the ensemble average
=3, f(vy,1)€% %] Retaining terms up t@(T2), the rela-  (--) by the volume average such thaS=3[dv(f?)/Fy,
tion between S, and S, is given by Sy=(S,) =3=«Sdv|fil?/Fuy.
+1fdv (f?)/F\ , where(--) represents the ensemble aver-  From Egs.(3), (7), and (9), we find that the turbulent
age. As shown from Eq(), the total microscopic entropy entropy production rate is given by

d |12 Ty ic e Re(—ik,Wup)
il 3 oozt oro¥ [nd g gockn ] vy SR

(15

QL Q
—T—i-(—V In Ti)+?i,

where q, =3n,S R TLi(c/B)bxkW¥,] is the turbulent where @ (t)=(n!) "1~ d(v,/v)f(v,,)Ha(v /oY) (0

perpendicular ion heat flux an@=eny=,Re(—ik,¥ug) =0,1,2...). Substituting Eq(18) into Eq.(17) gives
represents the turbulent ion heating. Using E4s.(7), and
9), we obtain d 1|n? 1ful? 1T J)? 1 2
© 95 20 Lug®, LIT" 1) G

d No|edy|? T, Q dt K 2ngl 2]y 41T; 12|ngTv;

priDIE 1+ —{1-To(b)}| |=—=. (16

dt\ ¢ 2 Te T; Te n! Te |0 2 Te

+ 2 > lond®+ 5 1+ —{1-To(bo)}
Then, using Eq(16), the kinetic entropy balance equation n=4 2 2Ti| Te Ti
(15) is rewritten as q
iR

d [T neTe e¢>k\2 Te B f'(_v In To), (19
— > fdvu + 1+ —{1-To(by)}
dt % 2Fy 2T | Te| T,

where the orthogonality conditions for the Hermite polyno-
:q_L,(_V InT)). (17) ~mials (2m) "Y21” _dx ge*Xz’ZHn(x)Hm(x)zn!é)‘nm (n,m
T =0,1,2...) areused. It is found from Eq(17) or Eq.(19)
that there is no perpendicular heat transport in the direction
of the temperature gradient in the collisionless steady turbu-
lent state where saturation of the entrgfgp | |%/2F, and

It is convenient to expandl, in terms of the Hermite poly-
nomials H,(X)=(—1)"e*2d"e 2/dx"  (x=v,/v,; n

=012...)as the potential amplitudgg,| occurs. Then, we assumegaa-
sisteadystaté in which the amplitudes of the fluid variables
fi(vy ,t>=FM(vu)§ enk(t)Hp (v fvy) @nk With low n (ny, Uy, Tg, G, . ..) and the potentialp,
reach the steady state while the higlmoments included in
E M Uefvg)  1Tf (o 2_1 Sn=4(n1/2) |@enl? grow indefinitely in_ timg.(T.he quasi-
m(vy) n0+ ve | vy + 2T | \v, steady state should be regarded as idealization of the real

steady state in which those highmoments eventually satu-
1 ok vy\® v rate as well due to collisional dissipation even if the collision
6 noTive |\ vy -3 vy frequency is much smaller than the characteristic frequency
of the instabilities causing the turbulenke.
n E (Pnk(t)Hn(v/Ut)}v (18) Using E_qs.(4_)—_(7) and(10), we can derive another bal-
n=4 ance equation similar to E@19),
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d > 1 nk2+1 uk2+1 T2
a . Ng E n_o E U_t Z f AS1.5x10 i
Te ed’kz Te D n,(p; /L )2 I
— 1+ —{1-Tyb O =0l
2T;| Te Ti{ ol k)} 1.0x10° |
T
L vy mT)+S R —Sikat |, (20) _
Ti K 2T; 0.5x10°
which can be regarded as the fluid entropy balance equation. I
We should note that Eq20) is valid irrespectively of closure
relations. Comparing Eq20) to Eqg. (19), we easily find A IT -
0 100 200 300 400 500 600 700
Tk . | d 1 Jk 2 Vtt/Ln
>R ——ikai —_az ol T5InT0
k 2Ti K 0%i%t FIG. 1. Time evolution of the entropy associated with the fluctuations per

nl unit volumeAS= %fdv"(fz)/FM obtained by the kinetic simulation. Solid

+ 2 —.|(pnk|2 . (21 and dotted lines correspond t&S and AS"™2=n,3,(3]n/nol?
n=4 2 +Hu, Jv,2+ 3T, ITi|2), respectively.

