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Esterification of dicarboxylic acids with various alcohols and phenols in presence of metal exchanged montmorillonite clay
catalyst (M" " -mont; M™ = AP, Fe*™, ¢’ ", Zn®", Mn?™, and Ni”) is studied. Among the catalysts used, AP -mont was
found to be the most effective, as it gave good to excellent yields of esters under mild reaction conditions. The heterogeneous
catalyst presented here can be regenerated and reused. All these features indicate the high potential of the reaction as “green

chemistry” process.
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1. Introduction

Organic esters have wide applications as intermediates
in the synthesis of fine chemicals, drugs, pharmaceuticals,
perfumes, cosmetics, plasticizers and solvents [1]. They
may be obtained by different routes from a variety of
starting materials. However, the reaction between car-
boxylic acids and alcohols is the most feasible one, as the
starting compounds are normally readily available. The
common esterification procedure involves the use of sul-
phuric acid, p-toluene sulphonic acid or dry hydrochloric
acid vapours as catalyst [2]. However, these catalysts,
being highly acidic, can cause damage to other sensitive
functional groups, are corrosive, are non-reusable, and
pose difficulty in separating them from the reaction mix-
ture. Most importantly, these catalysts generate acid
wastes, which cause severe environmental problems.
Attempts have been made to overcome these disadvan-
tages by using heterogeneous catalyst systems. The het-
erogeneous catalyst systems include cationic-exchanged
resins like Amberlyst-15 [3], zeolites [4], metal oxides like
sulphated zirconia and titania [5], heteropolyacids sup-
ported on silica and carbon [6], palladium on charcoal [7],
silica chloride [8], aluminophosphate and silicoalumino-
phosphate molecular sieves [9], and cation exchanged
montmorillonite K-10 [10]. In particular, the clay cata-
lysts have received considerable attention in different
organic syntheses because of their environmental com-
patibility, low cost, high selectivity, reusability and
operational simplicity [11]. Among smectite clays, mont-
morillonite, both in natural and exchanged forms, possess
both Lewis and Brensted acidities, which enable them to
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function as efficient catalysts in organic transformations.
In the present study we are reporting the esterification of
dicarboxylic acids with different alcohols, phenol and p-
cresol using an eco-friendly, high efficient cation-
exchanged clay catalyst.

2. Experimental
2.1. Materials

The clay mineral used in this work is a smectite rich
white montmorillonite GK-129 (Na-GK, provided by
Ceramic Technological Institute, Bangalore, India). The
enriched clay containing less than 2 um fraction was
used for exchanging. The composition of the white
montmorillonite was found by XRF to be 67.2% SiO,,
152% AlO3, 1.9% Fe 05, 3.2% MgO, 1.92% CaO,
2.58% Na,0, 0.09% K,O with cation exchange capacity
of 0.8 meq g~ ! of clay.

Montmorillonite K-10 sample was procured from
Sigma Aldrich, dicarboxylic acids, alcohols, phenol and
p-cresol were purchased from SD Fine Chemicals.

2.2. Preparation of exchanged clays

The cation exchanged clay catalysts were prepared by
adopting literature methods [12]. The method involves
stirring of 5 g montmorillonite clay sample with 200 mL
of 0.5 M required salt solution at room temperature for
24 h. The clay was then centrifuged and washed with
distilled water repeatedly until the washings showed
negative test for anions. The clay sample was then dried
at 100 °C for 3 h, and subsequently ground to a fine
powder. Clay catalysts were activated at 100 °C for
30 min prior to testing of the activity.
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2.3. Characterization

XRD patterns of the clay samples were recorded on
Siemens D5005 diffractometer using Cu-Kao radiation
source and a Nifilter. Basal spacings were calculated to be
15.16, 15.46, 15.77, 14.68, 14.97, and 15.17 A, respec-
tively for A", Fe*", Cr*", Ni?*, Zn®", and Mn?"-
mont catalysts. Specific surface area of catalyst samples
was determined by BET method at liquid nitrogen tem-
perature using a Quantachrome NOVA 1000 surface area
analyzer and found to be in the range of 25-31 m” g~'.
Prior to the surface area analysis, the clay samples were
degassed for 2 h at 100 °C. The total acidities of A",
Fe’", Cr*", Ni**, Zn®", and Mn?"-mont catalyst
samples were evaluated by n-butylamine back titration
method [13] and found to be 0.78, 0.78, 0.79, 0.70, 0.79,
and 0.74 mmol g~', respectively. The total cationic
content of exchanged clay catalysts was determined
according to standard methods [14] after extracting with
dilute hydrochloric acid. The exchangeable metal content
of AP",Zn?",Ni*", and Mn” " -mont was found to be in
the range of cation exchange capacity (CEC) of the parent
montmorillonite. However, in the case of Fe* " -mont the
amount of iron was found to be more than the CEC.

