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Collisionless kinetic-fluid closure and its application to the three-mode ion
temperature gradient driven system
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A novel closure model is presented to give a set of fluid equations which describe a collisionless
kinetic system. In order to take account of the time reversal symmetry of the collisionless kinetic
equation, the new closure model relates the parallel heat flux to the temperature and the parallel flow
in terms of the real-valued coefficients in the unstable wave number space. Effects of the closure
model on turbulence saturation and anomalous transport are investigated based on kinetic and fluid
entropy balances. When the closure model is applied to the three-mode ion temperature gradient
~ITG! driven system, the fluid system of equations reproduces the exact nonlinear kinetic solution
found by Watanabe, Sugama, and Sato@Phys. Plasmas7, 984 ~2000!#. Oscillatory behaviors and
initial amplitude dependence of other numerical kinetic solutions of the three-mode ITG problem
can also be accurately described by the fluid system. ©2001 American Institute of Physics.
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I. INTRODUCTION

Many theoretical studies have been done in order to
derstand anomalous transport processes observed in ma
cally confined plasmas. Recently, predictions of the ano
lous transport coefficients have come to be made by fi
principle simulations of the ion temperature gradient~ITG!
turbulence1 based on gyrokinetic2–5 and gyrofluid6–9 ~or
gyro-Landau-fluid! models. Gyrokinetic simulations directl
solve gyrokinetic equations for gyrocenter distribution fun
tions and the Maxwell equations for electromagnetic fie
while gyrofluid simulations solve a truncated system of flu
equations instead of the gyrokinetic equation. The gyrofl
simulations are attractive in that less computer memory
time are consumed although they depend on a closure
tion between the highest-order fluid variable and lower-or
variables which is assumed to be valid even for collisionl
kinetic systems. Since conventional gyrofluid closu
models10,11 are derived so as to accurately reproduce kine
dispersion relations for linear modes, the gyrokinetic and
rofluid simulations show good agreements in their linear
sults. However, there exist disagreements in their nonlin
results such as the saturated fluctuation levels and the tu
lent transport coefficients.12,13

The three-mode ITG system2 is one of the simplest ex
amples to show these agreements and disagreements be
the kinetic and Landau-fluid models, in which effects of
nite gyroradii are neglected by taking the long-wavelen
limit. Recently, an exact nonlinear solution of the thre
mode ITG problem was found by Watanabe, Sugama,
Sato~WSS!.14 The nonlinear solution of the three-mode IT
problem shows periodic oscillation of the amplitude of t
electrostatic potential. On the other hand, the solution of
kinetic-fluid equations using the conventional linear clos
2611070-664X/2001/8(6)/2617/12/$18.00
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models fail to reproduce this oscillation and instead give
amplitude saturation at a certain value.15 Also, it is important
to note that the exact kinetic solution is symmetric in tim
reversal while the solution of the conventional kinetic-flu
equations is not symmetric due to the dissipative clos
term.

In this paper, a novel collisionless kinetic-fluid closu
model is presented, which takes into account the time re
sal symmetry of the collisionless kinetic equation by inclu
ing nondissipative closure terms. It is shown that, when
new closure model is applied to the three-mode ITG pr
lem, the exact kinetic solution by WSS is reproduced a
solution of the fluid equations. Recently, Mattor and Par
presented a nonlinear closure model,15 which also describes
the behavior of the WSS solution better than the conv
tional linear closure models. However, their model conta
complicated procedures for analytical continuation of t
plasma dispersion function with matrix arguments includi
nonlinear effects and it cannot be easily extended to syst
with more than three modes. Our closure model does
contain such fundamental difficulties for application to sy
tems with a large number of degrees of freedom. Anot
nonlinear closure model based on the phase velocity tra
form ~PVT! was presented by Mattor.16 As written in Ref.
17, one difficulty with the original PVT closure is that ca
culating the transform into the phase velocity space can
nearly as time-consuming as the original kinetic equati
Therefore, Mattor proposed a Wentzel–Kramers–Brillou
~WKB!-type local approximation to make the PVT closu
model more tractable.17,18 In this local PVT model as well as
in all other closure models except for the original PV
model and ours, it is assumed that, for the wave num
vector k, the distribution function is written asf k(v i)
7 © 2001 American Institute of Physics

 license or copyright; see http://pop.aip.org/pop/copyright.jsp

https://core.ac.uk/display/72807353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


d
r
a

c

in
o
e
n
e
th

y i
es

he
si
y
ss

II
t
o
tic
ex
n

ne
ur

i
a

th
th
a
r

III
re
i

de
a
n

h

d

o

an

d
rdi-

the

to

r

lel

ra-

k-

-

2618 Phys. Plasmas, Vol. 8, No. 6, June 2001 Sugama, Watanabe, and Horton
3exp(2ivkt1 ik•x) with a single dominant complex-value
frequency vk . However, we show that, in the nonlinea
stage with the time reversal symmetry, a complex-conjug
pair of functionsf k(v i) and f k* (v i) corresponding tovk and
vk* are required to describe the distribution function for ea
k, which is what our closure model attempts to describe.

The collisionless turbulent system is also an interest
subject from the nonequilibrium thermodynamical point
view. In the collisionless system, an increase rate of the
tropy functional defined in terms of the kinetic distributio
function is equal to the product of transport fluxes and th
modynamic forces. Thus, no turbulent transport occurs in
collisionless steady state, or the entropy grows indefinitel
time for the transport fluxes to take finite nonzero valu
This is called theentropy paradoxby Krommes and Hu.19 In
order to examine effects of the kinetic-fluid closure on t
turbulence saturation and the anomalous transport, it is
nificantly useful to consider kinetic and fluid entrop
balances.19–21This thermodynamic aspect of the collisionle
closure model is also discussed in the present work.

The rest of this work is organized as follows. In Sec.
the new closure model is presented to give a closed se
fluid equations, which describe the collisionless system g
erned by the drift kinetic equation for ions, the adiaba
condition for electrons, and quasineutrality. When there
ists a linearly unstable normal mode solution of the collisio
less system, its complex conjugate also becomes a li
solution due to the time reversal symmetry. Our clos
model is derived in order to express the parallel heat flux
terms of the temperature and the parallel flow for the norm
mode as well as for the complex-conjugate mode. Also,
role of the closure model in the turbulence saturation and
anomalous transport is investigated based on the kinetic
fluid entropy balance equations. Application of the closu
model to the three-mode ITG problem is given in Sec.
The fluid system of equations with our model used can
produce the exact nonlinear kinetic solution by WSS. It
also shown that oscillatory behaviors and initial amplitu
dependence of other numerical kinetic solutions can be
curately described by the fluid system. Finally, conclusio
are given in Sec. IV.

II. COLLISIONLESS KINETIC-FLUID CLOSURE

A. Basic equations

Let us start from the drift kinetic equation for ions wit
the massmi and the chargee in a slab geometry

] f

]t
1v ib•¹ f 1vE•¹ f 1

e

mi
Ei

] f

]v i
50, ~1!

wheref 5 f (x,v i ,t) is the ion distribution function integrate
over the velocityv' perpendicular to the magnetic-fieldB
[Bb, v i[v•b is the parallel velocity,Ei[E•b is the par-
allel electric field, andvE5cE3B/B2 is theE3B drift ve-
locity. The long perpendicular wavelength limit (k'r i!1) is
assumed in Eq.~1!. We assume that the magnetic-fieldB is
uniform and constant. The electric field is written in terms
the electrostatic potentialf as E52¹f. The distribution
function is given by the sum of a background Maxwelli
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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partFM5n0(mi /2pTi)
1/2exp(2miv

2/2Ti) and a perturbation
part f̃ , wheren0 andTi denote the background density an
temperature, respectively, which depend only on a coo
natex in the perpendicular direction.