For the quasisteady state in whid{=,—5(n!/2) |¢nl?)/

dt=0, we obtain from Eqs(20) and (21),

T
% (=VInT)=-2> Re(—kzik”q’k‘) For comparison to the kinetic simulation, two types of fluid
! X 2T simulations using different closure models are done. Both
d n! fluid simulations are based on Eq4)—(7) for k,#0 and Eq.
:a(no; 24 7|90nk|2 : (22)  (10) for k;=0. However, one of them employs the NCM
given by Eq.(12) for linearly unstable modes and the HP
Equation(22) represents the entropy production rate in thedissipative closure given by Eqa1) for linearly stable
quasisteady state, where the perpendicular heat transport jlodes while the other uses the HP closure for all modes.
the presence of the background temperature gradient drivesere, for all simulations, we use the conditiong/T;=1,
the growth of the fluctuatlions in the high-moment vari- . = /L .=10, andL,=L,=20mp; [p;=v,/Q; is the ion
ables through the correlation between the parallel heat fluyhermal gyroradiul Another important parameter related to
and temperature fluctuations. It is interesting to 'note that, ifhe linear dispersion relation ®=6L,,/p;. We find from
a closeg. fluid — system, the correlation term gq (14) that the normalized complex-valued eigenfrequency
R (Ty/2T7)ik i ] involved in the entropy balance is influ- , " /4, = is a function of the dimensionless parameters

enced by what closure model is used. The entropy balanc&mt@,m T./T,). Simulation results fo® =2 are shown
equations in Egs(17) and (20) are also useful for checking in Figs. 1-8.

numerical accuracy of nonlinear simulations of the collision-
less slab ITG turbulence.

Figure 1 shows time evolution of the entropy associated
with the fluctuations per unit volumAS=3fdv,(f?)/Fy,
which is obtained by the kinetic simulation. Here, solid and
dotted lines correspond tAS and AS"<?), respectively,

Here, results of kinetic and fluid simulations of the two- where  AS("<2)=n,3, (3|n,/no|?+ 3|uy /v %+ 3T /Ti|?)
dimensional slab ITG turbulence are shown. We consider @epresents a contribution from the<2 terms in the
rectangular domain of XL, in the x-y plane with a uni-  Hermite-polynomial expansion df, to AS [see Eq(18)]. It
form external magnetic fiel@=B(z+ 6y) (|6|<1), where is clearly seen that, even after the end of the linear stage at
y and z denote the unit vectors in thge and zdirections,  vt/L,=90, AS continues to monotonically increase while
respectively. The system is assumed to be homogeneous #S""=? is saturated. This implies realization of the quasi-
the z-direction (9/9z=0). We employ the periodic boundary steady state of the collisionless turbulence described in the
conditions in bothx andy directions. Then, in Eq(2), we  previous section, which was already confirmed by Watanabe
can writek=kz+k,y=2a (WL )X+ (n/L)Y], f=fpn,,  and Sugam&’ The monotonic increase &fS is sustained by
and ¢ = ¢, (MNn=0,21,+2,...) and theparallel wave generation of fine velocity-space structures fQf through
number is given byk,=k,6. The background density and phase-mixing processes such as the ballistic mode. In order
temperature gradients are assumed to exist inxthieection,  to keep enough resolution for the fine structures, 8193 grid
and their gradient scale lengths are given hy,  points are used here for discretization of the velocity space,
=—(d In ny/dx)~Y(>0) and Ly=—(d In T;/dx)"Y(>0), re- —5=<v,/v<5. Also, in order to satisfy the kinetic entropy
spectively. balance equation in Eq17) with high accuracy, we employ

