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Multiple Template Matching 
Using the Expansion Filter 
K. Raghunath Rao and Jezekiel Ben-Arie, Member, IEEE 

Abstract-This paper describes a multiple-template generaliza- 
tion of a newly developed approach for template matching by sig- 
nal expansion into a set of non-orthogonal template-similar basis 
functions. The single-template method is proven to be equivalent 
to “restoration” of undegraded images using the Wiener filter and 
optimizes a new and more practically defined matching quality 
criterion that we call Discriminative signal-to-noise ratio (DSNR). 
Compared to the widely used matched filtering approach (also 
known as correlation matching) which is based on projection, 
expansion matching is based on decomposition and is shown 
to be more robust in conditions of noise, superposition and 
severe occlusion. In this paper, we extend the DSNR optimization 
approach to include more than one template. The generalized 
expansion filter presented here is optimal in terms of DSNR and 
can be designed to elicit any desired response for each of the 
templates, while optimizing the DSNR criterion. Our approach 
considers additive noise as a parameter and leads to a general 
formulation, of which many previous approaches (such as the 
Synthetic Discriminant Function) form special cases. In the case 
of a single template, the formulation reverts to the previously 
mentioned Wiener restoration filter. 

I. INTRODUCTION 

N many applications, template recognition is required I within a limited set of template classes. For example, a 
class of templates could be defined as the set of views of 
an object thus providing generic recognition of this object. 
In many cases, it  is possible [ I  I ]  to formulate a single filter 
or a small number of filters to perform a classification task. 
Compared to the paradigm of having a separate filter for every 
template, this approach is more attractive. In principle, it is 
desired that the filter could be designed to generate a user- 
specifiable output for each template. As will be demonstrated 
in the following sections, such a requirement is not only 
feasible. but yields the optimal discrimination filter and stable 
expansion results. One of the applications of such a filter 
could be to discriminate between patterns of different classes. 
We employ the method to design a filter for generic face 
recognition as shown in section V. 

In previous publications [ I]-[4], we have related three 
issues-non-orthogonal image representation, Expansion 
Matching (EXM) of templates and implementation of 
expansion with restoration techniques-and have developed a 
robust method for single template matching. The fundamental 
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approach of EXM is to match a given template with a given 
image by expanding the image signal in terms of basis 
functions (BFs) which are all similar to the template. We 
have shown [ I ]  that only minor conditions are required for 
such a set of dense self-similar compact functions to form 
a complete basis for square-summable discrete functions of 
compact support. Hence, the image is expanded into a set of 
BFs that correspond to versions of the template, translated 
to all the candidate locations in the image. The expansion 
coefficients obtained at a particular location signify the 
presence of the template at that location. 

Expansion Matching (EXM) is fundamentally different from 
matched filtering (also known as correlation matching) that 
maximizes the SNR defined by the ratio of the filter’s center 
response to the power of the noisy response. EXM is a 
decomposition process that maximizes a novel matching 
quality criterion called Discriminative Signal-to-Noise Ratio 
(DSNR). DSNR emphasizes peak sharpness since it mini- 
mizes the sidelobes of the response, and is more relevant 
to matching than optimizing the traditional SNR since the 
DSNR considers as “noise” even the filter’s off-center response 
to the template. Hence, EXM yields much sharper peaks in 
comparison to the widely used correlation matching that max- 
imizes the SNR-which disregards the sidelobe response-and 
thus generates broad peaks. Experimental results with natural 
signals show that EXM outperforms correlation matching by 
more than 20 dB DSNR [1]-[3]. This results in much less 
spurious responses and a more robust performance in noise 
and even more important: in conditions of severe occlusion. 
Experiments show that templates that are occluded up to 80% 
are still successfully recognized [ 11-[3] with diminished spuri- 
ous responses. Furthermore, expansion being a decomposition 
process, is ideally suited for template recognition in sonar and 
radar signals, where superposition of templates with clutter 
or echo signals frequently occur. Expansion has also been 
successfully employed for edge detection, feature extraction 
and generic face recognition [4]. 

We have also established that signal expansion with dense 
template-similar BFs is precisely equivalent to restoration of 
the image with a “blumng function” that matches the template. 
The image is usually sharp and does not need restoration, 
but a Minimum Squared Error (MSE) restoration (using the 
Wiener filter) with the template as the blurring function, yields 
exactly the coefficients of the EXM. Similar results can also be 
obtained by using the adaptive lattice described in [3], [ 5 ] ,  [61. 

In this paper, we extend the DSNR optimization paradigm 
to include more than one template. The response to each 
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individual template can be constrained to any desired value, 
and optimizing the DSNR criterion results in a generalized 
formulation of a single filter that can respond to multiple 
templates. For specific template recognition, the desired re- 
sponse from each template could be different for different 
classes, while for generic or invariant recognition, the same 
response is desired from all templates within a class. Unlike 
all other previous works, our approach considers additive 
noise as a parameter in the filter formulation. This important 
consideration leads to a generalized filter and we find that 
special cases of our filter exactly correspond to previous 
formulations. The case of zero additive noise corresponds 
to the Minimum Average Correlation Energy (MACE) filter 
[12], and if the noise power approaches infinity, our filter 
leads to the Synthetic Discriminant Function (SDF) [7] or the 
Minimum Variance SDF (MVSDF) approach [8], depending 
on the color of the noise. We present the formal derivation of 
our filter in the section 111 and relevant experimental results 
in section VI. 

