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ABSTRACT 

 

The stability of buoyancy-driven parallel shear flow of a dielectric fluid confined between differentially 
heated vertical plates is investigated under the influence of a uniform horizontal AC electric field. The 
resulting generalized eigenvalue problem is solved numerically using Chebyshev collocation method with 
wave speed as the eigenvalue. The critical Grashof number Gc, the critical wave number αc and the critical 
wave speed cc are computed for wide ranges of AC electric Rayleigh number Rea 

 
and the Prandtl number Pr. 

Based on these parameters, the stability characteristics of the system are discussed in detail. It is found that 
the AC electric Rayleigh number is to instill instability on convective flow against both stationary and 
travelling-wave mode disturbances. Nonetheless, the value of Prandtl number at which the transition from 
stationary to travelling-wave mode takes place is found to be independent of AC electric Rayleigh number. 
The streamlines and isotherms presented demonstrate the development of complex dynamics at the critical 
state. 
 
Keywords: Natural convection; AC electric field; Vertical fluid layer; Linear stability.  

NOMENCLATURE 

a  vertical wave number 
c  wave speed 

rc  phase velocity 

ic  growth rate 

/D d dx  differential operator 

E


 root-mean-square value of the 
electric field 

0E  root-mean-square value of the 

electric field at  x = 0 

ef


 force of electrical origin 

g


 acceleration due to gravity 

G  Grashof number 
h  half- width of the dielectric fluid 

layer 
p  pressure 

P  modified pressure 
Pr  Prandtl number 
q


 velocity vector 

eaR  AC electric Rayleigh number 

t  time 
T  temperature 

1T  temperature of the left boundary 

2T  temperature of the right boundary 

V  root-mean-square value of the 
electric potential 

1V  electric potential of the left 

boundary 

2V  electric potential of the right 

boundary 

bW  basic velocity 

 , ,x y z  Cartesian co-ordinates 

 
  thermal expansion coefficient 
  thermal expansion coefficient of 

dielectric constant 
  dielectric constant 

0  reference dielectric constant at T0 

  thermal diffusivity 
  electrical conductivity of the fluid 
  fluid viscosity 

  kinematic viscosity 
  stream function  
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  amplitude of vertical component 
of perturbed stream function 

  amplitude of perturbed electric  
potential 

�EMBED Equation.DSMT4   fluid 

density  

 

e  free charge density 

0  reference density at 0T  

  amplitude of perturbed 
temperature 

 

1. INTRODUCTION 

Hydrodynamic stability is one of the fundamental 
topics in fluid mechanics and the fluid flows in 
channels have been studied extensively 
(Chandrasekhar, 1981; Drazin and Reid, 2004). 
Fluid flows in many geophysical and astrophysical 
phenomena are maintained by buoyancy forces, but 
the role of these forces is generally strongly 
modified by co-existing shear, rotation of the 
system as a whole, processes at a free surface and 
so on. Natural convection of a viscous fluid in a 
vertical fluid layer, whose walls are held at different 
temperatures, provides one such simplest cases of 
an interaction between buoyancy and shearing 
forces. Instability of the base flow in such a fluid 
layer occurs when the Grashof number becomes 
greater than a certain critical value and the stability 
characteristics of the Newtonian fluid flow in the 
conduction regime are well established (Korpela et 
al., 1973; Bergholz, 1978). The most interesting 
observation is that the type of instability is 
determined by the magnitude of the Prandtl number 
Pr. The critical disturbance modes are found to be 
stationary when Pr < 12.7, but they are travelling 
waves when Pr >12.7. Vest and Arpaci (1969) 
studied the onset of stationary instability in the 
boundary-layer regime and reported fair agreement 
between their theoretical and experimental values 
for the critical Grashof number. Later on, using the 
power series method, Ruth (1979) obtained 
essentially exact values of the stability condition for 
0.00001 < Pr < 10.  

A considerable number of theoretical and numerical 
studies on the stability of fluid flows have also been 
devoted to the interaction of electromagnetic fields 
with fluids. The stability of the flow of an 
electrically conducting fluid between parallel planes 
under a transverse magnetic field has been studied 
by Lock (1955), Potter and Kutchey (1973) and 
Takashima (1994, 1996) and showed that a 
transverse magnetic field has a powerful stabilizing 
influence on this type of flow. If the fluid is 
dielectric with low electrical conductivity then the 
electric forces play a major role rather than 
magnetic forces in driving the motion.  