We assume the adiabatic electron response. Then,
quasineutrality condition is written as

E f̃ dv i5n0

ef

Te
. ~2!

Equations~1! and ~2! form a closed system of equations
determinef̃ andf.

Now, we representf̃ and f in terms of the Fourier ex-
pansion as

f̃ ~x,v i ,t !5(
k

f k~v i ,t !eik•x, f~x,t !5(
k

fk~ t !eik•x.

~3!

The drift kinetic equation~1! is rewritten in the wave numbe
representation as

] t f k1 ik iv i f k2
c

B (
k81k95k

@b•~k83k9!#fk8 f k9

5 i Fv* i H 11h i S miv i
2

2Ti
2

1

2D J 2kiv iGFM

efk

Ti
, ~4!

whereki[k•b is the parallel wave number and the paral
nonlinearity (e/mi)Ei] f̃ /]v i in Eq. ~1! is neglected. In Eq.
~4!, inhomogeneities in the background density and tempe
ture are taken into account only throughv* i[(cTi /eB)k'

•b3¹ ln n0 andh i[d ln Ti /d ln n0 while n0 andTi in other
places as well asv* i andh i are regarded as constants. Ta
ing the velocity moments of Eq.~4!, we obtain fluid equa-
tions

] tnk1 ik in0uk2 iv* in0

efk

Ti

2
c

B (
k81k95k

@b•~k83k9!#fk8nk950, ~5!

n0mi] tuk1 ik i~Tink1n0Tk1n0efk!

2
n0mic

B (
k81k95k

@b•~k83k9!#fk8uk950, ~6!

n0] tTk1 ik i~2n0Tiuk1qk!2 iv* ih in0efk

2
n0c

B (
k81k95k

@b•~k83k9!#fk8Tk950, ~7!

where nk(t)[*2`
` dv i f k , n0uk(t)[*2`

` dv i f kv i , n0Tk(t)
[*2`

` dv i f k(miv i
22Ti), and qk(t)[*2`

` dv i f k(miv i
3

23Tiv i). Here all nonlinear terms result from theE3B
drift. From Eq.~2!, we also have

nk5n0

efk

Te
, ~8!

which makes the nonlinear terms in Eq.~5! vanish. A system
of the fluid equations~5!–~7! and the quasineutrality condi
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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2619Phys. Plasmas, Vol. 8, No. 6, June 2001 Collisionless kinetic-fluid closure . . .
tion ~8! are not closed because the parallel heat flowqk is
included in Eq.~7!. A new collisionless closure model forqk
is given in Sec. II C. Before presenting the closure mode
is useful to review the linear kinetic solution of Eqs.~4! and
~8! in the next subsection.

B. Linear kinetic solution

Here, we consider the linear solution of Eqs.~4! and~8!
for a specified wave number vectork. The initial-value prob-
lem of the linearized version of Eqs.~4! and ~8! is easily
solved by using the Laplace transform. The linear solutio
f k(v i ,t) andfk(t) are written by

@ f k~v i ,t !,fk~ t !#5E
C

dv

2p
@ f k~v i ,v!,fk~v!#e2 ivt, ~9!

where C is a contour in the complexv-plane which lies
above all of the singular points of the integrand. He
f k(v i ,v) andfk(v) are given by

f k~v i ,v!5F211
v2v* i$11h i~miv i

2/2Ti21/2!%

v2kiv i
GFM

3
efk~v!

Ti
1

i f k~v i ,t50!

v2kiv i
~10!

and

efk~v!

Ti
5

I k~v!

Dk~v!
, ~11!

respectively, where the dispersion functionDk(v) is defined
by

Dk~v![11
Ti

Te
2

1

n0
E

L
dv iFM

3
v2v* i$11h i~miv i

2/2Ti21/2!%

v2kiv i
~12!

and

I k~v![
1

n0
E

L
dv i

i f ~v i ,t50!

v2kiv i
. ~13!

In Eqs.~12! and~13!, L is a Landau contour in the comple
v i-plane which pass below the singular pointv i5v/ki for
ki.0 ~above the singular point forki,0).

We consider thenormal-modesolution which takes the
form of

@ f k
(nm)~v i ,t !,fk

(nm)~ t !#[@ f Lk~v i!,fLk#exp~2 ivLkt !.
~14!

Here, fLk is a constant~the normalizationefLk /Ti51 is
used later!, vLk is determined by the dispersion relatio
Dk(vLk)50, and f Lk(v i) is given in terms offLk as

f Lk~v i!5F211
vLk2v* i$11h i~miv i

2/2Ti21/2!%

vLk2kiv i
GFM

3
efLk

Ti
. ~15!
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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Here, the system is assumed to be linearly unstable and
most unstable mode which has the largest growth r
Im(vLk)(.0) is considered. We can directly confirm that th
normal-mode solution in Eq.~14! satisfies the linearized ver
sion of Eqs.~4! and ~8!. Also, as well known, asymptotic
behaviors of general linear solutions are dominantly
scribed by the normal-mode solution which has the larg
growth rate.

When we use the Fourier transform in time instead of
Laplace transform, we find thatD0k(vLk)50 as well as
D0k(vLk* )50 are satisfied for the linearly-unstable ca
Im(vLk).0, wherevLk* denotes the complex conjugate
vLk andD0k is defined by Eq.~12! with the realv i-axis used
instead of the Landau contourL. Corresponding to this com
plex conjugatevLk* , let us take the complex conjugate of th
normal-mode solution

@ f k
(cc)~v i ,t !,fk

(cc)~ t !#[@ f Lk* ~v i!,fLk* #exp~2 ivLk* t !.
~16!

Substituting Eq.~16! into Eq. ~13! and using Eqs.~9!–~15!,
efLk /Ti51 andDk(vLk)5D0k(vLk)50, we find that, for
the initial conditionf k(v i ,t50)5 f Lk* (v i)

I k~v!5
iD k~v!

v2vLk*
,

efk~v!

Ti
5

i

v2vLk*
,

f k~v i ,v!5
i f Lk* ~v i!

v2vLk*
,

efk~ t !

Ti
5exp~2 ivLk* t !, ~17!

f k~v i ,t !5 f Lk* ~v i!exp~2 ivLk* t !,

which show thatthe complex conjugate of the normal-mo
solution in Eq. (16) is a linear solution of Eqs. (4) and (8)
well as the normal-mode solution. Since Im(vLk).0 is as-
sumed, the complex-conjugate solution exponentially dam
in the course of time. The existence of the comple
conjugate solution is related to thetime reversal symmetryof
the original kinetic equation and it should not be confus
with what results from the reality condition in the Fouri
representation. We should note that, for the case
Im(vLk),0, the complex-conjugate of the normal-mode s
lution is not a linear solution of Eqs.~4! and ~8! as shown
from Dk(vLk)ÞD0k(vLk).

