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Abstract: We consider the viscous dusty fluid, where the velocity of the dust particle is
everywhere parallel to that of the fluid with velocity magnitude of the fluid is constant along
each individual streamline. Also it is assumed that number density of the dust particle is
constant and the dust particles are uniform in size and shape and bulk concentration of the
dust is small. Hodograph and Legendre transform of stream function is employed to get the
solutions and the geometry of streamlines for these flows by using the resulting partial differential
equations when the Jacobian is zero and nonzero cases. In each case the variation of pressure
is analyzed graphically.
c© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: Dusty Fluids; Hodograph and Legendre Transform; Velocity Components; Pressure
Function; Streamlines
PACS (2006): 47.10.g; 47.10.A; 96.50.Dj; 98.38.Cp; 94.05.Bf
2000 Mathematics Subject Classification: 76T10; 76T15

1. Introduction

Cosmic dust is widely present in space, where gas and dust clouds are primary precursors

for planetary systems. The zodiacal light, seen in the sky on a dark night, is produced

by sunlight reflected from particles of dust in orbit around the sun. The tails of comets
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are produced by emissions of dust and ionized gas from the body of the comet. Dust also

covers solid planetary bodies, and vast dust storms can occur on Mars that can cover

almost the entire planet. Interstellar dust is found between the stars, and high concen-

trations can produce diffuse nebulae and reflection nebulae. Dust samples returned from

outer space could provide information about conditions in the early solar system. Several

spacecraft have been launched in an attempt to gather samples of dust and other mate-

rials. Among these was stardust, which flew past comet wild 2 in 2004 and returned a

capsule of the remains of the comet to the U.S. in January 2006. The Japanese Hayabusa

spacecraft is currently on a mission to collect samples of dust from the surface of an

asteroid.

In the present paper some assumptions are made on Saffman model and the basic equa-

tions of fluid phase and dust phase are written into a convenient form by using suitable

hodograph transformation. Further it is assumed that velocity vector of fluid is every-

where parallel to that of dust velocity and fluid is flowing with constant velocity magni-

tude. By introducing stream function and Legendre transform of this stream function,

flow equations are recasted in the transformed function. By assuming the Jacobian is

zero and nonzero, exact solutions to flow variables are obtained. It is shown that the flow

is irrotational and streamlines are concentric circles when Jacobian is nonzero and flow

is rotational and stream lines are straight lines when it is zero.

P.G.Saffman [1] discussed stability of the laminar flow of a dust gas in which the dust

particles are uniformly distributed. Marble [2] discussed the dynamics of dusty gas.

R.M.Barron [3, 4] studied two dimensional steady flow of a dusty gas. He obtained solu-

tions to flow variables in orthogonal curvilinear co-ordinate system. Also by considering

the dust particle distribution to be variable and the velocity of dust particle is everywhere

parallel to velocity of fluid and proved that the possible flows are radial and streamlines

are straight lines. He established that the dust particle distribution can not be uniform

in radial flow and possible stream lines are only parallel straight lines. He found solutions

to flow variables in natural coordinate system where the coordinate axes are the stream

lines η is a constant and their orthogonal trajectories are curves ξ = constant.

O.P.Chandana et al [5] studied rotational plane flow of viscous fluid in the hodograph

plane using Legendre transformation of the stream function. Satter [6] by assuming ve-

locity magnitude is constant along each stream line, given solutions to flow variables of

steady plane MHD flow of viscous incompressible fluid of infinite electrical conductivity

when magnetic field vector is constantly inclined to velocity vector. M.H.Hadaman et

al [7] analyzed the squeezing flow dust fluid and concluded the introduction of dust to

fluid squeeze film increase the load carrying capacity of the squeeze. C.S.Bagewadi et

al [8] studied the flow of dust gas using Frenet frame field system and found solutions

to flow variables using Laplace transformation method. In [9] they studied the geome-

try of streamlines on spherical surface, inverse surface and parallel surface and that the

streamlines are concentric circles on this surface by the method of metric coefficients.