Electrohydrodynamic (EHD) stability of channel 
flow has attracted much attention, particularly 
because of its use in the field of micro fluidics. For 
instance, in many micro-electro-mechanical-
systems (MEMS) devices, rapid mixing is highly 
desired and can be achieved by applying an electric 
field, as discussed in the experiments of Moctar et 
al. (2003), Glasgow et al. (2004) and Lin et al. 
(2004). A brief discussion on the applications of 
EHD instability has been presented by Lin (2009). 
The stability of a plane convective flow of dielectric 

fluid in a vertical layer has been investigated by 
Takashima and Hamabata (1984). They found that a 
transition from stationary to travelling-wave 
instability occurs at a certain value of Pr between 
12.4 and 12.5 which was later supported by Chen 
and Pearlstein (1989). Fujimura (1990) showed that 
the transition value of Pr is given by 12.45425644. 
Smorodin (2001) investigated the instability of 
convective liquid dielectric flow in the alternating 
field of a vertical capacitor with boundaries heated 
to different temperatures. EHD instability of an 
inviscid fluid in the presence of an electric field and 
space variation of electrical conductivity is studied 
by Shubha et al. (2008). Rudraiah et al. (2011) 
investigated EHD stability of couple stress fluid 
flow in a horizontal channel occupied by a porous 
medium using energy method. The effect of vertical 
AC/DC electric field on electrothermal convection 
has been discussed extensively (Turnbull, 1969; 
Stiles et al., 1993; Shivakumara et al., 2007, 2012, 
2013, Rana et al., 2015; Chand et al., 2015; Chand 
2015).  

Heat transfer by means of thermal convection may 
not meet the requirements in most of the practical 
situations particularly in MEMS. In such 
circumstances, EHD enhanced heat transfer 
emerges as an important alternative method to 
enhance heat transfer. The intent of the present 
paper is to investigate the stability of natural 
convection in a vertical dielectric fluid layer under 
the influence of horizontal AC electric field. The 
vertical plates are maintained at constant but 
different temperatures and the normal electric field 
is held constant on the plates and as a result there 
exists variation in the dielectric constant which 
eventually causes electro-thermo-hydrodynamic 
instability by the dielectrophoretic force acting in 
the bulk of the fluid. The resulting eigenvalue 
problem is solved numerically using the Chebyshev 
collocation method and the existing results in the 
literature are obtained as limiting cases from the 
present study. 

2. PROBLEM FORMULATION AND 
THE BASIC STATE 

The physical configuration is as shown in Fig.1. We 
consider an incompressible dielectric fluid of 
thickness 2h  confined between two parallel 
vertical plates at x h= ,  subject to a uniform AC 
electric field applied across the layer; the left 
surface is maintained at fixed temperature 1T  and 

fixed electric potential 1( 0)V = , whereas the plate 

at x h=  is maintained at fixed temperature 

2T (> 1T ) and at an alternating (60 Hz) potential 
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whose root-mean-square value is 2V . A Cartesian 

coordinate system (x, y, z) is chosen with the origin 
in the middle of the vertical fluid layer, where the 
x -axis is taken perpendicular to the plates and the 

z-axis is vertically upwards, opposite in direction to 
the gravity. The relevant basic equations under the 
Oberbeck-Boussinesq approximation are 
(Chandrasekar, 1981; Shivakumara et al., 2007): 

0q  


                                                                (1) 

  2
0 e

q
q q p g q f

t
            

    
        (2)  

  2T
q T T

t


   




                                          
(3) 

  0 01 T T    
                                          

(4) 

 

 
Fig. 1. Physical configuration. 

 
where ( , , )q u v w


 the velocity vector, T the 

temperature, p  the pressure,  the fluid density, 

 the thermal diffusivity,   the fluid viscosity, g


 

the acceleration due to gravity,  the thermal 
expansion coefficient, 0  the density at reference 

temperature  0T T , and ef


 the force of electrical 

origin which can be expressed as (Landau and 
Lifshitz, 1960) 

 1 1

2 2e ef E E E E E
  


 
        

     
.       (5) 