C. Closure model

Let us consider a closure problem for the parallel h
flow term qk in Eq. ~7!. Using Eqs.~8! and~9! in Ref. 15 to
give qk

(nm) and Tk
(nm) , respectively, with the phase velocit

W→vLk /ki , we find that, for the normal-mode solutio
given in the previous subsection, the parallel heat flow
related to the temperature perturbation as

qk
(nm)~ t !5CLkn0v tTk

(nm)~ t !, ~18!

where v t i[ATi /mi , n0Tk
(nm)(t)[*dv i f k

(nm)(v i ,t)(miv i
2

2Ti), and qk
(nm)(t)[*dv i f k

(nm)(v i ,t)(miv i
323Tiv i). The

coefficientCLk is defined by

CLk5BS vLk

kiv t
D , ~19!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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2620 Phys. Plasmas, Vol. 8, No. 6, June 2001 Sugama, Watanabe, and Horton
whereB(w) is defined by15

B~w![2
1

&

Z(3)~w/& !

Z(2)~w/& !
~20!

for ki.0. Here,Z(n)(z) denotes thenth derivative of the
plasma dispersion functionZ(z) defined by

Z~z!5
1

Ap
E

2`

1` e2b2

b2z
db ~21!

for Im(z).0 and by its analytic continuation for Im(z),0.
For ki,0, B(w) is determined by the relationB1(w)
5@B2(w* )#* where B1(w) and B2(w) denoteB(w) for
ki.0 andB(w) for ki,0, respectively, and* represents the
complex conjugate.

The closure relation given by Eqs.~18!–~21!, which is
exactly valid for the linear normal-mode solution, is the o
which is well reproduced by conventional linear kinetic-flu
closure models by Hammett and Perkins,10 and by Chang
and Callen.11 In the limit of vLk /kiv t→0, we obtainCLk
522(2/p)1/2ik i /ukiu. This case corresponds to the result
Hammett and Perkins~hp!, in which Eq. ~18! leads to the
dissipativeparallel heat flowqk52n0x i

hpik iTk with the par-
allel heat diffusivity x i

hp52(2/p)1/2v t /ukiu. Chang and
Callen suggested in Eqs.~54!–~61! of Ref. 11 that simplified
versions of normal-mode closure relations, which are
tained by replacingvLk with i ] t under the conditions such a
the adiabatic region and the one-pole approximation, sho
be used for numerical simulations. These conventional lin
closure models cause thedissipationor time irreversibility
for both stable and unstable modes. Hammett and Perk10

showed that there exists a non-Maxwellian equilibrium fun
tion f 0(v i) for which their closure gives an exact linear r
sponse to the electrostatic potential and accordingly an e
dispersion relation for the normal mode. However, this d
not imply that their closure exactly describes any linear
lution of the initial value problem with an arbitrary initia
perturbationf k(v i ,t50) added to that equilibrium. For ex
ample, the complex-valued frequencyvLk* of the complex-
conjugate solution derives not from the dispersion funct
Dk(v) but from the initial condition termI k(v) @see Eq.
~17!#. In this case of the complex-conjugate solution, th
closure cannot correctly give the parallel heat flowqk as
shown below.

It is easily found that, for the complex-conjugate so
tion in Eq. ~16!, the parallel heat flow is related to the tem
perature perturbation in terms ofCLk* ~complex conjugate of
CLk) as

qk
(cc)~ t !5CLk* n0v tTk

(cc)~ t !, ~22!

where n0Tk
(cc)(t)[*dv i f k

(cc)(v i ,t)(miv i
22Ti) and qk

(cc)(t)
[*dv i f k

(cc)(v i ,t)(miv i
323Tiv i). For the complex-

conjugate solution, the phase difference betweenqk andTk ,
which is an important element to consider by closure mod
is opposite to that for the normal mode as seen from E
~18! and ~22!. We should note that the conventional line
closure models can not describe the relation in Eq.~22! for
the complex-conjugate solution and that this is the rea
why they fail to reproduce the amplitude oscillations of t
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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nonlinear solution of the three-mode ITG problem as sho
in Sec. III. In order to keep the time reversal symmetry of t
original kinetic equation, closure models need to be valid
both cases of the normal-mode solution and the comp
conjugate solution. In our new collisionless fluid closu
model, the parallel heat flux is related to the lower-ord
moments~i.e., density, parallel flow, and temperature pertu
bations! such thatthis relation is valid both for the normal-
mode solution and the complex-conjugate solution as wel
for any linear combination of these solutions. Let us express
such a closure relation byqk5Fk(Tk ,uk ,nk). For distribu-
tion functions given by linear combinations of the norma
mode solution and the complex-conjugate solutionf k

5ak
. f k

(nm)1ak
, f k

(cc)5ak
. f Lke

2 ivLkt1ak
, f Lk* e2 ivLk* t, the

density, parallel flow, temperature, and parallel heat flow
written as

nk5ak
.nk

(nm)1ak
,nk

(cc)

5ak
.nLke

2 ivLkt1ak
,nLk* e2 ivLk* t,

uk5ak
.uk

(nm)1ak
,uk

(cc)

5ak
.uLke

2 ivLkt1ak
,uLk* e2 ivLk* t,

~23!
Tk5ak

.Tk
(nm)1ak

,Tk
(cc)

5ak
.TLke

2 ivLkt1ak
,TLk* e2 ivLk* t,

qk5ak
.qk

(nm)1ak
,qk

(cc)

5ak
.qLke

2 ivLkt1ak
,qLk* e2 ivLk* t,

whereak
. andak

, are arbitrary constants. Substituting the
expressions into the closure relation, we obtain

Fk~ak
.Tk

(nm)1ak
,Tk

(cc) ,ak
.uk

(nm)1ak
,uk

(cc) ,

ak
.nk

(nm)1ak
,nk

(cc))5ak
.Fk~Tk

(nm) ,uk
(nm) ,nk

(nm)!

1ak
,Fk~Tk

(cc) ,uk
(cc) ,nk

(cc)!. ~24!

Therefore, we write the closure relationqk5Fk(Tk ,uk ,nk)
in terms of a linear function of (Tk ,uk ,nk) as

qk5CTkn0v tTk1Cukn0Tiuk

1Cnkv tTink ~ for linearly unstable modes!. ~25!

Furthermore, from comparison between the cases
(ak

. ,ak
,)5(1,0) and (0,1) in Eq.~24!, we find that

Fk(TLk* ,uLk* ,nLk* )5@Fk(TLk ,uLk ,nLk)#* and, therefore, the
dimensionless coefficientsCTk , Cuk , and Cnk in Eq. ~25!
are real-valuedconstants determined so as to satisfy

CTkn0v tTLk1Cukn0TiuLk1Cnkv tTinLk5CLkn0v tTLk .

~26!

Equation~26! is required from Eqs.~18! and ~25!. Equation
~25! is called the nondissipative closure model~NCM! here-
after. Here,CLk is given by Eq.~19!, and
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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nLk

n0
[

1

n0
E dv i f Lk~v i!5

efLk

Te
,

uLk[
1

n0
E dv i f Lk~v i!v i5

efLk

Te

~vLk2v* e!

ki
, ~27!

