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Cascading bifurcations to chaos are investigated experimentally and theoretically in a current- 
carrying stable plasma. A dc plasma current is required to produce an electron-depleted 
thick sheath on a grid, which obeys the Child-Langmuir law of space-charge-limited current 
in a diode. Bifurcation cascade and chaotic behavior are exhibited when an external 
periodic oscillation is applied to the grid, and are in good agreement for the first time with a 
theory, which describes ion dynamics in the Child-Langmuir sheath and is represented 
by the differential equation with three independent variables. A fractal dimension predicted by 
the theory is verified by the experiment. 

I. INTRODUCTION 

It is of current interest to investigate nonlinear physi- 
cal systems that exhibit chaotic behavior. Universal char- 
acteristics of chaos have been observed in experiments con- 
ducted on a variety of nonlinear medial4 as well as in 
numerical simulations.“6 Recently, several experiments 
have been reported on chaotic behavior in plasma 
systems.7-‘2 Two routes to chaos, period doubling and in- 
termittent chaos, are demonstrated in these experiments, 
and fine structures such as periodic windows are also ob- 
served. However, to our knowledge, the experimental ob- 
servations of chaotic behavior in plasmas are not clearly 
understood and are still open to studies of their underlying 
physics, although they are explained to have the features 
given by the universal equations describing chaotic 
behavior. I3 

The present paper gives an experimental study of cas- 
cading bifurcations to chaos in a current-carrying plasma, 
and compares it with a theory which describes ion dynam- 
ics in a nonlinear potential well, formed as an ion sheath on 
the both sides of a grid by a dc plasma current.‘4 A coher- 
ent instability appears when the thick ion sheath is formed 
on the grid and plasma parameters are properly selected.15 
In our previous paper, this instability was considered nec- 
essary for a set of cascading bifurcations and a chaotic state 
that are driven by the external oscillation.” In this work, 
however, cascading bifurcations to chaos are realized after 
stabilizing the plasma. Most properties of the oscillations, 
obtained experimentally, are consistent with those pre- 
dicted theoretically. 

The experimental apparatus is described in Sec. II. Af- 
ter describing the experimental results in Sec. III, a theory 
of bifurcations to chaos in our system is presented, com- 
pared with the experiment, and discussed in Sec. IV. The 
conclusion is given in Sec. V. 

II. EXPERIMENTAL APPARATUS 

The experiment is performed in a large, unmagnetized 
plasma device 70 cm in diameter and 120 cm in length, 

‘)Pemanent address: Research Institute for Applied Mechanics, Kyushu 
University, Kasuga, Fukuoka 816, Japan. 

equipped with multidipole magnets for surface plasma con- 
finement, as shown in Fig. 1.11*15 An argon plasma pro- 
duced by a dc discharge between filaments and the cham- 
ber wall is divided by a fine-meshed grid made of 0.05 mm 
diam stainless-steel wires spaced 0.5 mm apart. The dis- 
charge voltage Vd is in the 20-100 V range, and the cham- 
ber wall is electrically grounded. Typical parameters of the 
plasma designated T in Fig. 1 are no= (0.9-7) X lo8 cme3, 
T,=O.347 eV, and Ti-0.1 eV, where no, T,, and Ti are 
the plasma density, the electron temperature, and the ion 
temperature, respectively. Since T, is roughly proportional 
to no when I’, is low, V, is adjusted to keep T, independent 
of the change of no. The plasma density no is controlled by 
changing the heater currents. At first, the density of the 
plasma D, nOD is chosen to be less than no by about one 
order of magnitude, so that the plasma space potential 4oD 
of the plasma D is higher than the plasma space potential 
I$~ of the plasma T by a few volts. The symbol A$ denotes 
the potential difference between 4oD and +. 
(A# = doD- c$~>. Plane Langmuir probes 6 mm in diameter 
are used to measure the plasma parameters and their fluc- 
tuations. The plasma space potentials are measured with 
emissive probes, and the ion temperature in the two plas- 
mas is obtained with Faraday cups. The gas pressure p is 
usually kept at - 2 X 10m4 Torr, and is sometimes varied in 
the range of (14) X 10e4 Torr. 