A. Comparitive Survey of Correlation-Bused 
Matching Methods 

We would like to point out that all linear, shift-invariant 
filtering methods are correlation-based, since the end result is 
obtained by correlating the image with a filter. In the case of 
direct correlation (matched filtering in white noise) the filter 
takes the form of the template itself. We now present a survey 
of works that developed different filters for correlation-based 
matching. 

An early approach to the synthesis of a single linear shift- 
invariant filter that caters to multiclass recognition tasks is due 
to Casasent [7]. The Synthetic Discriminant Function (SDF) 
that he proposed, was formulated as a weighted average of 
the various templates of the classes under consideration. The 
weights are computed to satisfy user defined constraints on the 
filter’s correlation peak response to each template. Different 
constraints correspond to different types of template recogni- 
tion problems, eg. intraclass, interclass, multilevel SDFs etc. 
However, this scheme does not address the optimization of 
peak sharpness, and in the case of single template recognition, 
simply reverts to the direct correlation matching approach. Fur- 
thermore, additive noise is not considered in the formulation 
at all. 

A minimum variance (MV) paradigm was applied to the 
SDF [8] and this optimizes the SNR (as defined in the conven- 
tional matched filtering sense) at the correlation peak. For the 
single template recognition case this approach yields exactly 
the matched filter result. This method does not constrain the 
sharpness of the correlation peak in any manner. 

Mostafavi and Smith [9] define a metric called Peak- 
to-Sidelobe Ratio (PSR) (sometimes called Signal-to-Clutter 
Ratio or SCR) which is the ratio of the expected peak value 
at the template center, to the standard deviation of the total 
response “far” from this center. Though one could possibly 
formulate one criterion from the other, our DSNR definition 
is basically different, since we do not consider the notion of 
“far” from the center in defining the unwanted filter response. 

49 I 

According to the DSNR, any response of the filter which is 
not at the template center is regarded as unwanted clutter . 
Our work stems from the use of non-orthogonal expansions 
for matching. This is also equivalent to applying the linear 
operator that maximizes the DSNR criterion, which in turn 
is implemented by the Wiener restoration filter. These newly 
developed relationships are briefly discussed in Appendix B. 

A “maximization” of the peak PSR was suggested by 
Kallman [lo] with a minimax formulation based on the 
assumption that the ideal filter is a linear combination of the 
templates. Apart from the huge computation complexity of 
this approach, the basic assumption of the approach restricts 
it from yielding the filter with maximal possible PSR, and the 
formulation also does not consider additive noise. 

The PSR correlation filter [ 1 11 maximizes the PSR, but only 
in the vicinity of the correlation peak and not all over the filter 
response. Furthermore, PSR filters do not allow any control on 
the amplitude of the peak response for the various template 
classes and require shifted versions of the templates as an 
input, and thus, a very large number of templates. 

Another measure called Peak-to-Correlation Energy (PCE) 
[ 141 also characterizes peak sharpness. Works that performed 
optimization on this criterion yielded the inverse filter which 
is unstable and very sensitive to noise. There have been no 
attempts to include the noise as a parameter in the formulation 
and perform the peak sharpness optimization to yield stable 
results. 

The Minimum Average Correlation Energy (MACE) formu- 
lation [I21 seeks a single filter that satisfies the user defined 
constraints (as in the SDF) and also minimizes the average 
energy of the filter’s response to all the templates. In essence, 
this leads to a sharper correlation peaks than the matched filter 
approach. The MACE filter is generalized and special cases 
yield the minimum variance SDF [8] or the matched filter [ 131. 
However, as in almost all the works available in the literature, 
this filter also reverts to the matched filter formulation in the 
single template classification problem. Furthermore, additive 
noise is not considered in the formulation. 

Another class of filters called Fractional Power Filters 
(FPFs) [14] use nonlinearities in the frequency domain of the 
correlator. This class of filters specialize to the inverse filter, 
the matched filter and the Phase Only Filter (POF), but offer 
no new conceptual contribution. 

After an extensive survey of work done in this area, we 
find that most previous approaches neglect the sharpness of 
the correlation peak. Those works that do consider sharpness 
of the correlation peak by some measure or other, do not 
address the problem of additive noise as an integral part of 
their formulation. 

11. A BRIEF OVERVIEW OF EXPANSION MATCHING 

This section briefly presents the results of the Expansion 
Matching (EXM) formulation for matching a single template. 
A more detailed discussion of these results is presented in 
Appendix B. These results serve as a background for the design 
of the expansion filter in section 3. We use discrete ID signals 
for the sake of simplicity. Extension to higher dimensions is 
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straightforward using lexicographically ordered vectors and 
block circulant matrices. 

Given an M-point signal s(z) that has a corresponding 
vector form S, it is desired to match a template *$(x)  3 Q 
by correlating (not convolving) the signal S with a filter 
8(x) = 0 to yield a result e(.) = C .  The corresponding 
matrix-vector notation is 

( 1 )  

where S(') corresponds to the signal shifted to the i-th position, 
and thus [SI forms a circulant correlation matrix. We also know 
that the signal S contains only the template at location 1, i.e. 
s(z) = $(z - 1) or S = @('). The Discriminative Signal- 
to-Noise Ratio (DSNR) is a matching quality measure and is 
defined as 

[SI@ = c; [SI = [S(1)S(*) . . . S(.")]* 

Unlike the SNR criterion, the DSNR penalizes any response 
that is not at the center of the template. Optimization of the 
DSNR criterion will therefore enhance peak sharpness in the 
response. Such an optimization [ 1-41 leads to a filter 0 given 
by 

( 3 )  

where k is only an amplitude scaling factor (a scalar) and 
[R,,] is the autocorrelation matrix of the signal S. Note that 
the autocorrelation matrices of the signal and the template are 
identical, i.e. [R,,] = [RL.c.']. 

