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Abstract-The effect of radiative transfer on thermal convection of a thin fluid-saturated densely packed 
porous layer bounded by stress-free radiating horizontal planes heated from below is studied using linear 
theory. The coefficients of absorption, emission and scattering are computed from packed bed properties 
using a two-flux model. The Milne-Eddington approximation is employed to determine approximate 
solutions valid for optically thin (transparent) and optically thick (opaque) gray media which absorb and 
emit thermal radiation. The effect of radiation parameters on the cell size and on the onset of convection 
are studied in detail using the Galerkin approximation. It is shown that the effect of radiation is to inhibit 
the onset of convection in a porous medium. The physical explanation for this is given, taking into account 
the increase in thermal conductivity due to the combined effects of the porosity of the medium and 

radiation. 

1. INTRODUCTION 

THE STUDY of heat and mass transfer by convection 
through fluid saturated porous media is an area of 
rapid growth in contemporary heat and mass transfer 
research because of its importance in many branches 
of science and engineering [l-S]. Heat transfer by 
conduction and convection in a porous medium is 
based on a set of partial differential equations, and 
has been extensively studied for more than four 
decades [l-5], with applications, for example, to 
geothermal reservoirs [l] and thermal insulation 
engineering [S]. But heat transfer by combined con- 
duction, convection and radiation in an absorbing, 
emitting and scattering porous medium has not been 
given much attention, in spite of its applications in 

the design of furnaces and cooling towers, the pro- 
cessing of glass and other semi-transparent materials 
and the storage of solar energy. 

Determination of radiation flux in a fluid-saturated 
porous medium involving absorption, emission and 
scattering requires a solution of coupled momentum 
and energy equations expressing the intensity of radi- 
ation at each location of the medium. Mathematically, 
this problem is quite formidable because it requires the 
solution of non-linear integrodifferential equations. 
Because of the complexity of the problem, many 
authors adopted an approximate form of solutions. 

In ordinary viscous flow, Schuster [6] introduced 
the two-flux model which reduces the non-linear 
coupled integral equation into a differential equation 

for which a closed-form solution has been found [7l. 
In the case of a fluid-saturated porous medium, the 
literature on this is very sparse. References [8,9] stud- 
ied the one-dimensional heat transfer by conduction 
and radiation. Leung and Edwards [lo] later studied 
the effect of combined conduction, convection and 
radiation on heat transfer in a one-dimensional semi- 
infinite isotropic homogeneous absorbing, emitting 
and scattering porous medium when the flow is steady, 
using an analytical technique. Sharma and Singh [l l] 
have studied the effect of radiation on the stability of 
convective flow through porous media and obtained 
a sufficient condition for stability in shear flows. To 
our knowledge, the condition for the onset of con- 
vection in a radiating fluid saturated porous medium 
has not been given any attention, and the study of it 
is the main object of this paper. Assuming the bound- 
ary and the media to be gray, we obtain analytical 
solutions for flow through porous media using a two- 
flux model for radiative flux. We concentrate mainly 
on the thermal instability of a fluid-saturated hori- 
zontal porous layer, bounded by free radiating 
surfaces, with the assumption of very low and very 
high absorption coefficients. 

2. FORMULATION OF THE PROBLEM 

We consider a densely packed radiating fluid- 
saturated horizontal porous layer con6ned between 
two parallel infinite stress-free impermeable iso- 
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NOMENCLATURE 

dimensionless wave number, (Z2+m2)‘/2 R Lapwood-Rayleigh number, ugBkh’/Kv 
critical wave number in transparent & critical R in the transparent 
approximation approximation 
critical wave number in opaque Z& critical R in the opaque approximation 
approximation s heat content per unit volume 
3K,2h2(1 +X) T temperature 
porous particle diameter X, y, z horizontal and vertical space 
derivative, d/dz coordinates 
non-dimensional temperature gradient x non-dimensional radiative parameter, 
z-component of the radiative flux 4nQ/3K,Ks. 
gravitational acceleration 
vertical length scale Greek symbols 
rate of radiative heating per unit volume 
permeability ; 

coefficient of expansion 
basic temperature gradient, dT,/dz 

effective thermal diffusivity B mean value of /I throughout the medium 
defined by equation (8) E emissivity 
effective thermal conductivity V kinematic viscosity 
defined by equation (9) P density 
defined by equation (10) 
horizontal wave numbers in the x- and y- ; 