Siddabasappa et al [12] obtained the exact solutions to dusty gas flow variables including

viscosity and compressibility in different surfaces like spherical, centro, Beltrami surfaces
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using fundamental magnitudes and differential geometry. In [13, 14] the importance and

application of flows, helps us to analyze waste water treatment, corrosive particles in en-

gine, oil flows, air pollution, smoke emission from vehicles, emission of fine particles from

cement industries, nuclear reactors, filtration, etc. Also, it gives the information about

water pollution like rain fall in space, flow of blood, pumping of water in pipes. The

possible presence of solid particles such as ash or soot in combustion MHD generators

and plasma MHD accelerators and their effect on the performance of such devices led to

studies of particulate suspensions in conducting fluids in the presence of magnetic fields.

For example in an MHD generator, coal mixed with seed is fed into a combustor. The

coal and seed mixture is burned in oxygen and combustion gas expands through a nozzle

before it enters the generator section. The gas mixture flowing through the MHD chan-

nel consists of a condensable vapour (slag) and a non condensable gas mixed with seed

coal combustion products. Both the slag and the non condensable gas are electrically

conducting. The presence of slag and seeded particles significantly influences the flow

in the MHD channel. This field has important applications in areas as cooling systems,

centrifugal separation of matter from fluid, petroleum industry, purification of crude oil,

electrostatic precipitation, polymer technology and fluid droplets springs.

2. Governing Equation

Based on Saffman model of the steady motion of a incompressible fluid the governing

equations of the flow are

For fluid phase

∇.�u = 0 continuity equation (1)

ρ(�u.∇)�u + ∇p = μ∇2�u + KN(�v − �u) momentum equation (2)

For dust phase

∇.(N�v) = 0 continuity equation (3)

(�v.∇)�v =
K

m
(�u − �v) momentum equation (4)

where

�u- velocity of the fluid =(u1, u2)

�v-velocity of the dust particle=(v1, v2)

ρ- density of fluid

p-fluid pressure

μ- viscosity of fluid

N -number density of dust particle per unit volume (constant)

K-stock’s coefficient of resistance (6πaμ) for spherical dust particles and ’a’ is the average

radius of dust particles

m-average mass of dust particles.

In the present situation the dust particles are assumed to be spherical and uniform in size
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and shape and are uniformly distributed throughout the fluid. The bulk concentration of

the dust is small m
K

= τ may be called the relaxation time, the dust particle mN
ρ

= f -mass

concentration of dust particle. The last term in equation (2) represents the force due to

the relative motion between fluid and dust particles.

Let the velocity of the fluid be every where particle to dust particle velocity so that

�v =
α

N
�u (5)

where α is to be determined. Using �v(v1, v2) and �u(u1, u2) equation (5) reduces to

v1 =
α

N
u1 and v2 =

α

N
u2. (6)

Equations (1)-(4) using (6) reduces to the following system of six equations.

∂u1

∂x
+

∂u2

∂y
= 0 (7)

ρ(u1
∂u1

∂x
+ u2

∂u2

∂x
) +

∂p

∂x
= μ(

∂2u1

∂x2
+

∂2u1

∂y2
) +

ρu2(
∂u2

∂x
− ∂u1

∂y
) + KN(v1 − u1) (8)

ρ(u1
∂u1

∂y
+ u2

∂u2

∂y
) +

∂p

∂y
= μ(

∂2u2

∂x2
+

∂2u2

∂y2
) +

ρu1(
∂u2

∂x
− ∂u1

∂y
) + KN(v2 − u2) (9)

∂(Nv1)

∂x
+

∂(Nv2)

∂y
= 0 (10)

(v1
∂v1

∂x
+ v2

∂v2

∂x
) − v2(

∂v2

∂x
− ∂v1

∂y
) =

K

m
(u1 − v1) (11)

(v1
∂v1

∂y
+ v2

∂v2

∂y
) + v1(

∂v2

∂x
− ∂v1

∂y
) =

K

m
(u2 − v2). (12)

By assuming number density of the dust particle is constant and introducing vorticity

function ξ(x, y) and energy function h(x, y) as

ξ(x, y) =
∂u2

∂x
− ∂u1

∂y
(13)

h(x, y) = p +
1

2
ρu2 where u2 = u2

1 + u2
2 (14)
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the system of equations (7)-(12) reduces to the system,