An interesting equivalence to ( 3 )  is derived [l]  if we 
expand the signal s ( x )  into basis functions (BFs) $ ( ' ) ( . r )  that 
correspond to shifted versions of the template $(.E), i.e. 

1=1 

By minimizing the squared error in this non-orthogonal 
signal representation, the result for the coefficients C tums 
out to be 

C = [R,.,,]-l[Q]S 

This result is identical to the result of correlating the 
signal with the optimal DSNR filter 0 in ( 3 ) .  Thus DSNR 
optimization is equivalent to a non-orthogonal expansion of 
the signal with BFs that are shifted versions of the template 
itself. 

Another look at (4) reveals that it  can be written slightly 
differently as 

-1 I 

s(z) = c,$(x - i )  = .(.E) * @(.r)  
i = l  

where * denotes discrete convolution. Thus, the signal is the 
convolution of the coefficients with the template. To obtain 
the coefficients, one has to "restore" the signal s(x) with the 

template *+(x) as the blurring function. We use a minimum 
squared error (MSE) restoration paradigm [I]  and obtain as 
the result, the Wiener filter 

(7) 

The matrices [R,,,,] and [Rxx] are the autocorrelation matrices 
of the template and the additive noise X(s )  respectively. If 
there is no noise, this is exactly equivalent to ( 3 ) .  

Thus, we establish that for matching a single template to an 
image, the optimal DSNR operator, the template-similar non- 
orthogonal expansion and the MSE restoration of the signal 
by the template, all lead to exactly the same result. 

111. OPTIMAL DSNR MULTIPLE TEMPLATE 
MATCHING: THE EXPANSION FILTER 

In this section, we use the DSNR criterion to design a single 
filter for the recognition of multiple templates. In the most 
general form, we desire a filter that maximizes the DSNR 
criterion as well as elicits a set of desired responses from 
the given set of templates. In our formulation, we include 
the concept of additive noise, and correspondingly, seek to 
satisfy the given conditions using statistical expectations. 
The problem is formulated in one-dimension using matrix- 
vector notation. The results can easily be generalized into two 
dimensions by using lexicographically ordered vectors and 
block-circulant matrices. 

Given a set of templates @i: ,i = 1 . . . N ,  we expect a set of 
noisy input templates S; = Q j  + A ,  where A is a random noise 
vector. We wish to design a filter 0 that yields as its expected 
peak correlation to each template S i ,  a desired response U ; ,  

i.e., 

E { O T S j }  = 11,: i = 1 . .  . N (8) 

The correlation coefficient vectors C ,  (filter response) for 
the i-th template are obtained as 

cj = [S@: i = 1 .  ' .  N (9) 

where [Si] is a circulant correlation matrix obtained by cir- 
culating the noisy input template Si .  Note that 0 is cor- 
related with the signal and not convolved. Ideally C; = 
[0 . . ' 0 .  ui .  0 .  . . OIT where ui is located at the i-th pattern's 
center. [S;] is also equivalent to 

(10) 

where [Q;] and [A] are circulant correlation matrices for the 
templates Q j  and the noise A respectively. 

In addition to the constraints of (8), we also wish to 
maximize the DSNR criterion for the correlation response of 
the filter to each input template. The DSNR to be maximized 
for the i-th template is defined by the ratio between the power 
of the response at the template center to the total off-center 
power. In terms of expected values, this is given by 

[Si] = [ Q j ]  + [A]; i = 1. ' .  N 

Thus, high DSNR implies a large response at the template- 
center and relatively small response off the center of the 
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template. Since the center-response power is included in the 
constraint of (8) (the power of the noisy response being 
identical all over the signal), to maximize DSNRi we need 
only minimize the first term in the denominator 

E{c?c~) + min (12) 

Since a global minimization of all the DSNR criteria for each 
input template is not possible [7], we seek to minimize a 
weighted sum of the individual DSNRs by 

where ai are weighting factors, typically chosen to be 1 /N.  
Combining the requirements of (8) and (13), we need to 
minimize a single objective function defined as 

J ( O )  = E aic;ci + t i ( ~ { ~ T ~ i }  - ui> 4 min 
N 

(i", } i=l 
N 

= ( ~ ~ E { c T c ~ )  + < ~ o ~ E { s ~ )  - <iui) -+ min 
i = l  

(14) 

where the Lagrange multipliers & are to be chosen to satisfy 
the constraints of (8). 

We assume the noise A to be zero-mean and stationary, and 
thus the first-order noise terms in the expectations drop out, 
yielding the identities 

(15) E { S i }  = E{'Pi + A} = 9i 

and 

E{CTCi} = @'E{[S,]'[S~]}O 
= @TE{['Pi]T['P;] + ['Pi]'[A] 

+ [AIT['Pil + [AlT[Al1@ 
= @[[Rp+i] + [RxxIlO (16) 

where [Ft++i] = ['P;]'[@i] and [Ru] = E{[A]'[A]} are de- 
fined as the autocorrelation matrices of the i-th template and 
the noise respectively. 