Stefan’s constant 
porosity. 

directions 
transmittance number Operators 
pressure (...) j(..) dz 
Darcy velocity vector, (U, V, I+‘) V2 ayax2+ a2jay2+ a21az? 
assumed as constant, (4u/7r)T3 V: a2ia2+a2jay2. 

thermal surfaces of thickness h, heated from below 
and cooled from above. We use a Cartesian coordinate 
system (x, y, z) with the x-y plane on the lower plate 
and the z-axis vertically upwards. Neglecting the con- 
tribution of the radiative stress to the momentum 
equation, the Boussinesq formulation of the con- 
servation of momentum, energy, mass and state 
equations are 

v-q=0 (1) 

(li~)(aq/at)+(1/~2)(q.v)q = -(~/P~)VP 

depending on the effective conductivity of the heat 
(i.e. conduction) and the other is the radiative flux, 
Z(s), where s is the heat content per volume. Since 
we assume the basic state to be steady and one- 
dimensional, the total heat flux Zr is a constant over 
the length of the bed. That is 

IT = IL (s) + Z(s) = const. (5) 

IL(s) may be computed, following Yagi et al. [12], by 
making use of the effective thermal conductivity K, of 

+ (p/po)g- (v/k)q (2) the packed bed’ 
The computation of radiation flux, Z(s), for a gray 

@T/at)+(q*V)T= KV2T+H/s (3) 

P = ~011 -a(T- To)]. (4) 

The quantities are defined in the Nomenclature. 
Equation (2) is the modified Darcy equation, known 
as the Lapwood-Darcy equation [4]. Here the depen- 
dent variables are all volumetric-averaged quantities. 
We will try to find the effect of radiative flux on the 
departure of the following basic state. 

emitting packed bed is based on the fact that the 
particles emit, absorb and reflect heat. In addition, 
radiative energy may penetrate the bed through the 
void volume. 

In this paper, we consider only an idealized two- 
flux model consisting of identical spheres for which 

Z(s) = z+ -z- (6) 

3. BASIC STATE 

where I+ and I- are the net forward and reverse 
fluxes, respectively. 

If the bed is densely packed and the average dia- 
The basic state in which the energy transfer is by meter of the particles is small compared to the width 

conduction and radiation is quiescent. Then the total of the bed, these two fluxes are related to each other 
heat flux, Zr, in a packed bed, caused by a temperature through the set of non-linear ordinary differential 
difference, consists of two parts. One is the flux, IL(s), equations 
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dZ+/ds = - K,Z+ + K&/n)T4 - KBZ- 

dZ- /d+r = K,Z- - K,,e(a/n)~ + K8Z+ (7) 

where o is Stefan’s constant, and the total absorption 
coefficient K,, emission coefficient K,, and scattering 
coefficient K8 are given by [9] 

K, = 2[(1 +N)‘+(l -N’)(l -.#](l -N)/ 

[(1+N)2-(1-N)2(1-E)2](1+N)d (8) 

Kb = 2[(1+N)*-(1 -N*)(l -&)]&(I -N)/ 

[(1+N)2-(l-N)2(1-E)Z](1+N)d (9) 

KB = 2[(1+N)*+(l-N*)](l--~)(l--N)/ 

[(1+N)Z-(l-N)(1-E)2](1+N)d (10) 

Coefficients K,, Kb and K8 depend on the trans- 
mittance number N, which is a function of the 
emissivity E and porosity 4. We see that (Ka - K$ will 
be the true absorption coefficient. In this paper we 
consider only the black-body radiation, for which 
E = 1. In this case the scattering coefficient K, is zero ; 
the absorption coefficient equals the emission 
coefficient, and is given by 

K, = Kb = 2(1-N)/(l+N)d. (11) 

The radiative heat transfer equation (7) then simplifies 
to 

dZ+/ds = K,[(a/x)T’-I+] 

dZ-/ds = -K&~/n)r’-Z-1. (12) 

Combining these, using equation (6) and defining the 
black-body intensity as 

B = (o/?r)P (13) 

we get 

dZ(s)/ds = K,[B-Z(s)]. (14) 

This equation of transfer is analogous to the one given 
by Kourganoff [13] in the case of pure viscous flow. 
Also, the radiative heating rate of the fluid-saturated 
porous medium is 

ff = - [dZ(s)/ds] dw (15) 

where w is the element of the solid angle and the 
integral is taken over the solid angle of 4n. 