To drive a dc plasma current, a dc voltage V. is applied 
between the grid and a 12 cm diam target, that is, the grid 
and target are negatively and positively biased, respec- 
tively, as shown in Fig. 1. The target is located in the 
plasma T at a distance of 5 cm from the grid. The plasma 
current Ip flows mainly between the grid and target, since 
there are insulators on the reverse side of the target and 
both sides of the grid near the chamber wall. The potential 
drop on the grid, facing the plasma T, is considered to be 
almost equal to V. because ions, being more immobile than 
electrons, form a thick ion sheath so as to drive the ion 
current into the grid. On the other hand, the electron cur- 
rent flowing from the target can be driven by a small 
change of the potential drop on the target, which gives rise 
to the imbalance of electron and ion fluxes into the target. 
Here, we denote the sheath on the grid, facing the plasma 
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Insulator 

FIG. 1. Schematic of the experimental apparatus; R, =R,=50 n and 
C= 3.3 pF. 

T, by SGT, and the sheath at the back of the grid by SGD 
The time-averaged value IO and fluctuating component I of 
IP are observed from the voltage drop across the resistor 
RI- 
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FIG. 2. Dependence of time-averaged value la of the plasma current ZP on 
the dc voltage V,, and on the plasma density n,,. (a) Ze- I’, characteristic. 
(b) Za vs n,. Circles, triangles, and squares are obtained at V,=30, 60, 
and 90 V, respectively. 

FIG. 3. Dependence of the thickness d of the sheath Sdr on the dc voltage 
I’,. Circles, triangles, and squares are obtained at IO= 1, 1.5, and 2 mA, 
respectively, and solid lines are proportional to Vi”. 

Ill. EXPERIMENTAL RESULTS 

Figure 2(a) shows the dependence of the time- 
averaged current IO on the dc voltage V. between the grid 
and target. This IO-V0 curve is very similar to the current- 
voltage characteristic of the Langmuir probe, so that IO is 
expected to coincide with the Bohm current Ia. The Bohm 
current Ia is given approximately by16 

IB=Snoe(kTJmi)“* (1) 

for Te>Ti, where S is the area of the grid (S-O.14 m*) 
and mi is the ion mass. The plasma density at the sheath 
edge is considered to be almost equal to no. The obtained 
plasma current IO agrees with Ia within a factor of 2, as 
expected, and the plasma parameter dependence of IO is 
well explained by Eq. ( 1). For example, IO is proportional 
to no, and does not depend on Vo, as shown in Fig. 2(b), 
where circles, triangles, and squares are obtained at 
Vo=30, 60, and 90 V, respectively. The plasma density no 
is varied by controlling the heater currents. The sheath 
thickness d of the sheath SGT is shown in Fig. 3, as a 
function of Vo. Circles, triangles, and squares are obtained 
at I,= 1, 1.5, and 2 mA, respectively, and solid lines rep- 
resent the curves proportional to Vi’4. There is good agree- 
ment between the solid lines and measured d’s. On the 
basis of these experimental results, the potential profile in 
the sheath SGT is confirmed to be described by the Child- 
Langmuir law of space-charge-limited current in a plane 
diode: 

IO = ( 4V2@/9d2) (e/mi) “* Vi’“. (2) 

The sheath thickness d obtained experimentally is found to 
agree with the thickness given by Eq. (2) within a factor of 
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FIG. 4. Effect of the density of the plasma D, nODt on the potential Q 
around the grid and on the instability. (a) Axial profiles of 4 for various 
nods. (b) noo dependence of frequency spectra of the perturbed plasma 
current I. The density non is varied from 7X 10’ cmm3 to 5X 10’ cme3, 
while the density no of the plasma T is kept at -7x lo8 cme3. 

3. This factor is associated with the reflection of ions from 
the plasma D to the plasma T by the potential difference 
Ap 