The governing equations for the kinetic simulation arethe time integrator, which retain the time reversal symmetry
written in Eqgs.(3) and (7) for k,#0 and Eq.(9) for k;=0. and avoid numerical dissipation.The kinetic computation

Ill. SIMULATION RESULTS
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E T 3 ,’\‘ ’I\\ . R A ] [
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[ o 4
2x10* | v ] [
F ! ]
[ 1 ] I
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FIG. 2. Time evolution OfE;=Xno(3|N/No|?+ 3|uy v+ 3| T /Ti|? v.t/1
1t

+ %(Te/Ti)|e¢k IT 1+ (To/T){1-Ty(b)}]). Solid, dotted, and
dashed curves represent results of the kinetic, NCM, and HP simulations, ) . e 2
respectively. FIG. 3. (Color) Normalized perpendicular heat diffusivigy/ (p;v,/L,) as a

function of normalized timet/L, . Black, red, and blue lines correspond to
results of the kinetic, NCM, and HP simulations, respectively.

should be stopped when the velocity-space scale of the bal-

listic mode reaches the grid siz@t vt/L,>800 for the  gimyjation. In contrasty obtained by the HP simulation are
present case o _ . significantly ~ larger ~ than  them. We  obtain
For all kinetic and fluid simulations, we impose the CuAx) (p2oiIL,) = (2557,0.97), (3.06,1.30), and

same initial condition that the initial amplitude - . .
(e /T)/(pi/L,)=10"5 and random phases are gFi)ven to(12.86,3.43) from the kinetic, NCM, and HP simulations,
all potential componentsp, with k0. The mode wave respectively, wheree and A y denote the time average and
numbers used here are,(k,)=0.1p"X(m,n) with m,n the standard deviation of over 30G<v,t/L,<726, respec-
T ' tively. The NCM simulation also reproduces a big fall pf

=0,+1,%2,...,£32, for which good numerical conver- ; N
gence is obtained. It is confirmed that, in the early tirneafter the first overshoot shown by the kinetic one better than

stage, the kinetic simulation, the NCM fluid simulation, andthe II;|l3tt3|muIa]E|(;r:1. lectrostati tential on th |
the one using only the HP closure model show a good agree- attems of the electrostatic potential on they)-plane

ment on the growth of the linear unstable modes becaus%tvtt“‘“:726 obtained by the kinetic, NCM, and HP simu-

both the NCM and the HP model accurately reproduce thé"’ltlons are shown n F|gs.(_a), A(b), and 4c), respectlvely.
kinetic linear dispersion relation. Figure 2 shows time evoror all cases, more isotropic vortex structures are seen in the

Iuti fth _lik tity, nonlinear stage than in the linear stage where the structure of
o OF The enerayriie uany the (m.n)=(0,4) [or (kp; kyp))=(0.1m,0.1)=(0,0.4)]

E=S 1ing 2+ 1iug 2 1T 2 mode with the largest linear growth rate is dominant. We
T4 Mo 2[ng 2| v, 4|T; notice that the HP simulation gives the largest amplitude of
) the potential.
Te ey Te In order to investigate in more detail the difference be-
P 1+ ={1-To(bp}| |, (23) Sl e
2T;| Te T tween the turbulent heat diffusivities shown in Fig. 3, we plot

the change rate of which is governed by E20). In Fig. 2, Xk for linearly —unstable modes with kfpi kypi)
results of the kinetic, NCM, and HP simulations are repre-=(0,0.1),...,(0,0.7) in Fig. 5, wherg is defined by tak-
sented by solid, dotted, and dashed curves, respectively. Weg a time average of the wave-number-dependent heat dif-
find from Fig. 2 that the nonlinear saturation labeltsf in ~ fusivity szqlk-f(/(nOTi ILy)=— %Re[T;fi(c/B)ky\Ifk]/

the HP simulation is much larger than that in the kinetic(T;/Lt) over 3006<uvt/L,<726. Here, black, red, and blue
simulation while the NCM simulation result is closer to the lines correspond to the kinetic, NCM, and HP simulation