We can now rewrite the objective function of (14) as 
N 

J ( @ )  = (ai@'[[R++i] + [RAA]]@ 
i=l 

+ < ; @ ~ i  - <;ui) + min (17) 

Setting the first derivative to zero, we obtain 
N d J ( O )  -- - E (2ai[[R++i]  + [RAJ@ + &'Pi) = O (18) 

i = l  
a@ 

which yields the solution for 0 as 

N 

Or in matrix form, the solution to this set of equations is 
written as 

5 = [A]-lU ; [Alij = 9T[R]-1'Pj (21) 

where [A] is a real symmetric N x N matrix which is non- 
singular for distinct and non-zero 'Pi, and U = [ti1 . . . UNIT 

defines the constraints. 
Thus (19) and (21) yield the desired expansion filter 0. 

If we choose N = 1, i.e. the single template recognition 
case, the solution reverts to the Wiener filter formulation, 
and corresponds exactly to a minimum squared error non- 
orthogonal expansion of the signal with template-similar basis 
functions [1]-[4]. This is elaborated in Appendix B. 

IV. FREQUENCY DOMAIN FORMULATION 
OF THE EXPANSION FILTER 

We now present a frequency domain interpretation of the 
formulation of section I11 and show that it leads to an efficient 
implementation of the expansion filter design technique. We 
can diagonalize the circulant matrix [RI using the unitary DFT 
matrix [W] and write (19) as 

N 

where [W],, = M-0.5exp(j27rmn/M), and [DRR] is a 
diagonal matrix with the diagonal elements containing the 
DFT of the first row of the autocorrelation matrix [RI. These 
diagonal elements correspond to the weighted sum of the 
individual power spectrums [D++i] and [Dxx] of each given 
template and the additive noise respectively 

N 

(23) [DRR]  = ~ [ D + + i l  + [DAA] 
i=l 

where [D++i] = [W]-l[R++i][W] and [DAA] = 
[W]-l[Rxx][W]. We can now rewrite (22) as 

(24) 
All the vectors in parentheses in (24) correspond to DFTs, 
and the inverse of the diagonal matrix is easily obtained by j=1 
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the reciprocal of its diagonal values. Thus, in the frequency 
domain, we can write 

where X, = [W]-’@, is the DFT of the i-th template @%, 

X , ( w )  refers to the w-th component of the vector X,, SV$, 
( w )  = X , ( w ) X , ( w ) ,  Sxx(w) is the power spectrum of the 
noise, and the bar symbol represents complex conjugation. Eq. 
(25) offers an efficient computational method for the design of 
the expansion filter 0. With N = 1, this is easily recognized 
as the Wiener filter result. 

We also need to solve the linear system of equations in (21). 
Here also, instead of evaluating the elements of matrix [A] in 
the spatial domain, it is possible to obtain a simpler frequency 
domain interpretation. From (21), we know that 

[A],, = *T[R]-19, (26) 

If we diagonalize [RI as before, we obtain 

1 -l 

L i d  J 
r n- -I -1 

Li=1 J 

which can be rewritten in the frequency domain as 

The frequency domain design approach offers considerable 
savings in computation, since the DFTs of the templates need 
be computed only once. The square matrix [A] of (21) has 
dimension equal to the number of templates N which is usually 
much smaller than the signal dimensionality, and thus can be 
inverted directly. 

v. SPECIAL CASES OF THE EXPANSION FILTER FORMULATION 

Our extensive literature survey reveals that our approach is 
the only one that considers additive noise as a parameter in the 
filter design and thus results in a generalized formulation. If 
we assume the noise to be white and of very large magnitude 
compared to the templates, our filter approaches the Synthetic 
Discriminant Function (SDF) [8]. If the noise is not white, but 
still very large compared to the templates, our filter tends to the 
Minimum Variance SDF (MVSDF) paradigm [9]. If we neglect 
the noise totally (equivalent to zero noise condition), then 
our filter design results in the Minimum Average Correlation 
Energy (MACE) method [7]. The proofs of these results are 
presented in Appendix A. 

Thus we see, that as the noise parameter is varied, at the 
zero noise end our filter yields the MACE filter and at the other 
extreme, with infinite noise we obtain the MVSDF or SDF 
results. However, in reality the noise almost always assumes 
an intermediate value and therefore (25) is more practical. 

Another important upshot of our work is the relation be- 
tween DSNR optimization, non-orthogonal expansion and 
Wiener MSE restoration in the case of the filter for a single 
template [1]-[3]. 

VI. EXPERIMENTAL RESULTS 
The method of Expansion Matching (EXM) is equivalent 

to the above expansion filter formulation when the number of 
templates N = 1. Experiments under conditions of additive 
noise [1]-[4] show that EXM is superior to matched filtering 
(correlation approach). In fact, in the limiting case of infinite 
noise, the expansion filter approaches the matched filter. EXM 
is also very robust in conditions of severe occlusion. Templates 
occluded up to 80% have been successfully recognized [ 11-[4]. 
EXM is especially suited to matching superimposed templates 
that occur in radar or sonar applications. Since expansion is 
a linear decomposition process it yields perfect and distinct 
peaks, while correlation fails to resolve between superimposed 
templates [ 11-[4]. 