At Vc=O V, no fluctuation is observed in the plasma 
current Ip’ A coherent instability appears when an ex- 
tremely electron-depleted sheath is formed on the grid, 
that is, I0 begins to saturate with an increase in V,. An 
important point is that there is a threshold A#( =40D-+0) 
to excite the instability. For example, when A+ is as large 
as that shown in the top trace of Fig. 4(a), the instability 
is recognized in the frequency spectra of I, as shown in the 
top trace of Fig. 4(b) which is measured simultaneously 
with Fig. 4(a). Here, the origin of the x axis is located at 
the grid, and the x direction is pointed to the target. The 
potential 4 near the grid, which is not shown in Fig. 4(a), 
drops nearer the grid and reaches the negative bias voltage 
at the grid. It is found that the frequency fc of the insta- 
bility decreases with Ve, and that the amplitude of the 
instability is maximized in the relatively low Vc range with 
a maximum percentage fluctuation level I/lo of -5%.15 
The potential difference A# is considered to be necessary 
for reflecting ions which passed through the grid back to 
the plasma T, because the ion velocity given by the thresh- 
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old A$, ( 2eA+/mi) 1’2, agrees, roughly speaking, with the 
ion drift velocity v, at the sheath edge, which is obtained 
from Fig. 2(b) by using the relation of I0 to no and uo. 
Many ions can pass through the grid, since the grid has a 
large ratio of the hole area to the whole area of the grid. If 
a metal plate is used instead of the meshed grid, no insta- 
bility is observed, although a potential profile similar to 
that obtained with the meshed grid is measured between 
the grid and targeti The drift velocity u. is needed to 
satisfy the Bohm sheath criterion and to account for the 
loss of ions to the grid. The Bohm criterion says, as is well 
known, that ions must enter the ion sheath with a velocity 
no faster than the ion-acoustic speed.16 

The potential difference A$, as shown in the top trace 
of Fig. 4(a), reflects ions that enter the sheath region from 
the plasma T, as mentioned above, so that a positive feed- 
back mechanism is considered to be formed by these re- 
flected ions which are bunched in a sense by a potential 
perturbation. The ion bunches are not neutralized by elec- 
trons in such an electron-depleted sheath. Thus, an ion 
resonance can be created in the ion-rich current-carrying 
sheath on the negatively charged grid. On the other hand, 
the exact relation linking the dc voltage VapPl of the power 
supply, the plasma current Ip, and the potential drop 
across the plasma V is given by VaPPl= Vt (R, + R2)Ip, so 
that the instability must be accompanied by a negative 
differential resistance R =av/al, of the plasma, which 
cancels out the resistance in the electric circuit. This neg- 
ative rf resistance is associated with the ion inertia, and 
given in the electron-depleted sheath. On the basis of these 
results, the exciting mechanism of the instability has been 
identified as a negative rf resistance, coupled to an ion 
resonance. l5 

We now describe typical results of nonlinear behavior, 
obtained by applying an external periodic oscillation to the 
grid after stabilizing the plasma. By increasing the density 
noD of the plasma D, it is possible to stabilize the instability 
mentioned above. Figure 4(a) indicates that A4 becomes 
small with an increase in noD The density non of the 
plasma D is varied from 7X 10’ cmw3 to 5 X lo8 cmv3, 
while the density no of the plasma T is kept at -7 X lo8 
cmm3. Apparently, the decrease in A$ leads to the stabili- 
zation of the instability, as shown in Fig. 4(b). The ion 
sheath SGT is found to be affected little by the change of 
no0 so that there is the extremely electron-depleted ion 
sheath on the grid, as before, whose potential profile is 
described by the Child-Langmuir law. When an external 
periodic oscillation is applied to the grid under such a 
condition, a sinusoidal perturbation at the driving fre- 
quency can be induced in the plasma current Ip’ Here, 
fi ( = wr/2~) and V,,, denote the frequency and amplitude 
of the external oscillation, respectively. Nonlinear behavior 
is observed by gradually increasing fr from 100 kHz and 
keeping Vext at -4.7 V. The first subharmonic appears at 
f r = 139 kHz, and a very clear period-doubling sequence is 
obtained, as shown in Figs. 5(a)-S(c). Further period 
doublings are hardly measured, possibly because the rapid 
convergence rate of the doubling sequence makes it very 
difficult to observe them. Increasing f, further produces 
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FIG. 5. Frequency spectra of the perturbed plasma current I; 
%=1.2x lo8 cme3, noD= 8 X 10’ cm -3, PO=53 V, and V,,,=4.7 V. (a)- 
(c) Frequency spectra of I for successive period doublings. (d) Chaotic 
spectrum corresponding to the nonperiodic oscillation. (e) Period tri- 
pling. The arrow indicates the driving frequency f,. The spectrum am- 
plitude scale is logarithmic. 

chaotic behavior. This state is characterized by broadband 
noise in the frequency spectrum, as shown in Fig. 5( d).5S6 
Further increases in fi cause period tripling [Fig. 5(e)]. 
Thus, it is clearly demonstrated that the bifurcation se- 
quence leading to chaos in our system is the same as 
Feigenbaum’s period-doubling route to chaos. 