kinetip one. _ . _ results, respectively. It is noted that's for other unstable
N F|gure23 shows the normalized perpendicular heat diffumodes withk,# 0, which are not shown here, tend to become
sivity x/(pjv:/Ly) as a function of normalized timgt/L,,  smaller with increasing,. In Fig. 5, the normalized linear

where XEqL»A(/(nOTi ILy) and q,=3n,= R Tri(c/B)b  growth ratesy,/(v/L,) are also plotted by thin dashed and
xXkW¥,]. Here, black, red, and blue lines correspond to re-dotted curves, which correspond to results from the NCM
sults of the kinetic, NCM, and HP simulations, respectively.and the HP model, respectiveljor unstable modes, the
We see thajy shows similar behaviors to thoseBf in Fig.  linear growth rates obtained by the kinetic model coincide
2 except that more spiky oscillations appear in the former. Irwith those by the NCM because of definitions of the real-
the saturated state of turbulence,obtained by the NCM valued closure coefficients in E¢L3).] Due to the inverse
simulation is in good agreement with from the kinetic  cascade, contributions tp are dominantly made by lower
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FIG. 4. (Color) Patterns of the electrostatic potential on tlxeyj-plane at
v,t/L,=726 obtained bya) kinetic, (b) NCM, and(c) HP simulations.
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FIG. 5. (Color Contributions of linearly unstable modes witkf; ,k,p;)
=(0,0.1),...,(0,0.7) to the turbulent heat diffusivity. Symbols on black,
red, and blue lines represegt/(p?v,/L,) obtained by the kinetic, NCM,
and HP simulations, respectively. Heng, is defined by taking a time av-
erage of stqlk&/(noTi/LT)E—%Re{T’k*i(c/B)ky\Ifk]/(Ti/LT) over
300<u,t/L,<726. The normalized linear growth rateg/(v,/L,) calcu-
lated from the NCM and the HP model are also plotted by thin dashed and
dotted curves, respectivelyFor unstable modes, the linear growth rates
obtained by the kinetic model coincide with those by the NCM.

wave number modes than the most unstatigoi(,k,p;)
=(0,0.4) mode. We find that, in the kinetic and NCM simu-
lations, the lowest wave numbek,fp; ,kyp;) =(0,0.1) mode
plays a dominant role in the turbulent heat transport while, in
the HP simulation, other low wave number modes such as
the (kypi kyp;)=(0,0.2) and (0,0.3) modes also give rela-
tively large contributions tgy, which leads to significantly
larger x in the HP simulation as seen in Fig. 3.

Figures 6a) and &b) show the wave-number-dependent
heat diffusivity y, as a function of time for the cases of
(kpi ,kypi)=(0,0.1) and (0,0.2), respectively. Here, black,
red, and blue curves correspond to the kinetic, NCM, and HP
simulation results, respectively. As seen from Fig)6all
kinetic, NCM, and HP simulations show similar behaviors of
X« for the lowest wave number unstable modgf ,kyp;)
=(0,0.1) in the nonlinearly saturated state: Average values
and distribution widths ofy, in the three simulations are
close to one another. On the other hand, we find from Fig.
6(b) that, for (kp;i ,kypi)=(0,0.2), x\’s distributions in the
kinetic and NCM simulations become much smaller than for
(kxpi ,Kypi) =(0,0.1) whiley,’s behaviors in the HP simula-
tion for the two cases ofkip; ,kyp;)=(0,0.1) and (0,0.2)
are not much different from each other. It should be espe-
cially noted that, in the kinetic and NCM simulations for
(kxpi ,kypi)=(0,0.2), there appears a significant length of
time for x, to be negative, which is a contrast to the case of
(kxpi .kypi)=(0,0.1).

Now, let us consider how the results shown above are
related to the closure relations. We directly check the validity
of the closure relations themselves for the parallel heat flux
gy by examining what values the ratio qf to the tempera-
ture fluctuationT, takes in the kinetic and fluid simulations.
The real and imaginary parts qf/(ngv,Ty) are plotted as a
function of time in Fig. 7. Figures (@ and db) show
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—Kmistle Im[q,/(ngu(Ty)] although, in the later time, the values of

NCM both real and imaginary part in the NCM case slightly shift
(a) (kypy kyp;)=00.0.1) HP in the positive direction on average from those in the kinetic

' ' ' ' case.