∂u1

∂x
+

∂u2

∂y
= 0 (15)

μ
∂ξ

∂y
− ρu2ξ + KN(u1 − v1) = −∂h

∂x
(16)

μ
∂ξ

∂x
− ρu1ξ + KN(v2 − u2) =

∂h

∂y
(17)

u1
∂α

∂x
+ u2

∂α

∂y
= 0 (18)

mα2

(
u1

∂u1

∂x
+ u2

∂u1

∂y

)
= KN(N − α)u1 (19)

mα2

(
u1

∂u2

∂x
+ u2

∂u2

∂y

)
= KN(N − α)u2 (20)

Equations (6), (13), (14) and (15) - (20) is a system of first order nine partial differential

equation in eight unknown functions u1(x, y), u2(x, y), v1(x, y), v2(x, y), ξ(x, y), h(x, y),

p(x, y) and α(x, y). where α(x, y) is calculated from (18) and v1 and v2 from (6). Reducing

the order of differential equation from two to one is successfully done in (11). Equation

(13) gives vorticity and h(x, y) is form (16) and (17). Lastly the pressure function p(x, y)

is obtained, using equation (14). τ = m
K

may be discussed using equations (19) and (20).

Using integrability condition on h(x, y) from (16) and (17) we have

μ

[
∂2ξ

∂x2
+

∂2ξ

∂y2

]
− ρ

[
u1

∂ξ

∂x
+ u2

∂ξ

∂y

]
− K(N − α)

[
∂u2

∂x
− ∂u1

∂y

]

+K

{
u1

[
N − ∂α

∂y

]
− u2

[
N − ∂α

∂x

]}
= 0 (21)

Now equations (6), (13), (14), (15), (18), (19), (20) and (21) is system of eight partial

differential equations in eight unknowns u1, u2, v1, v2, ξ, h, p and α.

Flows with constant velocity magnitude;

Now the fluid is flowing with constant velocity magnitude along each individual stream-

line. We must have

�u.grad u2 = 0

so that

u2
1

∂u1

∂x
+ u1u2

(
∂u1

∂y
+

∂u2

∂x

)
+ u2

2

∂u2

∂y
= 0 (22)

Hence in the flow with constant velocity magnitude u1 and u2 must satisfy the equation

(15) and (22). Once a solution of u1 and u2 are determined from (15) and (22), the

pressure function is found from the definition of energy function. Now consider the

following case

1. J �= 0 in the entire region of flow

2. J = 0 in the entire region of flow
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3. J �= 0 in a part of the region and J = 0 in the remaining part of the region

where J is the Jacobian.

I when J �= 0 in the entire region of flow

Hodograph transformations

Letting the function u1 = u1(x, y) and u2 = u2(x, y) to be such that in the region of flow

the Jacobian

J =
∂u1

∂x

∂u2

∂y
− ∂u1

∂y

∂u2

∂x
�= 0, 0 < |J | < ∞ (23)

We may consider x and y as functions of u1 and u2 by means of x = x(u1, u2) and

y = y(u1, u2), we have the relations

∂u1

∂x
= J

∂y

∂u2

,
∂u1

∂y
= −J

∂x

∂u2

,

∂u2

∂x
= −J

∂y

∂u1

,
∂u2

∂y
= J

∂x

∂u1

. (24)

With the application of transformation (23) and (24) for the first order partial derivatives

appearing in the above system we have the partial differential equations in the (u, v) plane.