In the basic state, all the quantities are functions of 
z only and the equation of transfer, equation (14), 
takes the form 

pj(dZ1d.r) = &P--II (16) 

where Ka is given by equation (11) and Z+ is the direc- 
tional cosine of vector s in the z-direction. 

The energy equation for the basic state is 

0 = (&Is) + K(d* TJdz*). (17) 

If F, is the z-component of this heat flux, then 

Z& = - (dF,/dz) (18) 

and we may write equation (17) in the integrated form 

F,-fib = C (19) 

where C is the constant of integration. 
Assuming the Milne-Eddington approximation, we 

can obtain the differential equation for F,, using 
the radiative transfer equation, equation (16), in the 

form PI 

(d*F,/dz**)-A2Fz = -A’XC/(l+x). (20) 

Here z* = z/h- l/2 ; in the subsequent analysis we 
will write z for z*. Solving equations (19) and (20), 
using boundary conditions 

dF,/dz = -2K,hF, at z = 4 

dF,/dz = 2K,hF, at z = -4 (21) 

we get 

where 

f= s/p= Lcosh (Az)+M (22) 

L = X[[2X/A +:(3 + 3x)‘/*] sinh (A/2) 

+ cash (A/2)]- ’ 

M = L[$(3+3_X)‘/* sinh (A/2) +cosh (A/2)1/X 

and p is the mean value of B throughout the medium 
in which there is marginal stability. 

4. LINEAR STABILITY ANALYSIS 

In this section we study the linear stability problem 
subjected to infinitesimal disturbances. We determine 
the critical value of the Rayleigh number, at which 
convection sets in, in the limiting cases of transparent 
and opaque gray media when the horizontal bound- 
aries are idealized as planar stress-free surfaces. Using 
the usual process of linearization, eliminating the pres- 
sure and assuming that the principle of exchange of 
stability is valid, we get the z-component of the 
momentum equation in the form 

V* w’ = (agk/v)V: T (23) 

and the energy equation 

wlf.? = KV*T’+H’/s. (24) 

Here primes denote perturbed quantities, which are 
assumed to be small compared to the basic state quan- 
tities. Eliminating T’ between equations (23) and (24), 
using h as the length scale and assuming a solution of 
the form (some function of z) exp [i(Zx + my)] with 

D = (d/dz), V: W = -a* W, 

V*W = (D*-a*)W (25) 

we get 

-a*pW/h* = (Kv/kcrgh4)(D2-a2)ZW+V:(H/s) 

(26) 
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where, for simplicity, the primes are omitted. The 
boundary conditions are 

W= T=O atz= *4. (27a) 

Since the temperature is assumed to be constant over 
the boundaries, these conditions also require that 

D’W=O atz= &. (27b) 

The analytical solution of equation (26) is very 
difficult because of V:(H/s), which depends on the 
complicated integral over the layer. However, we note 
that analytical solutions of equation (26) are possible 
for two simple approximate forms for V:(H/s), one 
valid when the fluid-saturated medium is optically 
thin (i.e. the transparent approximation), and the 
other when it is optically thick (i.e. the opaque 
approximation). For the transparent approximation, 
where K:h* c a*, we obtain from the radiative trans- 
fer equation, equation (16), following Goody [7], the 
result 

V:H = -47cQKaV:T (28a) 

and this, using equation (23) becomes 

V; H = - (4nQvKJcigk)V’ W. (28b) 

Similarly, for the optically thick approximation where 
gh * >> a*, we obtain 

V:H = (4nQ/3K,)V2(V;T) (29a) 

which, using equation (23), becomes 

VfH = (4nQv/3K,kag)V4 W. (29b) 

Equations (28b) and (29b) differ from those de- 
scribing ordinary viscous flow [7’j in the order of the 
differential equation and in the nature of the relative 
absorption coefficient. 