TLk[
1

n0
E dv i f Lk~v i!~miv i

22Ti !

5
efLk

Te
Fmi

vLk~vLk2v* e!

ki
2 2Ti2TeG ,

wherev* e[2(Te /Ti)v* i . We obtain from Eqs.~26! and
~27!

CTk5CLrk2CLik

Re~jkzk* !

Im~jkzk* !
2Cnk

j ik

Im~jkzk* !
,

~28!

Cuk5CLik

uzku2

Im~jkzk* !
1Cnk

z ik

Im~jkzk* !
,

where CLk[CLrk1 iCLik , jk[j rk1 i j ik[(vLk2v* e)/
(kiv t), and zk[z rk1 i z ik[vLk(vLk2v* e)/(ki

2v t
2)21

2Te /Ti are used. For arbitrarily givenCnk , the closure re-
lation in Eq. ~25! with Eq. ~28! satisfies the requiremen
described before Eq.~23!. In order to uniquely determine
(CTk ,Cuk ,Cnk), we impose an additional condition that E
~25! should be valid when the perturbation distribution fun
tion takes a Maxwellian form,f k}exp(2miv

2/2Ti), for
which uk5Tk5qk50. Then, we obtain

Cnk50, ~29!

from which with Eq. ~28!, CTk and Cuk are also uniquely
determined.

So far, we have considered only linearly unstable mo
@ Im(vLk).0#. As mentioned at the end of Sec. II B, th
complex-conjugate of the normal mode is not a linear so
tion for Im(vLk),0. Thus, for linearly stable modes, we a
sume the normal mode to be a dominant contribution to
perturbation, and use the same closure relation as in Eq.~18!

qk5CLkn0v tTk ~ for linearly stable modes!, ~30!

whereCLk is defined by Eq.~19!. It may appear that differen
closure relations for unstable and stable modes give dis
tinuity in the parallel heat fluxqk across the point of mar
ginal stability @ Im(vLk50)#. However, as seen from Eq
~26!, we find that, even if apparent forms are different, t
NCM in Eq. ~25! give the sameqk as Eq.~30! when the fluid
variables (Tk ,uk ,nk) are described by the unstable norm
mode, (TLk ,uLk ,nLk). Thus, the discontinuity inqk across
the marginal point does not occur if the fluid variabl
change continuously and are dominated by the normal m
near the marginal point.

D. Entropy balances

It is useful to consider entropy balances in nonequil
rium systems for understanding the relation between entr
production, dissipation, thermodynamic forces, and trans
fluxes. Here, kinetic and fluid entropy balances are exami
for the turbulent system governed by the equations in S
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II A in order to elucidate the role of the closure model for t
turbulence saturation and the anomalous transport.

We define the microscopic entropySm and macroscopic
entropySM for ions per unit volume by20

Sm52E dv i f ln f , ~31!

SM52E dv iFM ln FM , ~32!

where f 5FM1 f̃ . Retaining terms up toO( f̃ 2), the relation
betweenSm andSM is given by

SM5^Sm&1
1

2 E dv i

^ f̃ 2&
FM

, ~33!

where^¯& represents the ensemble average. As shown f
the basic kinetic equation~1! @or Eq. ~4!#, the total micro-
scopic entropy*d3xSm is conserved without collisions, al
though the macroscopic entropySM or DS[ 1

2*dv i^ f̃ 2&/FM

can be produced by the turbulent or anomalous trans
process. Krommes and Hu19 called S̄[2 1

2*dv i^ f̃ 2&/FM

(5Sm2SM in our notation! the entropy of the system to
measure deviation of the fluctuating distribution functionf̃
from the ensemble-averaged distribution function^ f &. Here,
we regardDS5SM2Sm (52S̄5F̄ in Krommes and Hu19!
as the entropy associated with the fluctuations because, in
collisionless system, turbulent processes produce notSm but
SM . From Eq.~4!, we find that the turbulent entropy produc
tion rate is given by

d

dt S (k
E dv i

u f ku2

2FM
D 5n0(

k
FReS Tk

2Ti
vEk* D •~2¹ ln Ti !

1
e Re~Eikuk* !

Ti
G

5
q'

Ti
•~2¹ ln Ti !1

Q

Ti
, ~34!

where vEk[ i (c/B)b3kfk is the turbulentE3B velocity,
q'[ 1

2n0(k Re(TkvEk* ) is the turbulent perpendicular hea
flux, Eik[2 ik ifk is the parallel electric field, andQ
[en0(k Re(Eikuk* ) represents the turbulent ion heating.

Using Eqs.~5! and ~8!, we obtain

d

dt S (k

n0

2 Uefk

Te
U2D 52

Q

Te
. ~35!

Then, using Eqs.~35!, the kinetic entropy balance equatio
~34! is rewritten as

d

dt (k
S E dv i

u f ku2

2FM
1

n0Te

2Ti
Uefk

Te
U2D5

q'

Ti
•~2¹ ln Ti !.

~36!

It is convenient to expandf k in terms of the Hermite poly-
nomials Hn(x)[(21)nex2/2dne2x2/2/dxn (x[v i /v t ;n50,
1,2,...) as
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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f k~v i ,t !5FM~v i!(
n

wnk~ t !Hn~v i /v t!

5FM~v i!Fnk

n0
1

uk

v t
S v i

v t
D1

1

2

Tk

Ti
H S v i

v t
D 2

21J
1

1

6

qk

n0Tiv t
H S v i

v t
D 3

23S v i

v t
D J

1 (
n>4

wnk~ t !Hn~v i /v t!G , ~37!

where wnk(t)5(n!) 21*2`
` d(v i /v t) f k(v i ,t)Hn(v i /v t) (n

50,1,2,...). Substituting Eq.~37! into Eq. ~36! gives

d

dt (k
n0S 1

2 Unk

n0
U2

1
1

2 Uuk

v t
U2

1
1

4 UTk

Ti
U2

1
1

12U qk

n0Tiv t
U2

1 (
n>4

n!

2
uwnku21

Te

2Ti
Uefk

Te
U2D 5

q'

Ti
•~2¹ ln Ti !, ~38!

where the orthogonality conditions for the Hermite polyn
mials (2p)21/2*2`

` dx e2x2/2Hn(x)Hm(x)5n!dnm (n,m
50,1,2,...) areused. It is found from Eq.~36! or Eq. ~38!
that there is no perpendicular heat transport in the direc
of the temperature gradient in the collisionless and ste
turbulent state where saturation of the entro
*dv iu f ku2/2FM and the potential amplitudeufku occurs.@If
the collision term and the parallel-nonlinearity term are
tained in Eq.~4!, there appear corresponding terms whi
balance the heat transport term in the right-hand side of E
~36! and ~38!, although they are typically small.2# Then, in
order to treat the anomalous transport in the collisionl
turbulent plasma, we assume aquasisteadystate in which the
amplitudes of the fluid variableswnk with low n (nk ,uk ,Tk ,
qk ,...) and thepotentialfk reach the steady state while th
high-n moments included in(n>4 (n!/2) uwnku2 grow indefi-
nitely in time. The quasisteady state should be regarde
idealization of the real steady state in which those highn
moments eventually saturate as well due to collisional di
pation even if the collision frequency is much smaller th
the characteristic frequency of the instabilities causing
turbulence. We should note that the moments with highen
are more effectively dissipated by the Fokker–Planck-ty
collision operator because they represents finer structure
steep gradients in the velocity space.