∂x

∂u1

+
∂y

∂u2

= 0 (25)

μ

[
J

∂(w1, y)

∂(u1, u2)
+ J

∂(x,w2)

∂(u1, u2)

]
− ρ

[
u1J

∂(ξ, y)

∂(u1, u2)
+ u2J

∂(x, ξ)

∂(u1, u2)

]

−K

ρ
(N − α)

(
∂2L

∂u2
1

+
∂2L

∂u2
2

)
+ u1

[
N − J

∂(x, α)

∂(u1, u2)

]

−u2

[
N − J

∂(α, y)

∂(u1, u2)

]
= 0, (26)

J

[
u1

∂(α, y)

∂(u1, u2)
+ u2

∂(x, α)

∂(u1, u2)

]
= 0 (27)

Jmα2

[
u1

∂y

∂u2

− u2
∂x

∂u2

]
= KN(N − α)u1 (28)

Jmα2

[
u2

∂x

∂u1

− u1
∂y

∂u1

]
= KN(N − α)u2 (29)

ξ = J

[
∂x

∂u2

− ∂y

∂u1

]
(30)

J =

(
∂y

∂u2

∂x

∂u1

− ∂x

∂u2

∂y

∂u1

)−1

= j (31)

u2
1

∂y

∂u2

− u1u2

(
∂x

∂u2

− ∂y

∂u1

)
+ u2

2

∂x

∂u1

= 0 (32)

Equations in Legendre transform function

The equation of continuity (15) implies the existence of a stream function Ψ(x, y) such

that

dΨ = −u2dx + u1dy or
∂Ψ

∂x
= −u2,

∂Ψ

∂y
= u1. (33)
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Likewise equation (25) implies the existence of a function L(x, y) called the Legendre

transform function of the stream function Ψ(x, y) such that

dL = −ydu1 + xdu2 or
∂L

∂u1

= −y,
∂L

∂u2

= x. (34)

Introducing L(u1, u2) into the system (25)-(32), it follows that (25) is identically satisfied

and the system may be replaced by

ξ = j

[
∂2L

∂u2
1

+
∂2L

∂u2
2

]
(35)

J−1 =

[
∂2L

∂u2
1

∂2L

∂u2
2

−
(

∂2L

∂u1∂u2

)2
]

= j (36)

μ

(
∂(w1,− ∂L

∂u1
)

∂(u1.u2)
+

∂( ∂L
∂u2

, w2)

∂(u1, u2)

)
−

(
u1

∂(ξ,− ∂L
∂u1

)

∂(u1, u2)
+ u2

∂( ∂L
∂u2

, ξ)

∂(u1, u2)

)

−K

ρ
(N − α)

(
∂2L

∂u2
1

+
∂2L

∂u2
2

)
+ K

{
u1

(
N

J
− ∂( ∂L

∂u2
, α)

∂(u1, u2)

)

−u2

(
N

J
− ∂(α,− ∂L

∂u1
)

∂(u1, u2)

)}
= 0 (37)

J

(
u1

∂(α,− ∂L
∂u1

)

∂(u1, u2)
+ u2

∂( ∂L
∂u2

, α)

∂(u1, u2)

)
= 0 (38)

−Jmα2

(
u1

∂2L

∂u2∂u1

+ u2
∂2L

∂u2
2

)
= KN(N − α)u1 (39)

Jmα2

(
u1

∂2L

∂u2
1

+ u2
∂2L

∂u1∂u2

)
= KN(N − α)u2 (40)

u1u2
∂2L

∂u2
1

+ (u2
2 − u2

1)
∂2L

∂u1∂u2

− u1u2
∂2L

∂u2
2

= 0 (41)

Polar coordinates:

By employing Polar coordinates (q, θ) in the hodograph plane, defined by the relations

u1 = q cos θ, u2 = q sin θ, q =
√

u2
1 + u2

2, θ = tan−1(
u2

u1

) (42)

and defining L∗(q, θ), ξ∗(q, θ), J∗(q, θ) to be the Legendre transform, vorticity and

jacobian functions in (q, θ) coordinates. Using

∂(F, G)

∂(u1, u2)
=

∂(F ∗, G∗)
∂(q, θ)

and
∂(q, θ)

∂(u1, u2)
=

1

q

∂(F ∗, G∗)
∂(q, θ)

(43)
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where F (u1, u2) = F ∗(q, θ), G(u1, u2) = G∗(q, θ) are continuously differentiable func-

tions, the equations (37) becomes

μ

(
∂(w1,− cos θ ∂L

∂q
+ sin θ

q
∂L
∂θ

)

∂(u1, u2)
+

∂(sin θ ∂L
∂q

+ cos θ
q

∂L
∂θ

, w2)