The sign of Iniq,/(ngvTy)] is especially important
since it determines the sign of the dissipation term
Re (T, /T?)ik,q¥] in the entropy balancésee Eq.(20)].

For k,>0, negative(positive) Im[q,/(ngv;Ty)] corresponds
to dissipation(antidissipation and to positive(negative x

if we assume that the mode structure is given by or close to
a linear combination of the unstable linear eigenfunctions
A and its complex conjugatelsThis assumption is valid for the

' ] three-mode ITG probleffi and is supported to some extent
' ] for the collisionless turbulence as shown in Watanabe and

05 L L1 i Sugamail,9 where it is checked by the kinetic simulation how
300: 350 SO0 450 500 550::R00 030 00 closely f,(v,) for the linearly most unstable mode takes the
vit/L, form of c,f (v)) +caf{(v) with the linear eigenfunction
— fL(v) and its complex conjugaté},(v,).] The kinetic
— Kinatic

1 F

Ak
(P V/Ly)

0.5

NCM and NCM results in Fig. (b) show that, for the lowest
ih) {k_,‘pi,k}pijzfu.n.zi — HP wave number unstable mode k,p;kyp;)=(0,0.1),
rrT  LERE N Im[q,/(ngv{Ty)] is almost always negative as in the HP
’ model, which means that the mode structure fap( k,p;)
=(0,0.1) stays close to that of the unstable eigenfunction.
. | This fact is related to the large positivg values for
| 5 (kxpi Kypi)=(0,0.1) shown in Figs. 5 and®. On the other
l‘ ' hand, for k,p; kyp;) =(0,0.2), the kinetic and NCM simula-
tions show that the length of time for [, /(ngvT\)] to be
positive increases as seen in Fig.(d)7 Then, the
i 1| (kxpi kypi) =(0,0.2) mode structure can sometimes approach
L i ' the complex conjugate of the unstable eigenfunction, which
I : | _ : enablesy, to reduce or take negative values as shown in Fig.
. ' 6(b). This fact is confirmed more clearly in Fig. 8, wheyg
%00 350 400 450 500 550 600 650 700 and Infay/(nov(Ty)] for (kypi kypi)=(0,0.2) are plotted as
v, t/L, a function of time on the same frame. Figurés)&nd 8b)
correspond to the kinetic and NCM simulations, respectively.
FIG. 6. (Colo) The wave-number-dependent heat diffusivityas a func- It is obvious that positivénegative Im[ g, /(nevTy)] corre-
tion of time for the cases ofa) (kup; ,kypi)=(0,0.1) and(b) (ki kypi)  lates with negativépositive y . Allowing for this positive
=(0,0.2) . Here,_ black, red, and blug curves correspond to the kinetic, NCMIm[qk/(novtTk)] in the NCM is considered to be the key to
and HP simulation results, respectively. the better prediction of than in the HP model.
Figure 9 shows the normalized perpendicular heat diffu-
sivity )(/(pizvt/Ln) as a function of normalized time;t/L,,
Re di/(nov(Ti)] and Infqi/(nov;Ty)] for the lowest wave o the case of = 1. Parameters used here are the same as in
number unstable modekyp; kyp;)=(0,0.1), respectively, Figs 18 except foP. The linear growth rate of the most
while their correspondences for the case @fp{,kyp;) unstable mode increases fromy,,=0.182@/L,) at
=(0,0.2) are given in Figs.(€) and 7d). Here, results from (Kupi ,kypi)=(0,0.4) for ®=2 10 ya=0.379,/L,) at
the kinetic and NCM simulati_ons are represented by bIaclthpi kypi)=(0,0.7) for®=1. Also, the wave number re-
and red curves, respectively. In the HP model,gion for unstable modes extends frdmp;<0.7 for® =2 to
Re(q/(nov(T)]=0 and Imay/(nov(Ti)]= _2(2/_77)1/2 k, pi=1.2 for®=1. Thus, the heat diffusivity in the non-
=—1.5958 as shown by blue horizontal lines. It is found inearly saturated state becomes larger@or 1 than for®
from the kinetic result that both real and imaginary parts of_ o Still, the NCM simulation describes the behaviorain
A /(nov(Ty) are oscillatory functions of time, which is better {he kinetic simulation better than the HP model because of
described by the NCM than by the HP. The oscillation am+ne same reason as explained in the case of2.
plitudes of the real and imaginary parts in the kinetic simu-
lation are about the same as those in the NCM simuIationN CONCLUSIONS
and these amplitudes become smaller for the lower wave'”
number mode. Up to the early part of the nonlinear stage In the present paper, we have made a detailed compari-
[vt/L,<200 for (kyp; kyp;)=(0,0.1) andvt/L,<150 for ~ son between kinetic and fluid simulations of two-
(kypi kypi)=(0,0.2)], the kinetic and NCM results show a dimensional collisionless slab ITG turbulence. In the fluid
good agreement on the behaviors off & (novTy)] and  simulations, two types of different closure relations, namely,
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FIG. 7. (Colorn Real and imaginary parts af /(nov,Ty) as a function of normalized timet/L,. Here, Réq/(ngvTy)] and Infqy/(nev,Ty)] for the