Using Eqs.~5!–~8!, we can derive another balance equ
tion similar to Eq.~38!

d

dt (k
n0S 1

2 Unk

n0
U2

1
1

2 Uuk

v t
U2

1
1

4 UTk

Ti
U2

1
Te

2Ti
Uefk

Te
U2D

5
q'

Ti
•~2¹ ln Ti !1(

k
ReS Tk

2Ti
2 ik iqk* D , ~39!

which can be regarded as the fluid entropy balance equa
Comparing Eq.~39! to Eq. ~38!, we easily find
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(
k

ReS Tk

2Ti
2 ik iqk* D 52

d

dt (k
n0S 1

12U qk

n0Tiv t
U2

1 (
n>4

n!

2
uwnku2D . ~40!

For the quasisteady state in whichd((n<3 (n!/
2) uwnku2)/dt50, we obtain from Eqs.~39! and ~40!,

q'

Ti
•~2¹ ln Ti !52(

k
ReS Tk

2Ti
2 ik iqk* D

5
d

dt S n0(
k

(
n>4

n!

2
uwnku2D . ~41!

Equation~41! represents the entropy production rate in t
quasisteady state, where the perpendicular heat transpo
the presence of the background temperature gradient dr
the growth of the fluctuations in the high-n moment vari-
ables through the correlation between the parallel heat
and temperature fluctuations. Thus, it is considered that
entropy production rate and the anomalous perpendic
heat transport are deeply dependent on what closure mod
used for the parallel heat flux. If we use the Hamme
Perkins model qk52n0x i

hpik iTk with x i
hp52(2/

p)1/2v t /ukiu, the entropy production rate is given by

2(
k

ReS Tk

2Ti
2 ik iqk* D 5n0(

k

1

2
x i

hpki
2UTk

Ti
U2

~ for the Hammett–Perkins model!, ~42!

which takes the form of the dissipation for all wave numb
vectorsk. On the other hand, when we use the NCM in Eq
~25!–~29! and Eq.~30!, we obtain

2ReS Tk

2Ti
2 ik iqk* D 52

1

2
n0v tkiIm~CLk!UTk

Ti
U2

~ for linearly stable modes! ~43!

and

2ReS Tk

2Ti
2 ik iqk* D

52
1

2
n0CukReS Tk

Ti
ik iuk* D

5
1

4
n0Cuk

d

dt S Unk

n0
U2

1Uuk

v t
U2

1
Te

Ti
Uefk

Te
U2D

2
cn0Cuk

2Bv t
2 (

k81k95k
Re@b•~k83k9!fk8uk9uk* #

~ for linearly unstable modes!, ~44!

where Eqs.~5!, ~6!, and ~8! are also used. Then, from Eq
~43! and~44!, the entropy production rate for the quasistea
state is given by
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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2(
k

ReS Tk

2Ti
2 ik iqk* D

52n0 (
k(stable)

1

2
v tkiIm~CLk!UTk

Ti
U2

2n0 (
k(unstable)

(
k9(stable)

(
k85k2k9

cCuk

2Bv t
2

3Re@b•~k83k9!fk8uk9uk* #, ~45!

where(k(stable)((k(unstable)) represents the summation overk
corresponding to linearly stable~linearly unstable! modes.
Here, we find that 2v tkiIm(CLk);2v tkilimvLk /kiv t→0

3Im(CLk)5x i
hpki

2.0 and thatCuk.0 for linearly unstable
modes. Compared to Eq.~42! for the Hammett–Perkins
model, Eq.~45! shows that, in our model, the entropy pr
duction rate consists of the dissipation terms for the linea
stable modes@the first group of terms in the right-hand sid
of Eq. ~45!# similar to Eq.~42! and the nondissipative term
~the second group of terms!: The latter terms result from th
second term in the right-hand side of Eq.~25! and are asso
ciated with the transfer ofuuk

2u from the unstable modes t
stable modes in thek-space. Due to this nondissipative n
ture for unstable modes, turbulence simulations using
NCM may give different results on the entropy producti
rate and the anomalous heat transport from those obtaine
using the conventional closure models. In the next sect
an example of application of the NCM is shown.

III. THREE-MODE ITG SYSTEM

Here, we apply the collisionless fluid closure given
the previous section to the three-mode ITG problem.2,14

A. Three-mode ITG equations and exact nonlinear
solution

We consider a rectangular domain ofLx3Ly in the x-y

plane with a uniform external magnetic-fieldB5B0( ẑ1u ŷ)
(uuu!1), whereŷ and ẑ denote the unit vectors in they and
z directions, respectively. The system is assumed to be
mogeneous in thez direction (]/]z50). The background
density and temperature gradients are assumed to exist i
x direction, and their gradient scale lengths are given byLn

52(d ln n0 /dx)21(.0) and LT52(d ln Ti /dx)21(.0), re-
spectively. We employ the periodic boundary conditions
both x and y directions. Then, in Eq.~3!, we can writek
52p@(m/Lx) x̂1(n/Ly) ŷ#, f k5 f m,n , and fk5fm,n (m,n
50,61,62,...). In the three-mode ITG system, we onl
keep (m,n)5(61,61) and (62,0) modes with the symme
try conditions of f 1,15 f 21,15 f 1,21* 5 f 21,21* , f 2,05 f 22,0* ,
and Re(f2,0)50. These symmetry conditions imply that th
system has boundaries atx5(2l 11)Lx/4 (l 50,61,
62,...), where f andf vanish. Here,f 20 describes a quasi
linear flattening of the temperature profile aroundx50,
which turns off the linear instability drive for the~1,1! mode.
Other modes with higher wave numbers, which may be n
linearly destabilized byf 20 steepening the temperature gr
dient near the boundaries, are not included. Since effect
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finite gyroradii are neglected, we havef2050 and ignore the
nonlinear generation of zonal flows, which can play an i
portant role in ITG turbulence.5,13,22,23

Hereafter,f 1,1, Im(f2,0) and f1,1 are, respectively, de
noted byf 1 , h, andf1 for simplicity, wheref 1 andf1 are
complex-valued whileh is real-valued. Then, from Eqs.~4!
and ~8!, the three-mode ITG equations are written as2,14

~] t1 ikQv i! f 1~v i ,t !12ik2f1~ t !h~v i ,t !

52 ikf1~ t !G~v i!, ~46!

] th~v i ,t !54k2 Im@f1* ~ t ! f 1~v i ,t !#, ~47!

f1~ t !5E dv i f 1~v i ,t !, ~48!

whereLx5Ly51/k and Ti5Te (Te : the electron tempera
ture! are assumed andG(v i) is defined by

G~v i![@11~v i
221!h i /21Qv i#e2v i

2/2/~2p!21/2. ~49!