5. GALERKIN METHOD 

In this section we obtain the critical Rayleigh 
number for transparent and opaque approximations. 

5.1. Transparent approximation 
In this case, the momentum and energy equations 

(23) and (26), respectively, using equations (25) and 
(28), become 

(D’--a’)W= -(orgk/v)a*T (30) 

(h”/K)~fW = (D* -a2)T-3Xch’T. (31) 

It is interesting to note that in the process of 
deriving equations (30) and (31), no radiative 
boundary conditions have been used-hence they 
are equally valid if the boundaries are black bodies 
or mirrors. The nature of the boundaries affects only 
B, the basic temperature gradient. 

To obtain the required equations in the Galerkin 
method we multiply equation (30) by Wand equation 
(31) by T, integrate with respect to z from -l/2 to 

l/2 and obtain the equations 

((D W)’ +a2 W’) = (ocgka2/v)( WT) (32) 

and 

(h*fl/K)( WTf) = -((DT)2+GT2) (33) 

where G = a2+3XKzh2. We substitute W = EW, and 
T = FT, into equations (32) and (33) to obtain 

E((DW,)‘+a*Wf) = F(agka2/v)( WIT,) (34) 

E(h*/?/K)( W, TJ) = -F((DT,)*+GT:) (35) 

where E and Fare constants and W, and T, are the 
trial functions. Substituting F from equation (35) 
into equation (34), removing the common factor E 
and omitting, for simplicity, subscript one on the 
dependent variables, we get 

R = [((DW)2+a2W2)((DT)2+GT2)]/ 

[a’( WTX WT”I. (36) 

The critical Rayleigh number in this case is deter- 
mined for isothermal free boundaries using equations 
(27a) and (27b). The trial functions satisfying these 
boundary conditions are 

W = sin [nz(z+ i)], T = sin [na(z + :)I. (37) 

Substituting equations (37) into equation (36), using 
equation (22) and performing the integration, we get 

R = [(na)2+a2][(nx)Z+a2+3K~hZA’j/ 

a2[M+8n2a2L sinh (,4/2)/,4(,4*+4n2n2)]. (38) 

R attains its minimum value, R,,, at the critical wave 
number 

a,, = [a4+‘4*Xx*/(l +x)1”’ (39) 

with n = 1. The critical wave number act determines 
the width of the cell in the least stable mode of motion. 
For large values of X, a, = (r?+a*~*)‘/~, which is a 
function of A only. Therefore, the radiative parameter 
X affects the cell size only for moderate values of A’. 

The critical Rayleigh number from equation (38) 
and using equation (39) is 

%, = n2[1 +J(l+(A*X/(l +X)n2))12/ 

[M+87t2L sinh (A/2)/,4(,4*+4x2)]. (40) 

For A’+ 0 or A + 0, which represents no radiation, 
equation (39) gives a,, = a and equation (40) gives 
& = 4x2 ; these expressions coincide with those given 
by Lapwood [ 141. The results are discussed in the final 
section. 

5.2. Opaque approximation 
In this case, the momentum equation remains the 

same as equation (30), but the energy equation takes 
the form 

pWf= (K/h2)(1 +X)(D*-a*)T. (41) 

Using the procedure explained in Section 5.1, we get 
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R = (1+X)((DW)2+a2W2)((DZ-)2+a2~)/ 

a2( WT)( WT’. (42) 

We select the same trial function as that given by 
equations (37). Then equation (42) with n = 1 becomes 

R = (1 +x)(n2+a2)‘/ 

a2[M+87c2L sinh (A/2)/,4(,4* +4n2)]. (43) 

The critical wave number is 

ace = II (44 

and the corresponding critical Rayleigh number is 

& = 47c2(1 +X)/ 

[M+ 8z2L sinh (A/2)/A(A2 +4x2)]. (45) 

The results are discussed in the next section. Here we 
note that a,, has the same value as that given by 
Lapwood [14]. 