Fig. l(a) shows two anti-symmetric truncated ramp func- 
tions used as synthetic templates. The filter requirements are 
to elicit a response of -1 from the left hand template and 
+1 from the right hand template. The test signal of Fig. l(b) 
has the two templates with additive noise to give a SNR 
of 11 dB. The expansion filter for the case of zero noise 
power is shown in Fig. l(c). This corresponds exactly to the 
MACE filter. Fig. l(d) is the result of applying the MACE 
filter to the noisy test signal of Fig. l(b), and shows noisy 
spurious peaks (denoted by question marks), substantial off- 
center response and a DSNR of 15.5 dB. The optimal DSNR 
expansion filter in Fig. l(e) yields the matching results in 
Fig. l(f) which displays two sharp and well localized peaks 
(marked by arrows) with minimal off-center response and 
the maximum possible DSNR = 21.3 dB. Fig. l(g) shows 
the SDF or MVSDF filter (expansion filter with noise power 
approaching infinity). Fig. l(h) shows the response to the test 
signal, which has broad peaks and large off-center spurious 
response and spurious peaks (DSNR = 9.7 dB). 

Fig. 2(a) shows two templates extracted from natural images 
embedded in white noise (SNR = 20 dB). These templates 
correspond to features in one scanline of an image of a real 
world scene. The optimal DSNR multiple template approach 
is used to design a filter that elicits -1 for the first template 
and +1 for the second template. The result in Fig. 2(b) 
uses zero noise as the design parameter, and corresponds 
to the MACE approach. The DSNR is only 17.8 dB and 
noisy response and many spurious peaks (denoted by question 
marks) are observed. Our approach (Fig. 2(c)) results in two 
distinct impulse functions (marked by arrows) with minimal 
off-center response and the maximum possible DSNR = 22.2 
dB. Fig. 2(d) shows the SDF or MVSDF approach (infinite 
noise expansion filter) which yields broad peaks and large 
off-center spurious response (DSNR = 10.3 dB). 

Fig. 3(a) shows a test image with three different faces. 
Three “generic” face filters are designed using the MACE, 
Expansion and SDF approaches by presenting templates of 
these faces and demanding unit response to each face. There 
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Fig. 1. (a) Two synthetic ramp templates; (b) Noisy Test signal (SNR = 11 dB); (c) MACE filter (zero noise Expansion filter); (d) MACE filter response. 
Note large and noisy off-center reponse with unwanted spurious peaks denoted by ‘?’ (proper peaks denoted by mows). DSNR = 15.5 dB. (e) Optimal DSNR 
Expansion filter (Noise term = 11 dB); (f) Expansion filter response. Note clean and sharp peaks with minimal off-center spurious. DSNR = 21.3 dB; (g) SDF 
or MVSDF filter (infinite noise Expansion filter); (h) SDF or MVSDF filter response. Note the large off-center response and broad peaks. DSNR = 9.7 dB. 
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'I 
'I 

? 7 'I 

Fig. 2. (a) A signal with two dissimilar templates and additive noise. SNR = 20 dB; (b) Matching results with MACE filter (zero noise Expansion filter), 
DSNR = 17.8 dB. Note noisy response and large spurious peaks (marked by '?'); (c) Expansion Matching results with noise term = 20 dB. Only desired 
peaks are present (marked by arrows) and minimal off-center response. DSNR = 22.2 dB; (d) Matching results with the SDF or MVSDF method (infinite 
noise Expansion filter), DSNR = 10.3 dB. Note the blurred peaks and large spurious response. 

is no additive noise in this example and thus the only distortion 
between the templates and the input image is due to the 
windowing of the templates. Fig. 3(b) shows the result of 
using the MACE approach which corresponds to the zero 
noise expansion filter. One can observe isolated but strong 
spurious responses (marked by '?'), though the matching peaks 
are sharp (marked by arrows) since there is no additive noise 
in the image. However, the expansion filter with an assumed 
input white noise of SNR = 25 dB yields the superior results in 
Fig. 3(c). Here, the peaks are sharp and stronger with relatively 
low background response. The SDF result in Fig. 3(d) (infinite 
noise expansion filter) shows broad and poorly defined peaks 
with stantial spurious response (marked by '?'). 

As a comparison to conventional correlation-based single 
template matching, Fig. 4(a) shows the result of matched 
filtering (or direct correlation) of Fig. 3(a) using the tem- 
plate corresponding to the top-left face in Fig. 3(a). Similarly 
Fig. 4(b) and Fig. 4(c) present matched filtering results using 
the templates of the center and top-right faces of Fig. 3(a) 
respectively. It can be seen that these matching results have 
very weak and broad peaks (marked by mows) that are hard 
to detect. Furthermore, there is substantial off-center spurious 
response and clutter (marked by '?'). 

Fig. 5(a) shows a test image with many different office 
items. The pliers and scissors are substantially occluded. 

The MACE, Expansion and SDF filters are designed using 
unoccluded templates of the pliers and scissors and demanding 
unit response to each. These templates were independently 
grabbed using a TV camera and thus have inherent noise, 
scaling, and rotation distortions in them. Fig. 5(b) shows the 
MACE response which detects only the peak for the scissors 
(marked by the arrow) and has substantial spurious response 
(marked by '?'). The Expansion filter with an assumed input 
white noise of SNR = 18 dB yields the results in Fig. 5(c). 
One can observe the sharp and well localized peaks at the 
centers of the pliers and scissors and the minimal off-center 
response. The SDF result in Fig. 5(d) yields only one highly 
blurred peak (the scissors) and very large off-center response. 