Here, we have used dimensionless normalized variablex
5x8/r i , y5y8/r i , v5v8/v t , t5t8v t /Ln , f 5 f 8Lnv t /
r in0 , and f5ef8Ln /Tir i , where prime represents a d
mensional quantity,v t5ATi /mi is the ion thermal velocity,
r i5v t /V i is the ion thermal gyroradius, andV i5eB/mic is
the ion gyrofrequency. Two important parametersQ andh i

in Eq. ~49! are given byQ5uLn /r i andh i5Ln /LT , respec-
tively. From Eqs.~46!–~48!, the entropy balance equatio
similar to Eq.~36! is derived as

d

dt F E dv i

1

2FM
S u f 1u21

1

2
h2D1

1

2
uf1u2G5h iqx , ~50!

whereqx[Re(12T1ikf1* ) with T1[*dv i f 1(v i
221) is the heat

flux in the x direction, andFM[e2v i
2/2/(2p)1/2.

An exact solution of the three-mode ITG equatio
found by WSS is written as

f 1~v i ,t !5@a~ t ! f Lr~v i!1 ib~ t ! f Li~v i!#exp~2 ivLr t !,

h~v i ,t !5c~ t ! f Li~v i!, ~51!

f~ t !5a~ t !exp~2 ivLr t !,

where f Lr(v i) and f Li(v i) represent the real and imagina
parts of the eigenfunctionf L(v i)[ f Lk(v i) in Eq. ~15!, re-
spectively, andvLr is the real part of the eigenfrequencyvLk
for k5(k,k). Here, a(t), b(t), and c(t) are real-valued
functions of the timet, which satisfy the ordinary differentia
equations

da/dt5gb,

db/dt5ga22k2ac, ~52!

dc/dt54k2ab,

whereg[Im(vLk). These equations are also rewritten in t
Hamiltonian form as shown in Appendix A. Function
forms of the solutionsa(t), b(t), andc(t) are given in terms
of the Jacobi elliptic functions and they are found in Ref. 1
We should note thata(t), b(t), andc(t) are periodic func-
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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tions with the periodT given by Eq.~32! in Ref. 14 so that
the WSS solution in Eq.~51! is double-periodicin t with two
periodsT and 2p/vLr .

Let us definea.(t) anda,(t) by

a.~ t !5
a~ t !1b~ t !

2
, a,~ t !5

a~ t !2b~ t !

2
. ~53!

Then, from Eqs.~51! and ~53!, we obtain

f 1~v i ,t !5@a.~ t ! f L~v i!1a, f L* ~v i!#exp~2 ivLr t !,
~54!

f~ t !5@a.~ t !1a,~ t !#exp~2 ivLr t !.

Therefore, this exact nonlinear solution is given by the s
of the linear normal-mode solution with the amplitudea.(t)
and the complex conjugate solution with the amplitu
a,(t). The ordinary differential equations~52! are rewritten
as

da./dt5~g2k2c!a.2k2c a,,

da,/dt52~g2k2c!a,1k2c a., ~55!

dc/dt54k2@~a.!22~a,!2#,

which show that the normal-mode and complex-conjug
solutions interact with each other through the nonline
coupling terms proportional toc. Since the exact nonlinea
solution in Eq.~54! is represented as a linear combination
the normal-mode and complex-conjugate solutions, it is
curately described by the the NCM presented in Sec. II C

Figure 1 showsa.(t) anda,(t) obtained from the ex-
act solution for k50.1, Q51, h i510, a.(0)5a,(0)
50.005 @a(0)50.01,b(0)50# and c(0)50. For this case,
the linear eigenfrequency is given byvLk520.1149
10.0831i and the period of@a.(t),a,(t),c(t)# is T
5186.78. We find that peaks of the complex-conjuga
mode amplitudea, appear after those of the normal-mo
amplitude a.. Peaks of the potential amplitudeuf(t)u
5a(t)5a.(t)1a,(t) occur between the peaks ofa, and
a. at t5(n11/2)T (n50,1,2,...) wherea. becomes equa

FIG. 1. Amplitudes of the normal mode (a.) and the complex-conjugate
mode (a,) as a function of timet for k50.1, Q51, h i510, anda.(0)
5a,(0)50.005. Also plotted is a curve forc(t).
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to a,. We should note that, in the nonlinear regimes arou
the potential’s peaks, both the normal mode and its comp
conjugate have large amplitudes comparable to each othe
that the nonlinear behavior cannot be well described by
conventional linear closure models which do not take
count of the complex-conjugate mode. The nonlinear clos
model proposed by Mattor and Parker succeeded in giv
the periodic potential amplitude oscillation in the three-mo
ITG problem.15 Thus, the normal mode and its complex co
jugate seem to be included in their model. However, sin
their nonlinear closure model as well as the local PVT mo
by Mattor17 assume that the kinetic distribution functionf k is
written by a single mode structure corresponding to a do
nant complex-valued frequencyvk , they do not accurately
describe the nonlinear states which consist of distinct m
structures with comparable amplitudes as found here. In
next subsection, the closed set of fluid equations for
three-mode ITG system, which are obtained by applying
collisionless fluid closure, are examined in detail.

B. Fluid equations for the three-mode ITG system

Taking the velocity moments of Eqs.~46! and ~47!, we
obtain

] tn11 ik~Qu11f1!50, ~56!

] tu11 ikQ~n11T11f1!12ik2f1 uh50, ~57!

] tuh24k2 Im~f1* u1!50, ~58!

] tT11 ik@Q~2u11q1!1h if1#12ik2f1 Th50, ~59!

] tTh24k2 Im~f1* T1!50, ~60!

where @n1(t),u1(t),T1(t),q1(t)# 5 *2`
` dv i f 1(v i ,t)@1,v i ,

(v i
221),(v i

323v i)# and @uh(t),Th(t)#5*2`
` dv i h(v i ,t)

3@v i ,(v i
221)#. We also obtain from Eq.~48!

n15f1 . ~61!

Here, we should note thatfh(t)5nh(t)[*2`
` dv ih(v i ,t)

50. The entropy balance equation similar to Eq.~39! is de-
rived from Eqs.~56!–~61! as

d

dt S 1

2
un1u21

1

2
uu1u21

1

4
uuhu21

1

4
uT1u21

1

8
uThu21

1

2
uf1u2D

5h iqx1ReS T1

2
ikQq1* D , ~62!

where qx[Re(12T1ikf1* ) is the heat flux in thex direction.
Comparing Eq.~62! to Eq. ~50! and using the Hermite-
polynomial expansion similar to Eq.~37!, we obtain

ReS T1

2
ikQq1* D52

d

dt S 1

12
uq1u21

1

24
uqhu21¯ D , ~63!

where ¯ represents the high-order-moment terms cor
sponding to(n>4 (n!/2) uwnku2 in Eq. ~40!. For the case of
the exact solution shown in Sec. III A, the time average
the left-hand side of Eq.~62! and that of the right-hand sid
of Eq. ~63! vanish and accordingly the time average of t
heat flux qx vanishes. Thus, it is not practical to consid
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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the three-mode ITG system for estimating the anomal
heat diffusivity in the steady turbulent state, although it is
useful nonlinear system for examining the validity of kinet
fluid closure models. There exists another simple set of fl
equations, which is used to evaluate the anomalous hea
fusivity due to the toroidal ITG mode.24

Now, let us apply the NCM presented in Eq.~25! and
put

q15CT1T11Cu1u11Cn1n1 , ~64!

whereCT1 , Cu1 , and Cn1 are real coefficients given from
Eqs.~28! and ~29! as

CT15CLr12CLi1

Re~j1z1* !