∂(u1, u2)

)
(44)

−
(

u1

∂(ξ,− cos θ ∂L
∂q

+ sin θ
q

∂L
∂θ

)

∂(u1, u2)
+ u2

∂(sin θ ∂L
∂q

+ cos θ
q

∂L
∂θ

, ξ)

∂(u1, u2)

)

−qK

ρ
(N − α)

(
∂2L

∂q2
+

1

q

∂L

∂q
+

1

q2

∂2L

∂θ2

)
+ K

[
u1

(
N

J
− ∂(sin θ ∂L

∂q
+ cos θ

q
∂L
∂θ

, α)

∂(u1, u2)

)

− u2

(
N

J
− ∂(α,− cos θ ∂L

∂q
+ sin θ

q
∂L
∂θ

)

∂(u1, u2)

)]
= 0

Since the equation (44) holds identically for all values of q, equating the coefficients of

different powers of q, we have

μ

(
∂(w1,− cos θ ∂L

∂q
+ sin θ

q
∂L
∂θ

)

∂(u1, u2)
+

∂(sin θ ∂L
∂q

+ cos θ
q

∂L
∂θ

, w2)

∂(u1, u2)

)
(45)

−
(

u1

∂(ξ,− cos θ ∂L
∂q

+ sin θ
q

∂L
∂θ

)

∂(u1, u2)
+ u2

∂(sin θ ∂L
∂q

+ cos θ
q

∂L
∂θ

, ξ)

∂(u1, u2)

)

+k

[
u1

(
N

J
− ∂(sin θ ∂L

∂q
+ cos θ

q
∂L
∂θ

, α)

∂(u1, u2)

)

− u2

(
N

J
− ∂(α,− cos θ ∂L

∂q
+ sin θ

q
∂L
∂θ

)

∂(u1, u2)

)]
= 0

k(N − α)

(
∂2L

∂q2
+

1

q

∂L

∂q
+

1

q2

∂2L

∂θ2

)
= 0 (46)

and the equation (41) in (q, θ) form is

q
∂2L∗

∂q∂θ
− ∂L∗

∂θ
= 0 (47)

Now we use (44) and (47) to get the expression for L. Once L(q, θ) is defined we can express

it in (u, v) from with the help of (42), J is evaluated from (36) satisfies 0 < |J | < ∞.

The solutions for the velocity components u1 and u2 are obtained by solving equations

x = ∂L
∂u2

, y = − ∂L
∂u1

. After obtaining velocity components α(x, y) can be evaluated

by solving (18), then the velocity component of dust are from equation (6). Having

obtained the velocity components in the physical plane vorticity and energy functions are

determined from the vorticity and linear momentum equations in the system of equations

(13), (16) and (17). Finally the pressure function is evaluated from (14).

Solutions to flow variables

Assuming the most general solution of (47) in the form

L∗(q, θ) = qφ(θ) + χ(q) (48)



Electronic Journal of Theoretical Physics 5, No. 17 (2008) 237–252 245

where φ and χ are arbitrary functions of their arguments. Now equation (48) in (46)

gives us

qχ′′ + χ′ + (φ′′ + φ) = 0. (49)

Set

qχ′′ + χ′ = λ and φ′′ + φ = −λ (50)

where λ is constant and primes denote differentiation with respect to the arguments.

Now from (50) we have

χ = λq − λ1 ln q + λ2 and φ = A cos θ + B sin θ − λ (51)

where A,B, λ1, λ2 are arbitrary constants. Equations (51) in (48) gives us

L∗(q, θ) = Aq cos θ + Bq sin θ − λ1 ln q + λ2.