VII. DISCUSSION 

In this paper, we have presented a method for simultaneous 
matching of multiple templates that optimizes a novel sim- 
ilarity measure called Discriminative Signal-to-Noise Ratio 
(DSNR). The DSNR is more practical than the SNR since 
it considers all off-center response of the filter as unwanted 
noise, and thus optimal DSNR filters respond to their templates 
with sharp peaks and minimal off-center spurious response. 
The special case of matching a single template reverts to a 
non-orthogonal expansion of the image with template-similar 
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Fig. 3. ( a )  Test image with three dissimilar faces: (b) MACE response (zero noise Expansion filter) for matching generic face with unit response. Note 
spurious off-center recponses: (c) Corresponding Expansion filter response (assumed SNR = '25 dB). Note the sharp peaks and less background response than 
MACE result: (d)  SDF response (infinite noise Expansion filter) has broad and poorly defined peaks with substantial off-center spurious. 

basis functions, which has been proven to be equivalent to 
minimum squared error restoration using the Wiener filter [ 11. 

Additive noise is part of our formulation and this results in 
a generalized filter. Special cases include the MACE, MVSDF 
and SDF methods. It can be seen from practical experiments 
in Section V that the Expansion filter yields better results than 
these methods, since the amount of expected input noise can be 
varied to accomodate the amount of distortion of the template 
in the image. The MACE result is very sensitive to template 
distortions such as noise, occlusion etc. Choosing an appro- 
priate noise power in the Expansion formulation solves this 
problem. In practice, even rough estimates of the noise power 
demonstrate marked improvement over MACE results. At the 

other extreme, the SDF response is not discriminative enough, 
with broad, poorly defined peaks and large responses to unre- 
lated features in the image. The Expansion filter always yields 
sharp peaks and suppresses response to irrelevant features. 

The expansion approach is robust to noise as demonstrated 
by Figs. 1 and 2. Since the Expansion approach is tuned to the 
amount of additive noise, the matching results are optimally 
sharp and have minimal spurious response. However, the ef- 
fectiveness of the Expansion approach is not limited to additive 
noise conditions alone. This is particularly visible in the results 
of Fig. 4 in matching occluded templates. Furthermore, a sim- 
ple white noise assumption in the filter design yields sharp and 
robust matching results. The matching results are not sensitive 
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Fig. 4. (a) Test image of Fig. 3(a) correlated with template of top-left face in the image; (b) Test image of Fig. 3(a) correlated with template of center 
face in the image; (c) Test image of Fig. 3(a) correlated with template of top-right face in the image. Note the weak peaks (marked by the arrows) 
and substantial spurious responses (marked by '?'). 

to the design noise parameter and we find that even coarse 
estimates produce sharp peaks and low spurious response. 

It is important to note here that the assumption on the circu- 
lant nature of the data is only for mathematical convenience. 
In practice the signal is assumed to be appropriately zero 
padded to make the convolution (or correlation) linear. The 
frequency domain results of Section I11 are still valid even 
without assuming circularity or finite extent. 

The computational complexity of the matching scheme is 
simply one of a linear filtering process, just as in matched fil- 
tering or direct correlation. However, the Expansion filter has 
to be designed (only once), given the templates to be matched 
and the corresponding desired responses. We use Fast Fourier 
Transforms and perform our filter design in the frequency 
domain as outlined in Section 111. Thus, for designing a 1D 
M-point filter for the given N templates (assuming sufficient 

storage and neglecting all additions), it is required to compute 
N FFk (or NM log, M real multiplications) and compute 
N corresponding power spectrums (or N M  multiplications). 
Computing the weighted power spectrum, i.e. the denominator 
in (25), requires an additional N M  multiplications. The sym- 
metric constraint matrix requires computation of ( N 2  - N ) / 2  
cross power spectrums (or M ( N 2  - N ) / 2  multiplications), 
and M ( N 2  + N ) / 2  divisions (assumed as equal complexity 
to a multiplication). Note that complex multiplications are 
assumed as two real multiplications and since all the templates 
are real, only M/2  points are effectively involved in the 
frequency domain computation. Assuming that the matrix 
inversion can be neglected (since the number of templates N 
is typically small), the realization of the desired filter in the 
frequency domain requires another MN multiplications and 
M divisions. Thus the overall computational cost of designing 
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Fig. 5 .  (a) Test image with occluded scissors and pliers: ( b )  MACE response (,cero noise Expansion filter) for matching scissors and pliers with unit response. 
Only the scissors are detected: ( c )  Corresponding Expansion filter response (assumed SNR = 18 dB). Both the scissors and pliers are detected and there is 
minimal off-center response: (d)  SDF response (infinite noise Expansion filter) has only one broad peak for the scissors and substantial spurious response. 

the filter is approximately M ( N 2  + ZAV + .\’ log2 + 1) 
multiplications. The computational complexity required for 
the MACE, MVSDF and SDF designs is of the same order a5 
for designing the Expansion filter. 

Another consideration in designing such a multiple template 
recognition filter is its “capacity”, or the number of templates 
that can be matched using a single filter. Obviously, as ili 
becomes indiscriminately large, the filter will not be able to 
recognize all the N patterns successfully. We have observed 
that the degradation of the matching peak with AV is also 
dependent on the nature of the patterns itself and the desired 
responses specified. Eq. (20) guarantees the value of this 
desired response at the template-center but as increases 
the sharpness of the peak degrades. When template discrimi- 

nation is required (as in Figs. 1 and 2), the filter performance 
degenerates with increasing number of templates. For large N ,  
the template center may be overshadowed by larger spurious 
peaks or even cease to be a local extremum. However, if 
generic recognition is required and the templates themselves 
have some common features (as in Fig. 3), then large N does 
not typically degrade performance, but makes the expansion 
filter more generic. 