Im~j1z1* !
2Cn1

j i1

Im~j1z1* !
, ~65!

Cu15CLi1

uz1u2

Im~j1z1* !
1Cn1

z i1

Im~j1z1* !
, ~66!

Cn150. ~67!

Here, CL1[CL1r1 iCL1i[B(vL1 /kQ), j1[j r11 i j i1

[(vL12k)/(kQ), and z1[z r11 i z i1[vL1(vL12k)/
(kQ)222. The complex-valued eigenfrequencyvL1 is deter-
mined by the dispersion relation D(vL1)[1
2*dv ikG(v i)/(vL12kQv i)50 and Im(vL1).0 is as-
sumed.

Equations~56!–~61! with the NCM given by Eqs.~64!–
~67! form a closed system of fluid equations for the thre
mode ITG system. Figures 2~a! and 2~b! show uf1(t)u and
Re@f1(t)/uf1(t)u#, respectively, which are obtained by nume
cally solving these fluid equations. A nondissipative tim
integration scheme14 is employed for these numerical calc
lations. Here,k50.1, Q51, andh i510 are used. For this
case, we haveCL1520.38121.186i , CT1522.87831022

and Cu151.477 with Cn150. The initial conditions are
n1(0)5f1(0)50.01, u1(0)522.1493n1(0), T1(0)
520.2203n1(0), anduh(0)5th(0)50, which are consis-
tent with the initial conditions @a(0),b(0),c(0)#
5(0.01,0,0) for the WSS solution in Eq.~51! ~the same ini-
tial conditions as used in Fig. 1!. The fluid equations in Eqs
~56!–~61! can reproduce the WSS exact nonlinear solut
since the NCM given by Eqs.~64!–~67! is completely satis-
fied by the WSS solution. It is noted that the WSS solut
can be reproduced by the closure relation given by E
~64!–~66! even with an arbitrary nonzero real value given
Cn1 as shown in Appendix B. Also, it can be shown in A
pendix B that, even if Eqs.~65!–~67! are not satisfied, the
closure relation in Eq.~64! with real-valued coefficients
CT1 , Cu1 , andCn1 can give the WSS-type double-period
nonlinear solution, which consists of the normal mode a
its complex conjugate, since the time reversibility is still r
tained. For example, the case of the most simple closure
which q150 (CT15Cu15Cn150), and that of the
Hammett–Perkins closureq1522(2/p)1/2ikQT1 are plot-
ted for comparison to the WSS solution in Fig. 2. The tim
evolution of the potential for theq150 case shows a quali
tatively better agreement with the exact solution than for
Hammett–Perkins model. In the Hammett–Perkins mo
the potential uf1(t)u is saturated at a certain amplitud
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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which is in contrast to the periodic amplitude oscillatio
shown by the exact solution. Also, in the Hammett–Perk
model, the time average of the heat fluxqx in the three-mode
ITG system takes on an artificial nonzero value sinceh i q̄x

52Re(12T1ikQq1* )5(2/p)1/2(kQ)2uT1u2.0. This q̄x follows
from the entropy balance equation~62! with q1

522(2/p)1/2ikQT1 where¯ represents the time average
Next, we compare solutions of the fluid equations w

kinetic solutions for the case in which initial conditions a
inconsistent with the WSS solution. The simplest example
such initial conditions is given by the Maxwellian form o

the initial distribution function f 1(v i ,t50)}e2v i
2/2/

(2p)1/2. Figures 3~a! and 3~b! show uf1(t)u and
Re@f1(t)/uf1(t)u#, respectively, which are obtained by nu

FIG. 2. Numerical solutions of the fluid system of Eqs.~56!–~61! and~64!
for k50.1, Q51, h i510, CT1522.87831022, Cu151.477 andCn150.
The initial conditions are given byn1(0)5f1(0)50.01, u1(0)522.149
3n1(0), T1(0)520.2203n1(0), anduh(0)5th(0)50, which are consis-
tent with the initial conditions used for the WSS exact kinetic solution
Fig. 1. Solid curves in~a! and ~b! representuf1(t)u and Re@f1(t)/uf1(t)u#,
respectively, obtained by using the NCM in Eqs.~64!–~67! and completely
agree with those of the WSS exact kinetic solution. Results obtained
using the Hammett–Perkins model and theq150 model are also shown by
dashed and dotted curves, respectively.
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merically solving Eqs.~46!–~48! for k50.1, Q51, andh i

510 with the initial conditions f 1(v i ,0)5n(0)e2v i
2/2/

(2p)1/2 @n(0)50.01# and h(v i ,0)50. These initial condi-
tions are the same as used in the kinetic simulations in R
14. Results obtained by numerically solving Eqs.~56!–~61!
and ~64!–~67! for the initial conditions n1(0)5f1(0)
50.01 andu1(0)5T1(0)5uh(0)5th(0)50 are also plotted
in Figs. 3~a! and 3~b! for comparison to the kinetic solution
Kinetic and fluid results for this case are in a good agreem
except that a small potential phase deviation appears afte
potential amplitude recurs to the low level of the initial co
dition.

Figure 4 shows the periodT of the potential amplitude
uf1(t)u(5un1(t)u) as a function of the initial amplitude
uf1(0)u(5un1(0)u) for the case ofk50.1, Q51, h i510,

FIG. 3. Comparison between kinetic and fluid solutions. Solid curves in~a!
and ~b! representuf1(t)u and Re@f1(t)/uf1(t)u#, respectively, obtained by
numerically solving the kinetic system of Eqs.~46!–~48! for k50.1, Q

51, andh i510 with the initial conditionsf 1(v i ,0)50.013e2v i
2/2/(2p)1/2

and h(v i,0)50. Dashed curves represent results obtained by numeric
solving the fluid system of Eqs.~56!–~61! with the NCM in Eqs.~64!–~67!
for the initial conditionsn1(0)5f1(0)50.01 andu1(0)5T1(0)5uh(0)
5th(0)50.
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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nt
he

f 1(v i ,0)5n1(0)e2v i
2/2/(2p)1/2, andh(v i,0)50. We see that

the periodT is proportional to log@1/uf1(0)u# as predicted
from the WSS solution in Ref. 14. In Fig. 4, results fro
numerical solutions of the fluid equations~56!–~61! and of
the kinetic equations~46!–~48! are both plotted. We find tha
this kinetically closed fluid model accurately reproduces
initial-value dependence of the period of the amplitude
cillation.

IV. CONCLUSIONS

In the present paper, we have presented a new nond
pative closure model~NCM!. We have shown that both lin
early unstable modes and their complex conjugate are e
solutions of the linearized version of the collisionless kine
equation with time reversibility. In order to take account
the nondissipative nature of the kinetic equation, the NCM
derived such that the relation between the fluctuations in
parallel heat flux, the temperature, and the parallel flow
valid both for linearly unstable normal modes and their co
plex conjugate as well as for any linear combination of the
The fluctuations obtained by the complex conjugate of
linearly stable modes are no longer linear solutions. For
linearly stable modes, we use the dissipative closure relat
which reduces to previous closure models by Hammett
Perkins,10 and by Chang and Callen11 in limiting cases.