6. RESULTS AND DISCUSSION 

The effect of radiation on the onset of convection 
in an absorbing and emitting gray porous medium is 
studied using linear theory. The Galerkin procedure 
is used to determine the critical Rayleigh number for 
different values of the radiative parameters A and X. 
Although A and X are related to each other through 
the relation A2 = 3K,2h2(1 +x), they are chosen in 
such a way that they determine the values of K. valid 
for different approximations. 

The critical wave number, a,, a function of A and 
X, is computed from equation (39) for different 
values of the radiative parameter A in the case of trans- 
parent approximation, and the results are depicted in 
Fig. 1. In this figure we have also drawn the results 
for X-N 0, which correspond to non-radiating sys- 
tems, and we note that the values coincide with those 
given by Lapwood [14]. It is clear that the increase 
in A increases oCt, and hence we conclude that the 

,I- 
-3 -1 1 3 5 

Log A Log A 

FIG. 1. Critical wave number as a function of A for trans- FIG. 2. Critical Lapwood-Rayleigh number as a function of 
parent medium. A for different values of X. 

effect of radiation is to contract the cells. Equation 
(44) shows that radiation has no effect on the cell size 
in the case of the opaque approximation. 

The critical Rayleigh number given by equations 
(40) and (45) for transparent and opaque approxi- 
mations, respectively, are computed for different 
values of A and X, and the results are shown in Fig. 
2. The full lines starting from the left-hand side are 
for the transparent approximation, computed using 
equation (40), and that starting from the right-hand 
side is for the opaque approximation computed using 
equation (45). The dashed lines are over the range 
where neither approximation is valid. We see that 
there is no radiative effect on the convective motion 
when A takes values less than unity; the curves 
coincide with X = 0 in Fig. 2. The critical Rayleigh 
number in this case is the same as the one given by 
Lapwood [ 141. We also note that for smaller values of 
A the curves converge to a point and hence become 
independent of X. For A > 1, however, the critical 
Rayleigh number increases and hence stabilizes the 
system. The following are the reasons for this 
stabilization. 

(1) Radiation contracts the cells, resulting in the 
increase in Rayleigh number to cause stabilization. 

(2) We know that the effective thermal conductivity 
K, in the porous medium is given by [ 151 

~++[(K,-Kf)/K,‘3]~‘3-K, = 0 

where subscripts f and s denote the quantities for fluid 
and solid, respectively. This is higher than that in the 
ordinary viscous flow owing to the contribution from 
the solid particles. The increase in thermal con- 
ductivity also promotes stability. 

(3) The Rayleigh number is defined in terms of the 
temperature difference between the plates, as in the 
case of the usual Rayleigh-Lapwood convection [ 141. 
The radiation influences the Rayleigh number 
through the radiative heat flux ( WTf) (see equations 
(36) and (42)). The effect of radiation is to make the 
heat flux (W7’) minimum and hence to increase the 
critical Rayleigh number. 
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The comparison of the results between transparent 
and opaque approximations reveals that although the 
former approximation affects the cell size, the critical 

Rayleigh number in the latter case is much higher than 
that of the former case-that is, increase in optical 

thickess delays the instability. Therefore, for material 
processing in the laboratory, the results of the opaque 
approximation are more suitable than those of the 

transparent approximation. 
To assess the validity of the results obtained from 

the Galerkin approximation, the results obtained here 
forf(z) = 1 in the absence of radiation are compared 
with those of Lapwood [14], and good agreement is 
found. We conclude that the Galerkin expansion pro- 
cedure used in this paper gives good results with 
minimum mathematics. 
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EFFET DU TRANSFERT RADIATIF SUR L’APPARITION DE LA CONVECTION DANS 
UN MILIEU POREUX 

R&aun&-On Btudie par la theorie lineaire l’effet du transfert radiatif sur la convection thennique dans une 
mince couche poreuse saturee de fluide, limitee par des plans horizontaux radiants, sans contrainte, et 
chauff&e par le bas. Les coefficients d’absorption, d%mission et de diffusion sont calcules a partir des 
proprittis de lit fixe en utilisant tm modble a deux flux. L’approximation de Milne-Eddington est utilisec 
pour determiner des solutions approchees valables pour des milieux gris optiquement minces (transparents) 
ou Bpais (opaques) qui absorbent et Bmettent un rayonnement thermique. L’effet des paramdtres de 
rayonnement sur la dimension de la cellule et sur l’apparition de la convection est ttudie en detail avec 
l’approximation de Galerkine. On montre que l’effet du rayonnement est d’inhiber la convection dans un 
milieu poreux. L’explication physique est don& en tenant compte de l’accroissement de la conductivite 

thermique du aux effets combines de la porositb du milieu et du rayonnement. 