Here E


 is the root-mean-square value of the 
electric field, e  is the free charge density and   

is the dielectric constant. The electrical force ef


 

will have no effect on the bulk of the dielectric fluid 
if the dielectric constant   and the electrical 
conductivity  are homogeneous. Since   and   
are functions of temperature, a temperature gradient 
applied to a dielectric fluid produces a gradient in 
  and . The application of DC electric field then 
results in the accumulation of free charge in the 

liquid. The free charge increases exponentially in 
time with a time constant   , which is known as 

the electrical relaxation time. If an AC electric field 
is applied at a frequency much higher than the 
reciprocal of the electrical relaxation time, the free 
charge does not have time to accumulate. Moreover, 
the electrical relaxation time of most dielectric 
liquids appear to be sufficiently long to prevent the 
buildup of free charge at standard power line 
frequencies. At the same time, dielectric loss at 
these frequencies is so low that it makes no 
significant contribution to the temperature field. 

The Coulomb force term eE


 in Eq. (5) is the force 

per unit volume on a medium containing free 
electric charge of density e . It is the strongest 

EHD force term and usually dominates when DC 
electric fields are present in dielectric fluids. The 
second term in Eq. (5), called dielectrophoretic 
force term, is due to the force exerted on a dielectric 
fluid by a non-uniform electric field. It is usually 
weaker than the free charge force term and only 
dominates when an AC electric field is imposed on 
a dielectric fluid. Therefore, the Coulomb force 
term has been neglected in Eq. (5) and only the 
dielectrophoretic force term is retained in Eq. (5). It 
is seen that the dielectrophoretic force term depends 

on ( E E
 

) rather than E


. Since the variation of E


 
is very rapid, the root-mean-square value of E


 is 

used as the effective value in determining fluid 
motion. In other words, one can treat the AC 
electric field as the DC electric field whose strength 
is equal to the root-mean-square value of the AC 
electric field (Takashima and Aldridge, 1976). The 
last term in Eq. (5) is called the electrostriction 
term. This term can be conveniently clubbed with 
the pressure in Eq. (5) and, because pressure 
amounts to an extra variable in incompressible 
flow, seems not to have any influence on the 
hydrodynamics.   

Since there is no free charge, the relevant Maxwell 
equations are  

0 orE E V   
 

, ( ) 0E  


.             (6a,b) 

where V  the root-mean-square value of the electric 
potential. The dielectric constant is assumed to be a 
linear function of temperature in the form 

0 0[1 ( )]T T     , where  (>0)  the  thermal 

expansion coefficient of dielectric constant and is 
assumed to be small. For example, for 10 cs 

Silicone oil 3 12.86 10 K     and 
11 12.6 10 Fm    . The basic state is given by 

 2 2

12b
g

W h x x
 


  ,

 
2

0 0
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2 1b
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P gz
x
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02 1 / 2
log

1 / 2b
E x

V
h


 

 
   

                                 (7) 

where 0 2( / 2) log[(1 / 2) /(1 / 2)]E V h h      

the root-mean-square value of the electric field at 
0x  , 0( / )   the kinematic viscosity and 

  0.5 /P p E E      
 

 the modified 

pressure.  

3. PERTURBED STATE AND THE 
LINEAR STABILITY EQUATIONS 

To study the stability of the basic state, an 
infinitesimal disturbance on the base flow is 
superimposed in the form  

,bq q q 
  

( , )bP P x z P  , 'bV V V  ,

,bT T T   ,b    b     .                (8) 
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Fig. 2. Velocity profile bW of the base flow for 

various values of (a) Grashof number G  (b) 
Prandtl number Pr . 

 
Substituting Eq.(8) into Eqs.(1)-(3), linearizing, 
eliminating the pressure from the momentum 
equation, introducing a stream function  , ,x z t  

through / , /u z w x        and employing 
the normal mode analysis procedure in the form  

     , , , , ( ) ia z ctT V x e     , the stability 

equations in dimensionless form can then be shown 
to be 

   

 

2 2 2

22 2

1

2

1

b ea
b

W R
c D a D W D

Pr Pr

D a GPrD
ia

 



        
 

 
    

 

(9) 

 2 21 1

2
bW

c D a
Pr Pr iaPr

       
 

           (10) 

 2 2 0D D a                                             (11) 

where 2 2 2 4
0 0/ , eaD d dx R E h      the AC 

electric Rayleigh number, Pr    the Prandtl 

number, 4 2G g h    the Grashof number, 

r ic c ic  is the wave speed and a  is the vertical 

wave number. It should be noted here that the basic 
velocity in dimensionless form is 

  2/12 1bW G Pr x x  . 