Nonlinear behavior of the oscillations is also realized 
by increasing no with fi and I’,,, fixed or increasing V,,, 
with f, and no fixed. Although a set of cascading bifurca- 
tions to chaos is obtained when the neutral pressure p is 
changed in the range of 1 X 10m4 Sp 54X 10m4 Torr, 
whether p itself is relevant to the nonlinear behavior is not 
clear since no is varied with the change of p. These obser- 
vations are confirmed to be reproducible in our experi- 
ments. However, they are very sensitive to parameters such 
as no, Vext, and so forth. For example, which appears first, 
period doubling or period tripling, depends on these pa- 
rameters. Furthermore, a mixture of period-doubling and 
period-tripling bifurcations is sometimes observed. Figure 
6 shows that period tripling occurs at first with an increase 
in f,, but is followed by period doubling without passing 
through the chaotic regime. Thus, there are many scenar- 
ios of nonlinear behavior of the oscillations, depending on 
the parameters. 

It is well known that a correlation dimension can give 
a noninteger dimension for a chaotic system, and yields a 
lower bound to the number N of degrees of freedom in the 
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FIG. 6. Frequency spectra of the perturbed plasma current & no= 9 x IO’ 
cmm3, non= lx 10’ cme3, Vo=61 V, and V,,,=2.9 V. The arrow indi- 
cates the driving frequency f,, which increases in alphabetical order. The 
spectrum amplitude scale is logarithmic. 

system. I7 Thus, to demonstrate that N is small in our sys- 
tem, the correlation dimension 7 is calculated using a time- 
dependent signal I(t) measured experimentally. A trajec- 
tory in a k-dimensional space can be reconstructed by 
taking as coordinates I(t), I(t+r), I(t+2r),..., I[t+(k 
- l)r], where r is an appropriate delay time.‘8f19 In our 
experiments the time t is discretized, so that we obtain a 
series of k-dimensional vectors ri representing the phase 
portrait of the dynamical system: 

i= 1, 2, 3 ,..., m. (3) 
The most used algorithm of calculating r] was proposed by 
Grassberger and Procaccia.” With the series of vectors rip 
one can evaluate the correlation sum C(r) defined by 

C(r)= lim f 2 H(r- Iri-rj[ ), (4) 
m-m ij= 1 

where H is the Heaviside function defined by H(r) = 1 for 
positive r, 0 otherwise. For an intermediate region of r, 
C(r) will scale like 

C(r) a rv. (5) 
In our experiments, the signals were digitized at l-20 MHz 
with a transient recorder, and 128 kbytes of eight-bit data 
were recorded for each real-time signal. Choosing r to be 
I-4 psec, v is obtained to be 1.54=tO.22 in the chaotic 
regime. This value of n suggests that the number of degrees 
of freedom is small in our system. 
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IV. COMPARISON WITH THEORY AND DISCUSSION 

The ion sheath on both sides of the grid is regarded as 
a potential well in which the ions oscillate to give a primary 
motion responding to the external oscillation.‘4 The struc- 
ture and fluctuations of the ion sheath can be studied based 
on ion fluid: 

(7) 

LJE en -=- 
ax eo* (8) 

For the stationary sheath, we have an implicit expression 
for E with respect to x as 

x-xo=z[ (1-/4)($1)+$)($l)i, 

A = bqJ&o~~~~)2/2, (9) 

where the suffix 0 means the value at the ion-sheath edge. 
Now we consider the ion dynamics in the ion sheath 

given by Eq. (9). The ion dynamics is described by the 
following equations of motion: 

dX 
-=u 
dt ’ 

In order to see the response to an oscillating external field, 
we consider, instead of Eq. ( 1 1 ), 

dv e 
;i;=; (Eo-E) -YU+E,,~ sin(olt), 

i 
where the damping term is introduced because the bifur- 
cations to chaos are observed experimentally in the dissi- 
pative system. From Q. (9), we may approximately ex- 
press Eo-E in terms of (x-x,)/(eEdmp$) sx as 