The above equation in u1 and u2 plane using (42) is

L(u1, u2) = Au1 + Bu2 − λ1

2
ln(u2

1 + u2
2) + λ2. (52)

From (34) and (52) we have

x = B − u2λ1

u2
1 + u2

2

and y = −A +
u1λ1

u2
1 + u2

2

and hence

u1 =
λ3(y + A)

λ1

and u2 =
λ3(B − x)

λ1

(53)

provided

u2
1 + u2

2 = λ−2
1

[
(y + A)2 + (B − x)2

]
= λ3(constant)

Using (53) in (13) and (23) the vorticity and jacobian are

ξ =
−2λ3

λ1

and J =
2λ3

λ1

(54)

This shows that the flow is irrotational. From (18) and (53) we have

(y + A)
∂α

∂x
+ (B − x)

∂α

∂y
= 0 (55)

the general solution of this equation is

α(x, y) = a1x +
(y + A)

B − x
a1xy + a2 (56)
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where a1 and a2 are constants. From (53), (56) and (6), velocity components of dust

particles are given by

v1 =
λ3(y + A)

Nλ1

[
(a1x + a2) + a1xy(y + a)(B − x)−1

]
v2 =

λ3

Nλ1

(a1x + a2)(B − x) +
λ3a1xy(y + A)

Nλ1

(57)

The integrability condition on h from (16), (17) and using (6), the pressure function

p(x, y) is given by

p(x, y) = ρ
λ2

3

λ2
1

(
y2 + 2Ay − Bx +

x2

2

)
− K

λ3

λ1

[(y + A)(N − C)x

−(y + A)α
x3

3
− αx2 − (C − N) − (N − C)x + α

x3

3
+ (3x

+2B log(x − B))

(
a
y3

3
+ aA

y2

2

)
+ (x + B log(x − B))

]

+K
(y + A)2

λ1

λ3αy [x + B log(x − B)]

−1

2
ρ
λ2

3

λ2
1

[
(y + A)2 + (B − x)2

]
(58)

The streamlines are given by (x − B)2 + (y + A)2 = constant. Hence streamlines are

concentric circles. The variation of pressure for different densities is shown in figure (1)

and (2).

II When the Jacobian is zero

Consider J = ∂u1

∂x
∂u2

∂y
− ∂u1

∂y
∂u2

∂x
= 0 in the entire region of flow. In this case u1 is a function

of u2 or u2 is a function of u1. Consider the case when u2 is a function of u1

Let

u2 = f(u1) (59)

where ’f’ is an arbitrary of u1. Using (59) in (15) and (22) we get

∂u1

∂x
+ f ′(u1)

∂u1

∂y
= 0 (60)

(u2
1 + u1ff ′)

∂u1

∂x
+ (u1f + f2f ′)

∂u1

∂y
= 0 (61)

Eliminating ∂u1

∂x
from (60) and (61), we have

(u1f
′ − f)(u1 + ff ′)

∂u1

∂y
= 0 (62)

implies that either

(i)
∂u1

∂y
= 0 or (ii) (u1f

′ − f) or (iii) (u1 + ff ′) = 0
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(i) If ∂u1

∂y
= 0 gives us ∂u1

∂x
= 0. Therefore u1 = constant, u2 = constant

Let u1 = c1 and u2 = c2 (63)

From (18)

α = b1

[
x − c1

c2

y

]
+ b2 (64)

and therefore

ξ = 0 and j = 0

v1 =
b1c1(c2x − c1y) + c2b2

Nc2

, v2 =
b1(c2x − c1y) + b2

N
(65)

h(x, y) = akc2xy + K(c3 − N)(c1x + c2y) +
Kc1

2
a(x2 − y2) − c5

and hence pressure function is

p(x, y) = aKc2xy + K(c3 − N)(c1x + c2y) +
Kc1

2
a(x2 − y2)

− c5 − ρ

2
(c2

1 + c2
2). (66)

The variation of p is graphed in figure (3) and (4). In this case streamlines are straight

lines given by

c2x − c1y = constant

. (ii) Next u1f
′ − f = 0 this gives f = d1u1. Put f ′ = d1 in (63), we have

∂u1

∂x
+ d1

∂u1

∂y
= 0 (67)

The general solution of this equation is

u1 = g(d1x − y) (68)
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where g is an arbitrary. By taking one particular value u1 = d1x−y we have the following

exact solutions to flow variables,

u1 = d1x − y, u2 = d1(d1x − y),

ξ = d2
1 + 1, j = 0, α(x, y) = d2

[
x − y

d1

]
+ d3 (69)

v1 =
d2(d1x − y)2

d1N
+

d3

N
(d1x − y),

v2 =
d2(d1x − y)2

d1N
+

d3d1

N
d1(d1x − y)

h(x, y) = −ρu2(d
2
1 + 1)x − K

(
d1

x2

2
− yx

)
N + K

(
d1

x2

2
− yx

)
{

d2

(
x − y

d1

)
+ d3

}
+ K(d1x − y)