Equations (9) - (11) are to be solved subject to 
appropriate boundary conditions. Since the 
isothermal vertical plates are rigid and the normal 
electric field is held constant on the plates, the 
associated boundary conditions are 

0 at 1D D x         .                       (12) 
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Fig. 3. Neutral stability curves. Stationary modes 

(––––) and travelling-wave modes 
(- - - -). 
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4. METHOD OF SOLUTION 

Equations (9) - (11) together with the boundary 
conditions (12) constitute an eigenvalue problem 
which has to be solved numerically. The resulting 
eigenvalue problem is solved using Chebyshev 
collocation method. The kth order Chebyshev 
polynomial and the Chebyshev collocation points 
are respectively given by 

  1cos , cosk x k x      and 

   cos / , 0 1jx j N j N  . Here, the right and 

left wall boundaries correspond to 0j  and N , 

respectively. The field variable , and   can be 
approximated in terms of Chebyshev variable as 
follows 

       

   

0 0

0

, ,
N N

n j n j
j j

N

n j
j

x x x x

x x

   

  

 



   



 


          (13) 

The governing Eqs. (9) - (12) are discretized in 
terms of Chebyshev variable x  to get  
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where  
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,  

jk jm mkB A A   & jk jm mkC B B  .       

with 
2 0,

1 1 1j

j N
c

j N


    

   

The above equations form the system of linear 
algebraic equations 

AX cBX                                                           (18)  

where c  is the eigenvalue and X  is the discrete 
representation of the eigenfunction; A  and B are 
square (complex) matrices of order 2( 1)N  .The 
eigenvalues and the eigenfunctions of the 
generalized eigenvalue problem (26) are determined 
with the aid of a QZ-algorithm which is available in 
the MATLAB software package in the form of built 
in function eig( ). The critical wave speed cc , the 

corresponding critical Grashof number cG  and the 

wave number ca  are determined for various values 

of Prandtl number Pr and AC electric Rayleigh 
number eaR  following the procedure explained in 

Shankar et al. (2014a, b). 

5. RESULTS AND DISCUSSION 

The effect of uniform horizontal AC electric field 
on the stability of natural convection in a vertical 
dielectric fluid layer is investigated. The resulting 
eigenvalue problem is solved numerically using 
Chebyshev collocation method with wave speed as 
the eigenvalue. Critical Grashof number cG  and 

critical wave speed cc are computed with respect to 

the wave number ‘ a ’for various values of AC 
electric Rayleigh number eaR . In most of the 

experiments, the depth over which the electric 
permittivity varies with temperature is generally in 
the order of millimeters and the kinematic viscosity 
and thermal diffusivity of the water-borne liquid 
used for bio-fluidics are about 7 29.7 10 / secm    

and 7 21.4 10 / secm   , respectively. Thus the 
Prandtl number is approximately 7, is used to 
examine the instability characteristics of the system.  

Although the basic flow is independent of eaR , it is 

significantly influenced by G  and Pr . Figures 
2(a) and (b) respectively show the influence of G  
and Pr on bW . These figures indicate that decrease 

in G  and Pr  is to suppress the fluid flow. From 
the figures, it is also seen that, in general, the 
solution does not have symmetry with respect to x . 
This effect is due to the fixed direction of the 
gravitational field.  

The convergence of the numerical method 
employed is tested by varying the order of base 
polynomial. Tables1 (a) and (b) illustrate the 
convergence of numerical solution for both 
stationary and travelling-wave mode cases for some 
selected values of parameters. To account for all the 
harmonics in a complicated solution, a large 
number of terms have to be included in the 
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Table 1 (a) Order of polynomial independency (stationary case) 