Eo-E X 

---1+A[x+(l-33A)x2/3] * Eo - 
(13) 

Combining Eqs. ( lo), ( 12)) and ( 13) and replacing E. by 
- 1 Eoj because of choosing E. negative, we finally have 

d2x dx 
Z+VZ+l+A[x+(I(--3A)x2/31 

+EeXt sin(Clt) =0, (14) 

where I+,{, V/Up;, Wt/Wpi, and E,,,/ 1 Eo 1 are replaced by t, 
v, f& and J-L, respectively. The experimental conditions 
can be expressed in these normalized parameters. In Fig. 5, 
R is 0.382 (period two), 0.452 (period four), 0.471 
(chaos), and 0.507 (period three) at A-0.192, v-0.1, 
and E,,,=2.29; and a in Fig. 6 is 0.67 (period three) and 
0.68 (period two) at A-0.224, v-0.1, and E,,,~r1.18. 

FIG. 7. Frequency spectra of x given by Eq. (14); A=0.2, v=O.18, and 
&,=2.2 for various R’s, The spectrum amplitude scale is logarithmic 
and the horizontal axis represents the normalized angular frequency o. 

Equation (14) corresponds to a dynamical system 
with three independent variables, and reduces to a form of 
Duffing’s equation by a simple transformation when A is 
small and the second term can be expanded with respect to 
A, indicating that Eq. ( 14) has many scenarios of nonlin- 
ear behavior of the oscillations. Figure 7 shows the Fourier 
spectra of x(t) for various s2’s with A=0.2, v=O.18, and 
EcXt = 2.2. Apparently, very clear period-doubling bifurca- 
tions to chaos are observed with an increase in a. Further 
increases in fi cause period-tripling bifurcations. The same 
behavior of the oscillations is also observed by changing 
E,,, and keeping A, v, and M constant. 

The nonlinear behavior corresponding to that shown in 
Fig. 6 is also obtained numerically, when A and v are 
chosen to be 0.225 and 0.1, respectively, with Eext= 1.47. 
As shown in Fig. 8, period tripling appears first, and then 
period doubling follows as KI increases. This figure also 
shows that the state of period three alternates that of pe- 
riod two without passing through the chaotic regime. Like 
this, a rich variety of behavior can be realized by selecting 
the proper parameters. 

The results revealed above agree surprisingly well with 
the experimental observations. The correlation dimension 
71, calculated using the time-dependent signal x(t) given by 
Eq. ( 14)) is obtained to be 1.54&0.04, which also agrees 
with the experimental results r]= 1.54AO.22. Such a good 
agreement between experiment and theory indicates that 
the nonlinear behavior in our system is surely caused by 
the ion dynamics in the Child-Langmuir ion sheath. 

V. CONCLUSIONS 

A set of cascading bifurcations and a chaotic state in 
the presence of an external periodic oscillation are demon- 
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.65 

m 1 
FIG. 8. Frequency spectra of x given by Eq. (14); A=0.225, v=O.l, and 
Ecxt= 1.47 for various n’s. The spectrum amplitude scale is logarithmic 
and the horizontal axis represents the normalized angular frequency o. 

strated in a stable plasma by experimental results and a 
physical model. The most important point of this study is 
that the nonlinearity of a thick ion sheath on a grid causes 
a rich variety of behavior in our system. The thick ion 
sheath on the grid is formed by driving a dc plasma cur- 
rent, and described by the Child-Langmuir law of space- 
charge-limited current in a plane diode. A coherent insta- 
bility associated with an ion transit in the sheath usually 
appears at the same time that the thick ion sheath is 
formed. This instability works to enhance nonlinear behav- 
ior of the system, but the cascading bifurcations to chaos 
can be realized even if the instability is not excited. 

To explain the experimental results, the differential 
equation is used, which governs ion dynamics in an ion 

sheath potential well formed on the both sides of the grid. 
Bifurcations to chaos of the fluctuating current are ob- 
tained when an external oscillating term is added to the 
equation. Good agreement is found between theory and 
experiment, indicating that the nonlinear behavior in our 
system is attributed to the ion dynamics in an anharmonic 
potential well, that is, in the Child-Langmuir sheath. Fi- 
nally, this work provides important information for the 
origin of nonlinear behavior which was observed experi- 
mentally in the various plasma systems. 
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