Kinetic and fluid entropy balances for the collisionle
system are investigated to compare effects of the NCM
the Hammett–Perkins model on the entropy production,
turbulence saturation, and the anomalous perpendicular
transport. The quasisteady state for the collisionless turbu
plasma is defined as the state in which the amplitudes of fl
variables corresponding to low-order velocity moments
the distribution function saturate but the high-order mome

ly

FIG. 4. PeriodT of the potential amplitudeuf1(t)u as a function of the
initial amplitude uf1(0)u. Here, k50.1, Q51, h i510, f 1(v i ,0)

5n1(0)e2v i
2/2/(2p)1/2 @n1(0)5f1(0)#, and h(v i,0)50. are used. Solid

and open circles represent results from solving the kinetic system of
~46!–~48! and those from solving the fluid system of Eqs.~56!–~61! with
the NCM in Eqs.~64!–~67!, respectively.
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and accordingly the total entropy grow indefinitely in tim
The entropy production rate given by the product of the p
pendicular hear flux and the temperature gradient bala
with the correlation between the parallel heat flux and te
perature fluctuations in the quasisteady state. In the NC
this correlation function takes the nondissipative form in
unstable wave number region while, in the Hamme
Perkins model, it is written as a dissipation proportional
the square of the temperature fluctuation amplitude for
wave number regions. Then, it is expected that, when use
turbulence simulations, the NCM predicts different results
the entropy production rate and the anomalous heat trans
from those given by the Hammett–Perkins and other di
pative closure models.

The NCM is applied to the three-mode ITG problem
an example. The WSS exact nonlinear kinetic solution
be reproduced from the fluid system of equations with
NCM. Other numerical kinetic solutions can also be ac
rately described by the fluid system. Especially the osci
tory behaviors of the potential amplitude and the depende
of the oscillation period on the initial amplitude, which ca
not be treated by the conventional dissipative closure m
els, are well reproduced by the NCM. While the three-mo
ITG problem is an interesting and successful nonlinear
case, one might wonder whether the NCM also works w
for more realistic many-mode turbulent cases which sign
cantly differ from the three-mode case in some aspects.
three-mode system involves interaction between only
single coherent eddy of the~1,1!-mode and a backgroun
profile flattening of the~2,0!-mode, and shows fairly regula
periodic behavior as given by the exact solution in Eq.~51!.
However, the behavior of nonintegrable chaotic syste
such as many-mode turbulent systems is very different fr
such a regular one, and the validity of the use of a nondi
pative or a dissipative closure depending on the lin
growth rate criterion should be checked for such fully turb
lent cases.~Note that even the fluid system using linear c
sure models can be highly nonlinear and turbulent becaus
the E3B convection terms although it does not necessa
imply the correct description of the original turbulent kine
system by the fluid model.! Another point to clarify is colli-
sional effects on the closure. Collisions are necessary for
steady-state turbulence of kinetic systems to be realized,
even a small amount of collisions may have significant
fects. In order to investigate the subjects discussed ab
applications of the NCM to systems with a higher number
degrees of freedom is work currently in progress.
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APPENDIX A: HAMILTONIAN REPRESENTATION OF
EQS. „52… AND „55…

Here, it is shown that Eqs.~52! and ~55! can be written
in the Hamiltonian form. First, we easily find from Eqs.~52!
that C1[c(t)2(2k2/g)a2(t) is a constant of the motion
Then, substitutingc5C11(2k2/g)a2 into the equations for
time evolution ofa andb, we obtain the Hamiltonian equa
tions of motion

da

dt
5

]H~a,b!

]b
,

db

dt
52

]H~a,b!

]a
, ~A1!

where (a,b) are regarded as canonical variables and
Hamiltonian is given by

H~a,b!5
g

2
b21S 2

g

2
1k2C1Da21

k4

g
a4. ~A2!

Here, the HamiltonianH(a,b) has no explicit dependence o
time and accordingly is a constant of motion. Therefore, t
Hamiltonian system is integrable. Withb playing the role of
momentum, the quadratureH5E5const gives an elliptic in-
tegral and the solutions fora(t), b(t), andc(t), which are
periodic functions of time, are found in Ref. 14.

Similarly, Eqs.~55! can be written as the Hamiltonia
equations

da,

dt
5

]H~a,,a.!

]a. ,
da.

dt
52

]H~a,,a.!

]a, , ~A3!

where (a,,a.) are regarded as canonical variables and
Hamiltonian is given by

H~a,,a.!5
1

2
H52ga.a,1

k2C1

2
~a.1a,!2

1
k4

2g
~a.1a,!4. ~A4!

APPENDIX B: EXACT SOLUTION OF FLUID
EQUATIONS

Here, we consider a system of fluid equations consist
of Eqs.~56!–~61! and ~64!. First, we only assume the coe
ficientsCT1 , Cu1 , andCn1 in Eq. ~64! to be real constants
without imposing the conditions in Eqs.~65!–~67! on them.
Let us consider the solutions of the fluid equations which
written as

n1~ t !5@a~ t !nLr1 ib~ t !nLi #exp~2 ivLr t !

5@a.~ t !nL1a.~ t !nL* #exp~2 ivLr t !,

u1~ t !5@a~ t !uLr1 ib~ t !uLi #exp~2 ivLr t !

5@a.~ t !nL1a.~ t !uL* #exp~2 ivLr t !, ~B1!

T1~ t !5@a~ t !TLr1 ib~ t !TLi #exp~2 ivLr t !

5@a.~ t !TL1a.~ t !TL* #exp~2 ivLr t !,

uh~ t !5c~ t !uLi , Th~ t !5c~ t !TLi , f1~ t !5n1~ t !,
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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wherea.5 1
2(a1b), a,5 1

2(a2b), a andb are real func-
tions of time, and the complex constantsnL5nLr1 inLi ,
uL5uLr1 iuLi , TL5TLr1 iTLi , andvL5vLr1 ig are deter-
mined from

vLnL5k~QuL1fL!,

vLuL5kQ~nL1TL1fL!,

vLTL5k@Q~2uL1qL!1h ifL#, ~B2!

nL5fL51 ~normalization!,

qL5CT1TL1Cu1uL1Cn1nL .

Here, the complex eigenfrequencyvL5vLr1 ig is given
from Eqs.~B2! as a solution of the cubic algebraic equati
with g.0.

Substituting Eqs.~B1! into Eqs.~56!–~60!, we find that
a(t), b(t), andc(t) should satisfy

da/dt5gb,

db/dt5ga22k2ac, ~B3!

dc/dt54k2ab,

which are the same as Eqs.~52! for the WSS kinetic solution.
From Eqs.~53! and~B3!, the same equations as Eqs.~55! for
a.(t), a,(t), andc(t) are also derived. Now, it turns ou
that a WSS-type double-periodic solution given by E
~B1!–~B3! appears from this system of fluid equations.

Furthermore, when imposing the conditions in Eqs.~65!
and~66! on the real coefficientsCT1 , Cu1 , andCn1 @Eq. ~67!
is not necessary#, the complex eigenfrequencyvL5vLr

1 ig also coincides with that given by the kinetic dispersi
relation. Then, the system of fluid equations includes
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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WSS solution as one of their solutions. In other words,
exact kinetic solution of the three-mode ITG problem can
reproduced by the fluid equations with a proper collisionle
closure model.
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