2.4. Typical reaction procedure

The esterification reactions of dicarboxylic acids with
alcohols and phenols (Scheme 1) were carried out in 100-
mL round-bottom flask fitted with a Dean—Stark trap for
water removal and a reflux condenser. The flask was
charged with succinic acid (5 mmol), #n-butanol (15 mmol),
0.5 g of clay catalyst and 35 mL of toluene. The reaction
mixture was refluxed for 8 h, then cooled and filtered. The
clay catalyst was washed with solvent (2 X 5 mL). The
combined filtrates were washed with 5% sodium hydroxide
(4 x 15 mL) to remove unreacted starting dicarboxylic
acid. The organic layer was first washed with water
(2 x 15 mL), saturated brine (1 x 15 mL), dried over
anhydrous sodium sulphate, and finally concentrated
under reduced pressure to obtain pure product. The prod-
uct was identified by its IR, and 'H-NMR spectral analyses.

3. Results and discussion

3.1. Effect of different catalysts over esterification of
succinic acid with 1-butanol

The results of esterification of 1-butanol with succinic
acid over different M" *-mont catalysts are summarized

in table 1. The activity of the M™ " -mont catalysts was
found to be not in correlation with total surface area
and total acidity, but linearly related to the charge to
radius ratio of M" " -ion exchanged into montmorillon-
ite clay. The charge to radius ratios of AI’", Fe’",
Cr*™, Ni**, Zn®" and Mn*" are 6.00, 5.00, 4.69, 2.89,
2.70 and 2.50, respectively. Acidity of cation exchanged
clays increases with increase in charge to radius ratio of
the exchanged cation due to increase in the polarization
of water molecules in the primary coordination sphere
[15]. The reactions conducted either in the absence of the
catalyst or in the presence of the unexchanged mont-
morillonite (Na " -mont) failed to give the ester. Among
the M™"-mont clay catalysts, AI>*"-mont is the most
effective, with an ester yield as high as 94%. The Al -
montmorillonite was also found to be an efficient cata-
lyst in the synthesis of p-cresyl phenylacetate [16] and is
attributed to the highly polar cation (charge to radius
ratio = 6) introduced between the clay layers. AlI>"-
and Fe’ " -exchanged clays provide Bronsted acid sites,
whereas Cr® " -exchanged clay provides both Bronsted
and Lewis acid sites [17]. Cr’"-mont with reduced
Bronsted acid sites was found to be effective to the
extent of 79% ester yield. The montmorillonite exchan-
ged with dipositive metal ions showed reduced yield of
ester, in the range of 18-46%. This is attributed to the
small value of charge to radius ratio of the dipositive
ions compared to the tripositive ones.

The mechanism of esterification of dicarboxylic acid
to diester over M"™'-mont is similar to that of

Table 1
Esterification of succinic acid with 1-butanol over M" " -mont cata-
lysts. (acid:alcohol, 1:3 mole; solvent, toluene; reaction, 8 h; catalyst
amount, 0.5 g)

Entry Catalyst Charge to Yield of
radius ratio® di-(1-butyl)
succinate (%)°
1 AP -mont 6.00 94
2 Fe* " -mont 5.00 81
3 Cr’"-mont 4.69 79
4 Ni**-mont 2.89 46
5 Zn** -mont 2.70 36
6 Mn* " -mont 2.50 18
7 Na " -mont 1.05 -
8 Blank (without clay) - -

*onic radii (A) values are in Pauling’s scale.
®Isolated yields.

/COOH COOH . /COOR COOR
M -mont
(CHa), OR + 2. ROH — o> (CH), OR
COOH COOH : \COOR COOR
n=1,2&4; R= C,Hs, n-C3H;, n-C4 Hy, i-C4 Hy , t-C, Hy, Cs Hs & p-CH;C¢H,

Scheme 1.
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conventional mechanism involving the formation of
protonated dicarboxylic acid, using proton donated by
the M™ " -mont catalyst, followed by nucleophilic attack
of alcoholic group to yield the respective monoester. The
second carboxylic group present in monoester gets fur-
ther esterified by the same mechanism in a repeat reac-
tion, which ultimately results in the diester formation.
The proton donating ability of M" " -mont is apparently
dependent on the charge to radius ratio of M""-ion
present as aqua complexes. The active sites are perhaps
present at the edge sites projecting from the interlayer
space.