lowest wave number unstable mode; k,p;)=(0,0.1) are shown irfa) and (b), respectively, while their correspondences for the casekgf; (kyp;)

=(0,0.2) are given irfc) and(d). Results from the kinetic and NCM simulations are represented by black and red curves, respectively. Blue horizontal lines
correspond to the HP model, in which [Rg/(nqv T, )1=0 and Iniq, /(nev T ) 1= — 2(2/7) 2= — 1.5958.

the NCM and the HP model are employed for linearly un-simulation, the number of unstable modes with significant
stable modes. We examine how accurately they can repreffects on the transport increases, which leads to the higher
duce nonlinear results of the kinetic simulation such as th&aturation value of. The kinetic and fluid simulation results
turbulent heat diffusivityy. In the collisionless kinetic simu- all show that the contribution of the lowest-wave-number
lation with no zonal flow component, the quasisteady turbuunstable mode to the turbulent diffusivigy always tends to
lent state is reached, in which the entropy variable associatedke relatively large positive values, which is associated with
with fine velocity-space structures\S=%[dv(f?)/F,,  the dissipative nature of the relation between the parallel heat
monotonically increases while the lowfluid variables and  flux gy and the temperature fluctuatidn that the imaginary
the electrostatic potential reach the real steady stiatere,n part of the ratioq, /T, for that mode is constantly negative.
denotes the number of order in the Hermite polynomial exHowever, it is a common property found in the kinetic and
pansion of the distribution function. NCM simulations that, for other low-wave-number unstable
We show that the saturation level of the lawfluid vari- modes, x, can take negative values in response to
ables andy in the quasisteady state of the kinetic simulationim(q,/T,) becoming positive. The HP model misses this
are better predicted by the fluid simulation using the NCMmechanism and causggo be larger. Herey, represents the
than by the one using the HP model. In the kinetic and NCMcontribution of the mode with the wave number vedtoto
simulations, unstable modes other than the lowest-wavethe total heat diffusivityy, and the meaning of negatiyg is
number unstable mode have low amplitudes and small corthat the EXB convective thermal flux produced by that
tributions to the turbulent heat transport while, in the HPmode is up the background temperature gradient.
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“"\'”‘“}"ﬁ" ! '|.r,.|' LA LN |L5 closure. However, the zonal flows and the unstable modes
i E {'ui [ | | | ,h1' ! often show pulsation behavior through their interactfand
: ] I |1 | e both play a important role in the plasma transport. Thus,
e : generally the use of the nondissipative closure for the un-
A - { -4 stable modes is considered preferable although some modi-
P I | P II fication of the closure relation may be necessary in order to
s6b 580 800 G20 B0 660 630 take account of the variation of the unstable mode structures
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FIG. 8. (Color Time evolution ofy/(p?v,/L,) and Infq/(nevT)] for
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