(
x2

2
− xy

d1

)
− (

d3x − ρd2
1+

ρ − Kx

d1

− ax − d3 + N

)(
d1xy − y2

2

)
−

(
d1

xy2

2
− y3

3

)
d2

−Kx

(
N − 3d2x

2
− 2d3 − x

2

)
y − Kx

d1

(d2 + 1)
y2

2

The pressure expression is

p(x, y) = −ρu2(d
2
1 + 1)x − K

(
d1

x2

2
− yx

)
N + K

(
d1

x2

2
− yx

)
{

d2

(
x − y

d1

)
+ d3

}
+ K(d1x − y)

(
x2

2
− xy

d1

)
− (

d3x − ρd2
1+

ρ − Kx

d1

− ax − d3 + N

)(
d1xy − y2

2

)
−

(
d1

xy2

2
− y3

3

)
d2

−Kx

(
N − 3d2x

2
− 2d3 − x

2

)
y − kx

d1

(d2 + 1)
y2

2

−1

2

{
(d1x − y)2 + d2

1(d1x − y)2
}

(70)

In this case also, the streamlines are straight lines are given by y − d1x = constant. The

variation of pressure is graphically shown in figure (5) and (6). (iii) In the last case

u1 + ff ′ = 0 we have u1 = d1x − y, u2 = d1(d1x − y), ξ = 0, j = 0 are the solutions and

the geometry of streamlines is similar to (ii).

III J �= 0 a part of the region and J = 0 in the remaining part of the region

From I and II, we see that the streamlines are concentric circles, when J �= 0 and they are

parallel straight lines when J = 0. Therefore there exists no common streamline pattern.

Also if J �= 0 the flow is irrotational and if J = 0 the flow is rotational as shown in case

(i) and in (ii) it is rotational if d2
1 = −1, otherwise it is irrotational. The velocity vector

of fluid when J �= 0 is u1 = λ3(y+A)
λ1

and u2 = λ3(B−x)
λ1

and when J = 0 is u1 = C1, u2 = C2

which are constants. We see that there is a discontinuity in the velocity field as we cross

from one region to another. Therefore such flows cannot exists.



Electronic Journal of Theoretical Physics 5, No. 17 (2008) 237–252 249

3. Conclusion

B.J.Gireesha et al., [10] discussed the flow of an unsteady dusty fluid under varying pres-

sure gradient using differential geometry technique. But in our work it is used Hodograph

method and it is taken that the magnitude of velocity of fluid is constant along each in-

dividual streamline. In [10] analytical solutions to velocity components of both fluid and

dust phase are obtained using laplace transform technique. But in this article it is used

the technique of Legendre transformation. In their paper solutions are obtained in terms

of binormal vector but ours is the physical plane. In this article we also found solutions

to pressure and vorticity function. We also discussed variation of velocity components,

further it is analyzed the pressure variation graphically. When Jacobian is non zero, the

pressure variation is shown in figure (1) and (2).It is observed that the density increases

with increase of pressure. Such situations may be seen in oceans etc., When the Jacobian

is zero, we have three possibilities. The variation of pressure in the first possibilities is

parabolic when y=constant and it is inverted when x=constant, as in figure (3) and (4).

Here as density increases pressure decreases as we observe in air and some gases. The

second possibility is graphed in figure (5) and (6). Here also pressure increases with vari-

ation of density. In the third possibility the solutions and pressure variation is similar to

second possibility. When the Jacobian is non zero the streamlines are concentric circles

and when it is zero the streamlines are straight lines. From equations (57), (65) and (69)

it is observed that as the number density of the dust particle increases the velocity of the

dust phase decreases. When Jacobian is non zero the flow is irrotational. When it is zero

the flow is rotational. We have such situations arised in free air, oceans etc.,
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