3.2. Effect of solvents on esterification

The role of different solvents in the esterification of
succinic acid and adipic acid with 1-butanol over Al *-
mont catalyst is presented in table 2. Both succinic and
adipic acids are sparingly soluble in all the selected
solvents except dioxane. Both the acids in o-xylene sol-
vent, which has the highest boiling point among the
selected solvents, gave almost the same yield of esters
(86 and 87%). However, in toluene solvent, succinic acid
gave much higher yield of ester (94%) than adipic acid
(54%). The reduced yields in benzene are attributable to
the low boiling point of the solvent. Both the acids,
although soluble in dioxane, did not give the corre-
sponding diesters. This may be due to polar nature of
the solvent, which is likely to result in the formation of
hydrogen bond between the protonic site of the catalyst
and the solvent.

3.3. Esterification of dicarboxylic acids with simple
alcohols

The results of esterification of dicarboxylic acids
namely malonic, maleic, succinic, adipic and phthalic
acids studied with ethanol, 1-propanol, 1-butanol, 2-
methyl-1-propanol and 2-methyl-2-propanol over AI* " -
mont catalyst in toluene solvent are summarized in
table 3. All dicarboxylic acids gave lower yields of di-
esters with ethanol (3-64%, entries 1-5). The reason for
this may be due to the low boiling point of ethanol.
Similarly all dicarboxylic acids with 1-propanol gave

Table 2
Esterification of succinic acid and adipic acid with 1-butanol in dif-
ferent solvents (acid: alcohol, 1:3 mole; catalyst, AP -mont; reaction
time, 8 h; catalyst amount, 0.5 g)

Entry Solvent Yield of Yield of
di-(1-butyl) di-(1-butyl)
succinate (%)* adipate (%)*
1 0-Xylene 86 87
2 Toluene 94 54
3 Benzene 11 06
4 Dioxane - -

“Isolated yields.

slightly higher yields of diesters (19-70%, entries 6—10)
compared to ethanol. But all dicarboxylic acids, except
phthalic acid, gave reasonably good yields with 1-buta-
nol (54-94%, entries 11-15) and 2-methyl-1-propanol
(28-98%, entries 16-20) and relatively poor yields with
2-methyl-2-propanol (16-24%, entries 21-25). Also the
results of esterification of adipic and phthalic acids with
1-propanol (entries 9 and 10) indicates toluene (19-35%)
is the better solvent compared to o-xylene (4—6%), and
with I-butanol and 2-methyl-1-propanol, o-xylene (31—
87%) is better compared to toluene (29-54%). The rea-
son for this observation is most likely to be due to the
high boiling point of o-xylene solvent. However, the
diesters obtained with 2-methyl-2-propanol are low both
in toluene and o-xylene. The low yields of diesters with
2-methyl-2-propanol can be attributed to steric bulk of
the alcohol or its competitive dehydration over esterifi-
cation. The tertiary alcohols are known to undergo
elimination more easily than primary alcohols in pres-
ence of acid clay catalyst [18]. As evidence, the gaseous
products formed in the esterification with 2-methyl-2-
propanol gave positive test for unsaturation. However,
the general trend of diesterification of a particular
dicarboxylic acid in respect of alcohols was in the order,
2-methyl-2-propanol < ethanol < I-propanol < I-
butanol < 2-methyl-1-propanol in toluene solvent. A
clear pattern is observable in this trend, that is, the lower
boiling alcohols and sterically hindered alcohols give
lower yields of esters.

3.4. Esterification of dicarboxylic acids with phenol and
p-cresol

Esterification of dicarboxylic acids was also studied
with phenol and p-cresol over AI*"-mont catalyst in
presence of toluene solvent (table 4). Malonic, maleic
and phthalic acids failed to give diesters with both phenol
and p-cresol but succinic acid and adipic acid gave low
yields of diesters. However, adipic acid gave higher yields
in presence of o-xylene after 10 h of reaction time. Also
in case of p-cresol the yields of diesters are more than in
phenol. This may be attributed to better nucleophilic
nature of p-cresol than phenol, which has a positive effect
on the rate of esterification. Considering the fact that
phenols do not undergo esterification as easily as alco-
hols using conventional procedures, even the partial
success with succinic acid and adipic acid achieved in our
present study is significant.