N  
1, 100, 800, 2eaPr R G a     1, 500, 800, 2eaPr R G a     

ic  rc  ic  rc  

5 -3.49104804 0 -2.81419066 0 

10 -2.65629461 0 -2.35092099 0 

15 -2.64890709 0 -2.35622640 0 

20 -2.65888456 0 -2.35639837 0 

25 -2.65893269 0 -2.35613876 0 

30 -2.65893099 0 -2.35614144 0 

35 -2.65893102 0 -2.35614382 0 

40 -2.65893109 0 -2.35614417 0 

45 -2.65893105 0 -2.35614419 0 

 
Table 1 (b) Order of polynomial independency (oscillatory case) 

N  
20, 100, 200, 0.8eaPr R G a     20, 500, 200, 0.8eaPr R G a     

ic  rc  ic  rc  

5 -0.20306531 6.33035530 -0.20011071 6.33543156 

10 -0.17430796 6.30451192 -0.17979262 6.34922163 

15 -0.18753132 6.33482913 -0.18477346 6.33010841 

20 -0.18768827 6.33510498 -0.18459924 6.32715172 

25 -0.18778542 6.33599873 -0.18466634 6.32961864 

30 -0.18779243 6.33510042 -0.18464876 6.32964395 

35 -0.18779445 6.33511071 -0.18465482 6.32969732 

40 -0.18779572 6.33511043 -0.18465897 6.32969198 

45 -0.18779539 6.33511047 -0.18465829 6.32969186 

50 -0.18779535 6.33511045 -0.18465823 6.32969181 

55 -0.18779532 6.33511045 -0.18465825 6.32969180 

 
Table 2 Comparison of critical stability parameters 

eaR  Pr  
Chebyshev collocation method Galerkin method 

cG  ca  cc  cG  ca  cc  

0 

1 992.52946472 1.404 0 992.05636850 1.404 0 

5 982.99195862 1.384 0 982.51616156 1.384 0 

10 983.55348200 1.383 0 983.45694190 1.383 0 

15 487.16752625 0.608  14.72510713 486.70350504 0.609  14.69142688 

20 301.71983337 0.820  9.29210134 301.16313195 0.823  9.28312284 
 

100 

1 983.77495031 1.41 0 983.29598552 1.410 0 

5 981.16188049 1.384 0 980.68381047 1.385 0 

10 983.01658662 1.383 0 982.53865933 1.384 0 

15 486.97624251 0.608  14.7190561 485.48028117 0.609  14.68445735 

20 301.39884936 0.820  9.28177151 300.82542396 0.820  9.27498412 
 

500 

1 946.66938782 1.432 0 946.16446367 1.433 0 

5 973.74763489 1.390 0 973.26786558 1.391 0 

10 979.33311461 1.383 0 978.85510123 1.385 0 

15 486.13243103 0.609  14.69075708 484.72027278 0.609  14.66033584 

20 300.08049011 0.825  9.23496285 299.54003489 0.823  9.22083842 
 

 
expansion. We have chosen different orders of 
Chebyshev polynomials and four digits point 

accuracy is achieved by retaining 30 terms in Eq. 
(13). As the number of terms increases in Eq. (13),  
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Table 3 The effect of eaR  on the values of  Pr , cG , ca and cc  

eaR  Pr  cG  ca  cc  

0 

1 992.52946472 1.404 0 

5 982.99195862 1.384 0 

10 983.55348200 1.383 0 

12.6 984.09135449 1.383 0 

12.7 984.09135447 1.383 0 

12.8 831.82237442 0.400  24.830077 

13 769.99223337 0.420  23.041856 

15 487.16752634 0.607  14.725107 

20 301.71983348 0.820  9.292101 

300 

1 965.66581734 1.420 0 

5 977.47001656 1.387 0 

10 981.17637632 1.384 0 

12.6 981.93626478 1.383 0 

12.7 981.9576263 1.383 0 

12.8 831.1519623 0.397  24.824203 

13 769.1402435 0.424  23.001328 

15 486.5932465 0.607  14.708759 

20 300.7320404 0.821  9.259499 

500 

1 946.66938782 1.432 0 

5 973.74763489 1.390 0 

10 979.33311461 1.383 0 

12.6 980.4698944 1.386 0 

12.7 980.5019379 1.385 0 

12.8 830.8589935 0.397  24.815596 

13 768.9434052 0.424  22.995294 

15 486.13243103 0.609  14.690757 

20 300.08049011 0.825  9.234962 
 

 