APPENDIX A.THE MACE, MVSDF AND SDF APPROACHES 
AS LIMITING CASES OF THE EXPANSION FILTER 

In this appendix we analyze the formulation of the Minimum 
Average Correlation Energy (MACE) filter [ 121, the Minimum 
Variance Synthetic Discriminant Function (MVSDF) [8] and 
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SDF [8] approaches and show these to be special cases of our 
formulation. The notation used is consistent with our previous 
formulation. However, wherever possible, we conform to the 
notation used by Mahalanobis et al. in their paper [12]. 

We use the vectors X, to represent the DFTs of the templates 
Qz, i.e., Xi = [W]-'Q,. As before X,(w) represents the wth 
frequency component of this DFT. The matrix [XI is defined as 

(AI) [XI = [Xl, x2, * * f 7 XNI; [XI;, = X,(i) 

As before, the power spectrum of each of the templates is given 
by a diagonal matrix [D++i], i.e. [D++&k = lX,(k)(2 = 

The most general solution for the MACE filter [12] is a 
vector H (which is the DFT of the filter's impulse response) 
given by 

642) 

where U defines the user constraints as before, and [B] is a 
given matrix of appropriate dimensions. 

S++Z(k). 

H = PI 1x1 [FIT PI [XI] - U 

A. The MACE Filter Solution 
To obtain the MACE filter [12], in (A2) the matrix [B] is 

chosen to be [DI-', where [D] is real and diagonal, given by 
N 

i=l  

i.e. the weighted sum of the power spectrum matrices of the 
templates. Evaluating each part of (A2) separately, we can 
write 

Note that (A4) corresponds exactly to the definition of matrix 
[A] in (28) when the noise power is zero. Thus, we can write 
out 

2 = [[x]'[D]-'[X]]-'U 

to yield exactly the same set of ti as from (21) with zero 
noise. Noting that 

N 

[X][[X]TID]-l[X]]-lU = [XIS = C & X ;  (A6) 

we can now write out the MACE filter solution from (A2) 
explicitly as 

2 = 1  

N 

i= l  

or 

which is exactly the expansion filter 0 of (25) with zero noise 
power term. 

B. The Minimum Variance SDF Approach 

We define the noise power spectrum S x ~ ( w )  to be an am- 
plitude scaled version of a normalized noise power spectrum 
Snn(w) 

S X X ( U )  = cnSnn(w); 0 5 S,n(w) I 1; 
cn = m2x ( S X X ( ~ ) )  649) 

where c, is the amplitude scaling constant. Note that if 
c, + CO, the noise power goes to infinity as well. 

To obtain the MVSDF solution [12], in (A2) we choose 
the matrix [B] to be [KIP' where K is the normalized noise 
power spectrum matrix, i.e. 

1 
Cn 

[K] = -[DUI ; [K]kk = &n(k )  (A10 

Proceeding similarly as in (Al), we can write 

[[XI' [KI -l [XI] 23 = x2 (IC) [K12 x, ( I C )  
k 

Using the constant cn, we can normalize the matrix [A] of 
(28) as 

When the constant c, approaches infinity, the noise power also 
tends to infinity and thus in the limit, we obtain a normalized 
matrix [A,] given by 

which is exactly the same matrix as used in (All), i.e. 

[A,] = lim cn[A] = [[XlT[K]-'[X]] (A141 
c, -03 

Therefore, in the limit, (21) becomes 

E = [A,]-lU (A13 

which is the same set of Ct as obtained from (All) 
N 

[XI [[X]'[K]-'[X]]-'U = [X]E = c t 2 X 2  (A16) 

Since, we have proven that the weighting constants i2 are 
identical for both the MVSDF and the expansion filter with 
infinite noise, it only remains to be shown that the final result 
is also identical. The MVSDF solution can be computed from 
Eqs. (A2) and (A16) as 

2=1 

N 

H = [K]-' c z X .  (A17) 
2 = 1  

or 
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Normalizing the expansion filter of (25) yields 

As before, if cn + 30, the noise power is increased 
and we obtain the normalized expansion filter as 

(A 19) 

to infinity 

which is exactly the MVSDF in (A18). 
Thus as the noise power tends to infinity, the expansion filter 

filter approaches the MVSDF result, with only the difference 
of an amplitude scaling constant. 

C. 7Xe SDF Approach 

In (A2), if the matrix [B] is chosen to be the identity matrix 
[I], then the general solution reduces to the SDF solution. 
This is equivalent to the MVSDF result with a white noise 
spectrum. A similar analysis as performed above yields that 
both, the SDF and the expansion filter with infinite white noise 
term, result in the following filter 

N 

@,(U) = H(w) = CSDF C & X j ( w )  (A21) 
j = 1  

where CSDF is an amplitude scaling constant. 

APPENDIX B. EXPANSION MATCHING: THE RELATION BETWEEN 

S N R  OPTIMIZATION AND RESTORATION TECHNIQUES 
NON-ORTHOGONAL SIGNAL EXPANSION, DISCRIMINATIVE 

A. Non-Orthogonal Signal Expansion 

The method of matching by expansion [1]-[4] is based on 
expanding the signal with respect to basis functions (BFs) that 
are all shifted versions of the template. Such an expansion is 
feasible if these BFs are linearly independent and complete 
[ 151, [ 161. This method cannot be implemented by orthogonal 
brt . s functions, since practically, the shifted templates are 
muually non-orthogonal. 