4. Conclusions

Montmorillonite clay exchanged with different
cations (M™"-mont; M™" = APP*, Cr** Fe*", Zn’",
Ni>", and Mn” ") catalyzes esterification of dicarboxylic
acids like malonic, maleic, succinic, adipic and phthalic
acid with simple alcohols, phenol, and p-cresol to cor-
responding diesters. The results indicate no correlation
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Table 3
Esterification of dicarboxylic acids with different alcohols (acid: alcohol, 1:3 mole; catalyst, AP -mont; reaction time, 8 h; solvent, toluene;
catalyst amount, 0.5 g)

Entry Dicarboxylic acid Alcohol Product Yield (%)*
Toluene 0-Xylene
1 Malonic acid Ethanol Diethyl malonate 41 -
2 Maleic acid Ethanol Diethyl maleate 18 -
3 Succinic acid Ethanol Diethyl succinate 64 -
4 Adipic acid Ethanol Diethyl adipate 03 07
5 Phthalic acid Ethanol Diethyl phthalate 31 -
6 Malonic acid 1-Propanol Di-(1-propyl) malonate 70 -
7 Maleic acid 1-Propanol Di-(1-propyl) maleate 37 -
8 Succinic acid 1-Propanol Di-(1-propyl) succinate 66 -
9 Adipic acid 1-Propanol Di-(1-propyl) adipate 35 06
10 Phthalic acid 1-Propanol Di-(1-propyl) phthalate 19 04
11 Malonic acid 1-Butanol Di-(1-butyl) malonate 77 -
12 Maleic acid 1-Butanol Di-(1-butyl) maleate 88 -
13 Succinic acid 1-Butanol Di-(1-butyl) succinate 94 -
14 Adipic acid 1-Butanol Di-(1-butyl) adipate 54 87
15 Phthalic acid 1-Butanol Di-(1-butyl) phthalate 37 55
16 Malonic acid 2-Methyl-1-propanol Di-(2-methyl-1-propyl) malonate 84 -
17 Maleic acid 2-Methyl-1-propanol Di-(2-methyl-1-propyl) maleate 78 -
18 Succinic acid 2-Methyl-1-propanol Di-(2-methyl-1-propyl) succinate 98 -
19 Adipic acid 2-Methyl-1-propanol Di-(2-methyl-1-propyl) adipate 29 31
20 Phthalic acid 2-Methyl-1-propanol Di-(2-methyl-1-propyl) phthalate 52 79
21 Malonic acid 2-Methyl-2-propanol Di-(2-methyl-2-propyl) malonate 24 -
22 Maleic acid 2-Methyl-2-propanol Di-(2-methyl-2-propyl) maleate 19 -
23 Succinic acid 2-Methyl-2-propanol Di-(2-methyl-2-propyl) succinate 18 -
24 Adipic acid 2-Methyl-2-propanol Di-(2-methyl-2-propyl) adipate 16 08
25 Phthalic acid 2-Methyl-2-propanol Di-(2-methyl-2-propyl) phthalate - 13

“Isolated yields.

between surface area, d-spacing, and total acidity of
catalysts with esterification activity, but are found to be
linearly related to charge to radius ratio of exchanged
cations. Among the M" " -mont clay catalysts studied
AP’ *-mont is the most active catalyst in the esterifica-
tion of dicarboxylic acids. The general conversion trend
of alcohols to diester with particular dicarboxylic acid

Table 4
Esterification of dicarboxylic acids with phenol and p-cresol (acid:
phenol or p-cresol, 1:3 mole; catalyst, AP -mont; reaction time, 8 h;
solvent, toluene; catalyst amount, 0.5 g)

Entry Dicarboxylic Phenol Product Yield (%)*
acid

1 Malonic acid Phenol  Diphenyl malonate Nil

2 Maleic acid  Phenol  Diphenyl maleate Nil

3 Succinic acid Phenol  Diphenyl succinate 25

4 Adipic acid  Phenol  Diphenyl adipate 21, 58°
5 Phthalic acid Phenol  Diphenyl phthalate Nil

6 Malonic acid p-Cresol Di-(p-cresyl) malonate Nil

7 Maleic acid  p-Cresol Di-(p-cresyl) maleate Nil

8 Succinic acid  p-Cresol  Di-(p-cresyl) succinate 70

9 Adipic acid  p-Cresol Di-(p-cresyl) adipate 39,73°
10 Phthalic acid p-Cresol Di-(p-cresyl) phthalate Nil

“Isolated yields.
°In o-xylene solvent and 10 h of reaction period.

was in the order, 2-methyl-2-propanol < ethanol <
I-propanol < 1-butanol < 2-methyl-1-propanol in
toluene solvent with few exceptions. Finally, the
advantages of this method include operational simplic-
ity, mild reaction conditions, and eco-friendly character.
Thus, the reaction has all the features of “green chem-
istry”. The technique has the potential for commercial
exploitation in the preparation of esters.
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