the results found to remain consistent and accuracy 
improved up to 7 digits for 40N   and 50N  , 
respectively for stationary and travelling-wave 
mode cases. Thus more number of terms in Eq. (13) 
is required for convergence if the instability is via 
travelling-wave mode. By rigorous computational 
analysis, it was found that accurate solutions up to 8 
digits could be reached by taking 60 terms in the 
Chebyshev collocation method and so for all further 
studies N is fixed at 60. To know the accuracy of 
the method employed to extract the stability 
parameters, the results are also obtained using 
Galerkin method (see Appendix A) with Legendre 
polynomials as trial functions for a representative 
set of parametric values and compared in Table 2. 
From the Table it is seen that the results are in good 
agreement.In Table 3, the values of cG , ca  and 

cc are tabulated for different values of eaR and 

Pr ranging from 1 to 20 as the magnitude of Pr  
determines the mode of instability. The results for 

eaR = 0 correspond to an ordinary viscous fluid. It 

is observed that the critical disturbance modes are 
stationary when 12.7Pr   and they are travelling 
waves when 12.7Pr  ; a well-established result in 
the literature (Korpela et al., 1973; Bergholz, 1978). 

Interestingly the value of Prandtl number at which 
transition from stationary to travelling-wave 
instability occurs remain invariant for all values of 

eaR
 
considered. Nonetheless, the values of critical 

stability parameters vary with eaR . The neutral 

stability curves in the ( , )G a - plane are displayed in 

Figs. 3(a) and (b) for different values of eaR
 
for 

Pr = 2 and 20, respectively. The neutral stability 
curves exhibit single but different minimum with 
respect to the wave number for various values 
of eaR  and Pr . The portion below each neutral 

curve corresponds to stable region and the region 
above corresponds to instability. It may be noted 
that, increase in eaR  and Pr leads to decrease the 

region of stability. 

Figures 4(a) and (b) illustrate the variation of cG  

and the corresponding ca  as a function of Pr  for 

different values of eaR . For a fixed value of eaR , it 

is observed that the dependence of cG  upon Pr  is 

very weak till 12.7Pr  and exceeding which 

cG decreases suddenly. In other words, the Prandtl 

number shows no significant effect if the 
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Fig. 4. Variation of (a) critical Grashof number cG , (b) critical wave number ca and (c) critical wave 

speed cc with the Prandtl number Pr for various values of AC electric Rayleigh number eaR . 

 

 

disturbances are stationary, while its effect is 
significant if the disturbances are via travelling-
wave modes. This may be due to the fact that the 
energy for stationary instability at low to moderate 
Pr is derived mainly from the base flow velocity 
field through the action of disturbance Reynolds 
stresses at the mid-plane between the upward and 
the downward flowing convective streams. 
Although the effect of increasing AC electric 
Rayleigh number is to instill instability on the 
system, its effect is found to be not so significant. If 
the disturbances are stationary, the critical wave 
number decreases slowly with increasing Pr  while 
an opposite kind of behavior is noticed when the 
disturbances are travelling-wave modes (Fig. 4b). 
This is so for a fixed value of eaR . Besides, the  

critical wave number increases with increasing 

eaR only at lower values of Pr . Further inspection 

of the figure reveals that, through the transition, the 
wave number drops from 1.4 to 0.4 and then 
increases again for higher values of Pr . This 
indicates two different physical mechanisms of 
instability. As Pr increases, there is a tendency for 
more of the disturbance energy to originate from the 
potential energy associated with the buoyancy 
effect than as transfer from the kinetic energy of the 
base flow by the action of Reynolds stresses. 

The results regarding the nature of the travelling - 
wave instability summarized in Fig 5(c), indeed 
confirm this, which shows the variation of positive 

cc with Pr  for various values of eaR . The vertical 
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lines represent the discontinuous changes in cc due 

to the transition from stationary to travelling – wave 
mode. From the figure it is observed that cc for the 

travelling – wave mode is a monotonically 

decreasing function of Pr . But the variation of eaR  

on cc  is found to be insignificant.  

To know the influence of Pr and eaR  on the  
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Fig. 8. Isotherms for eaR = 300  for different values of Pr . 

 

 

disturbance flow and temperature, the 
corresponding streamlines and isotherms (Shankar 
et al. 2015, 2016) at the critical state for both 
stationary and travelling-wave modes are displayed 
in Figs. 5-10 for different values of Pr and eaR . 