The general derivation of expansion is as follows: Sup- 
pose one wishes to estimate a &dimensional discrete signal 
s(z.y.. . .) by a set of basis functions {+(’))(z.y,. . .)} with 
the sum 

m 

i(z, ?/. . . .) = C,T,!I(’)(Z, y, . . .): z, y l .  . . = 1 . . . A4 (Bl) 

where {ez} are the coefficients of the expansion. The d- 
dimensional signal s(z, y, . . .) is translated into a vector S, 
where the dimensionality of the vector S is M d ,  and likewise 
the basis functions {$(‘)(z, y, . . .)} are translated to the basis 
vector set { !@(’)}, and the approximation ŝ  is translated to S. 
The squared error D to be minimized is given by the inner 
product 

2 = 1  

D = ((S - S), (S - S)) 

According to the orthogonality prin iple [ 151, [16], the MSE 
approximation error S - S is orthogonal to the BFs. This could 
be formulated by the following set of m equations 

((S - S ) ,  @ ( i ) )  = 0; 2 = 1. .  . m; (B3) 

This leads to a set of equations for deterministic signals 
which is similar to equations formulated for random variables 
~ 5 1  

[RdJ+IC = [@,IS (B4) 

where the matrix [R$+] is [R++]ij = (@(i)l!P(j)) ,  C = 
[cl, c a . .  . cM2It,  [Q] = [@(1)@(2) . . . @ ( M Z ) ] t  and S is the 
M 2  x 1 vector formulation of the image s(z,y) If the set 
of BFs { @(i)} is linearly independent, then the matrix [R+,j,] 
is positive definite and the equations (B4) yield a unique 
solution for the coefficients ci. Direct solution of this equation 
is computationally prohibitive. However, we have found an 
efficient implementation of (B4) using restoration techniques. 

B. Discriminative SNR Optimization 

The problem of template matching can be formulated as 
follows: Given a A4 x A4 discrete image s(x,  y), it is desired 
to find a sub-image which is similar to a two-dimensional 
template +(x,y) and therefore matches it. Let the image 
s(z. y) contain the template at a certain location (z0,yo) plus 
additional noise X(z, y). Let the filter h(z,  y) be correlated 
with the signal to yield a response z (z ,  y) 

4x5 Y) = 4x1 Y) 0 h(z ,  Y) 

= +(x, Y) 0 h(z, Y) + X(z, Y) 0 h(z1 Y) 

= zdJ(z, Y) + zx(z, Y) (B5) 

where 0 denotes discrete correlation. z+(z ,  y) and zx(z, y) 
denote the response to the template and the noise respectively. 
The signal-to-noise ratio (SNR) of the matched filtering (or 
direct correlation) is defined [15], [16] as the ratio between 
the maximal response at the location ( 2 0 ,  yo) and the variance 
of the noisy response 

The matched filtering (or direct correlation) formulation has 
a significant drawback. It overlooks the response z$ (z, y) 
at locations other than (zo,y~).  These responses are also 
unwanted and should also be considered as “noise”. Usu- 
ally matched filtering generates broad peaks and z+ is quite 
substantial in the neighborhood of (20 ,  yo) and should not be 
neglected! ! 

According to the matched filtering approach, a filter that 
provides a very broad peak is equivalent to a filter that provides 
a sharp peak with the same amplitude! Thus, a better SNR 
definition which provides a genuine measure of matching 
quality, should be an SNR which defines as “noise”, any 
response that is not located at the sub-image’s center. 
According to this definition, the new Discriminative DSNR 
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that should be used is 

(id# (Z0,YO) 
Now, suppose one wants to find a filter 0 (in lexicograph- 

ically ordered vector form), that when correlated with the 
signal, maximizes the DSNR. The corresponding matrix-vector 
notation is 

[SI0 = c (B8) 
where [SI is a block circulant correlation matrix. Defining the 
DSNR in accordance with (B7) as the square ratio of the 1-th 
component of C (location (x0,yo) ) vs. the remainder 

Maximizing the DSNR with respect to 0, we find [1]-[4] that 

1 1 
k k 

0 = -[[S]*[S]]-lS‘ = -[R,,]-lS(‘) 

where k = OTS(’)/OTIS]’[S]O is only a scaling factor (a 
scalar) and [R,,] is the autocorrelation matrix of the signal 
which is equivalent to [R,,] for the templates. Eiq. (B10) is 
another form of the Yule-Walker equation where the BFs are 
circulant and S(’) corresponds to Q( ‘ ) .  

C. Restoration Techniques 

We have shown [1]-[4] that restoration is a special case of 
the more generalized expansion. In particular, the expansion 
matching filter that maximizes the DSNR yields exactly the 
same result as the Wiener filter. This result is quite logical, 
since both approaches are based upon the minimization of 
squared. error. Using 1D signals and matrix-vector notation, 
we can introduce an additive noise term A(‘) to the signal, i.e., 

S(1) = Q“)  + A(‘) (B11) 

where Q(’)  is the BF corresponding to the template shifted 
to location 1. The circulant correlation matrix [SI can now be 
split into two circulant correlation matrices [Q] and [A] as: 

[SI = [*I + [AI 

Optimization of the DSNR now leads to a filter 0 given by: 

0 = :[E{([*] + [A])’([*] + [A])}]-’E{(d‘) + A ( ’ ) ) }  

If we assume that A(*) is of zero mean and stationary, this 
simplifies to: 

(B13) 

where the matrices [R++] and [Rxx] are defined as the auto- 
correlation matrices of the template and the noise respectively. 
The result of (B14) is simply the Wiener filter revisited from 
another perspective and establishes that expansion matching 
and restoration are the same operation in the case of a dense 
set of self-similar BFs. Eq. (B14) is also identical to (19) for 
the case of a single template, i.e., N = 1. 
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