EINFLUSS DER STRAHLUNG AUF DAS EINSETZEN DER KONVEKTION IN EINEM 
PORC)SEN MEDIUM 

Zuaammenfnssung-Der Einflu5 der W&mestrahlung auf die therm&he Konvektion in einer dilnnen, 
fltissigkeitsgestittigten, dicht gepackten porijsen Schicht, die von zwei krlftefreien wlrmeabstrahlenden 
horizontalen Platten begrenzt und von unten beheizt wird, wird mit der linearen Theorie untersucht. 
Die Absorptions-, Emissions- und Streuungskoeffizienten werden aus den Stoffeigenschaften der 
porosen Schiittung mit einem Zwei-Strom-Model1 berechnet. Die Miln+Eddington-NHherung wird zur 
Bestimmung von Naherungslbsungen verwendet, die fur strahlungsdurchliissige (transparente) und fur 
strahlungsundurchlisige (opake) graue Stoffe giiltig sind. Der Einflug der Strahlungsparameter auf die 
GrijBe der Konvektionszellen und‘auf das Einsetzen der Konvektion wird detailliert mit dem Galerkin- 
Nlherungsverfahren untersucht. Es zeigt sich, dag Strahlung das Einsetzen der Konvektion in einem 
poriisen Medium hemmt. Dies wird physikalisch dadurch erkllrt, daB die Warmeleitfihigkeit durch die 

iiberlagerten Einfltisse von Porositlt und Strahlung zunimmt. 
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BJIHIIHWEP~HA~MOHHOI-OTEIUlOllEPEHOCAHA B03HAKHOBEHME 
KOHBEKIJMM Bl-IOPkICTORCPEAE 

AmwreHa OCHOBC nHHelHol TeopHH HccnenyeTcn BnHnHne ~JDIUHOHHO~O TemonepeHoca Ha 
TellJIOBylO KOHBeKW5O B TOHKOM HaCbUUeHHOd 1(HaxOCTblO IIJIOTHOM I'IOpACTOM CJIOe, OrpaHHneHHOM 
HeHaIIp.SXeHHbIMH H3Jly'WOlIVlMH rOpH30HTaJIbHblMH IIJlOClCOCTnMH, HarpeBaeh!blMIl CHAJy. KOS#M$H- 
lUiWTbl IlOrnOmeHHB, Hlny'leHHn H paCUZlHHZ4 paCCWiTbIBaIoTCn Ha OCHOBe CBOkTB ILVOTHOrO CnOB C 
HClIOJlb30BBHHeM LlByXIlOTOKOBO~A4O~enH.&lB OII~JWIeHH~lIpH6JlHXCeHHbIX~meHH8,npHMeHHMblX B 
cnyqae or~~wfecm TOHKHX (npospasaux)mw Toncrblx (HenposparHblx)cepblx cpen,nornomaIouuix H 
HCll)'CKaIOlUMX TellJlOBOe H3npeHHe HCllOJIb3)'CTCK lIpH6JlHlueHHe MHJlHa-%lHHrTOHK. C llOMOlUblO 

annpoltcm4aumi raneprHHaneTanbHoHsyvae.Tcn snsinHHenaparwrpoepa~amiH Hapa3hiepbl meeK u 

803HHKHOBeHHe YOHBeKUHH. nOKa3iuI0, 'IT0 paLWaUHOHHbIlf TelTJlOtIe~HOC IIpeIIBTCTByeT B03HHKHOBe- 
Hmo KOHB~KUHH B nopwroti cpene. @H~HY~~KH 3To o6ancwmcn @atmoM ysenHveHHn ynenbHoii Ten- 

nonpoBonHocTHnOpHcrO~cpenbI6naro~apnpaAHaLuioHHoMy TenJIonepeHocy. 