Figures 5 and 6 show the results for eaR =0 (i.e.  

ordinary viscous fluids) for different values of Pr . 
For Pr =1, the flow pattern appears to be stationary 
cellular convection with an inclination in 
streamlines and isotherms as shown in Figs. 5(a) 
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Fig. 9. Streamlines at eaR = 500  for different values of Pr . 
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Fig. 10. Isotherms at eaR = 500  for different values of Pr . 

 

 

and 6(a), respectively.  

Further increase in Pr  (= 2 and 12.6) results to 
force the convective motion to move closer and 
become parallel at the center of the fluid layer and 
also convective cells become uni-cellular to bi-

cellular. This fact is evident from Figs. 5(b) and (c).  
For Pr =2, the isotherms concentrate in the vicinity 
of the hot wall (Fig. 6b) and become bi-cellular 
oblate triangles which are occupying almost the 
whole thickness of vertical fluid layer for Pr =12.6 
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(Fig. 6c). However, the strength of secondary flow 
for the streamlines and isotherms do not vary much 
as a function of Pr in the stationary region. An 

abrupt change could be seen in stability profile as 
the instability mode changes from stationary to 
travelling-wave mode. Here, the flow pattern and  

flow strength changes qualitatively as well as 
quantitatively as the mode changes from stationary 
to travelling-wave mode. In other words, the 
instability switches over from stationary to 
travelling-wave mode once the value of Pr  
exceeds 12.7. When Pr =12.8, convective cells 
become bi-cellular to uni-cellular in streamlines. 
Also, shape of the isotherms changes from bi-
cellular oblate triangles to uni-cellular oblate 
triangles and concentrates in the vicinity of the hot 
wall. It is further seen that the actual wavelength 
substantially larger in both streamlines and 
isotherms and at this stage max  increases from 

0.50 to 1.03. This fact is evident from Figs. 5(d) and 
6(d). Further increase in Pr  is seen to decrease the 
flow strength (Figs. 5e and f) and also to weaken 
the isotherms (Figs. 6e and f). Interestingly, 
secondary flow behavior remains invariant for all 
values of AC electric Rayleigh number considered. 
The streamlines and isotherms illustrated in Figs. 7-
10 for two values of eaR =300 and 500 also 

corroborate this behavior.  

6. CONCLUSIONS 

From the foregoing study, it is observed that a 
uniform AC electric field has no influence on the 
basic velocity distribution.  The instability sets in as 
stationary convection with critical Grashof number 

cG nearly independent of Pr  for values 

of 12.7Pr  . The wave length of the critical 
disturbances is slightly larger than twice the 
separation of the vertical plates.  For 12.7Pr  the 
instability sets in as a wave travelling in the vertical 
direction with a wave speed which is first less than 
the maximum base flow velocity but decreases with 
increasing Pr . For Pr close to 12.8 the 
wavelength of the critical wave is nearly 8 times the 
width between the plates. Finally, as the Pr  
increased, the instability becomes more thermal in 
its origin. Moreover, the value of Pr  at which 
transition from stationary to travelling-wave mode 
instability occurs remain invariant for all values of 
AC electric Rayleigh number. The effect of 
increasing AC electric Rayleigh number is to instill 
instability on the system but its effect is found to be 
not so significant. The streamlines and isotherms 
are found to mimic the behavior of stability curves 
observed before and after the change of mode of 
instability. Besides, a sudden change in streamlines 
and isotherms is observed both in their magnitude 
and pattern just before and after the transition mode. 
For the range of parametric values considered, 
convective cells found to appear both in bi-cellular 
as well as uni-cellular in nature. 
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Appendix A 

The resulting eigenvalue problem is solved using a 
simple but powerful Galerkin method. Accordingly, 

 x ,  x  and  x
 
are expanded in terms of 

Legendre polynomials in the form 
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with the corresponding base functions 
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 nP x  is the Legendre polynomial of degree n  and 

na are constants. It may be noted that    ,x x  

and  x  satisfies the boundary conditions. 

Equation (A1) is substituted into Eqs.(9) - (12) and 
the resulting error is required to be orthogonal to 
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in which the primed quantities denote 
differentiation with respect to x . 

 


