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Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution *
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4Inspire Institute Inc., McLean, VA 22101, USA.

(Received 17 June 2010)
Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we
show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange
symmetry of initially symmetric multiqubit states. Specifically we show that among 4-qubit states obeying
exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time
evolution with Ising Hamiltonian. Attributing the loss of symmetry of the initially symmetric states to rotational
asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all 𝑁 -qubit states
(𝑁 ≥ 5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.

PACS: 03.65.Ud, 75.10.Jm, 42.50.Dv DOI: 10.1088/0256-307X/28/2/020305

Multiqubit states that are symmetric under the in-
terchange of particles form an important class among
quantum states due to their experimental signifi-
cance and mathematical elegance.[1−5] They are the
quantum states obeying exchange symmetry and the
𝑁 -qubit symmetric states belong to the (𝑁 + 1)-
dimensional subspace of the 2𝑁 -dimensional Hilbert
space, the subspace being the maximal multiplicity
space of the collective angular momentum. In general,
multi-atom systems that are symmetric under permu-
tation of the particles allow for an elegant description
in terms of the collective variables of the system.

Atomic spin squeezed states[4,6−13] are quantum
correlated states with reduced fluctuations in one of
the collective spin components and they have possible
applications in atomic interferometers and high pre-
cision atomic clocks. Spin squeezing, in the original
sense, is defined for multiqubit states belonging to the
symmetric subspace of the collective angular momen-
tum space.[6] In fact Kitagawa and Ueda[6] have de-
fined a parameter that quantifies the spin-squeezing
in symmetric multiqubit states. If 𝐽𝑖 = 1

2

∑︀𝑁
𝛼=1 𝜎𝛼𝑖,

𝑖 = 𝑥, 𝑦, 𝑧 denotes the components of the collective
angular momentum operator of an 𝑁 qubit system,
the spin squeezing parameter 𝜉 is defined as[6]

𝜉2 = 2(∆𝐽⊥)2/𝐽, 𝐽 = 𝑁/2, (1)

where the subscript ⊥ refers to an axis perpendicu-
lar to the mean spin direction 𝑛 in which the min-
imal value of the variance (∆𝐽⊥)2 is obtained. The
system is said to be spin squeezed when the param-
eter 𝜉 is less than 1. The relationship between spin
squeezing and quantum entanglement in symmetric
multiqubit systems has been an interesting area of
study[14−16] and it has been shown that for a two-
qubit symmetric state, spin squeezing is equivalent to
its bipartite entanglement.[14] An extension of this re-
sult to symmetric multiqubit systems shows that the
presence of spin squeezing essentially reflects pairwise

entanglement.[16] Even though spin squeezing serves
only as a sufficient condition for pairwise entangle-
ment in arbitrary symmetric multiqubit systems, for
a special class of symmetric multiqubit systems it was
shown that spin squeezing is a necessary and sufficient
condition for pairwise entanglement.[16]

With the observation that the detection of spin
squeezing forms a useful diagnostic tool in the early
stages of the construction of a quantum computer,[10]
the spin squeezing produced in several models of inter-
acting spins has been studied.[10,16] Ising type Hamil-
tonian with nearest neighbor interactions[10] is one
of the interaction models considered in these studies.
The one-dimensional Ising type Hamiltonian with 𝑁
spins and a constant coupling between any two nearest
neighbors[10] is given by

ℋ =
ℎ̄𝜒

4

𝑁∑︁
𝛼=1

𝜎𝛼𝑥𝜎𝛼+1𝑥, (2)

where we identify the (𝑁 + 1)th spin with the first
one in the chain. Here 𝜎𝛼𝑥 and 𝜎𝛼+1𝑥 are the Pauli
spin matrices for the spin at sites 𝛼 and 𝛼+ 1, respec-
tively, and 𝜒 is a constant characterizing the coupling
strength between any two nearest neighbors in the
chain. It is not difficult to see that 𝐽𝑥 = 1

2

∑︀𝑁
𝛼=1 𝜎𝛼𝑥,

the 𝑥 component of the collective angular momentum
operator is a constant of motion as it commutes with
the Hamiltonian ℋ of the system. The Ising type
Hamiltonian arises in proposals for quantum compu-
tation with atoms in optical lattices.[17,18] In these
proposals, the atom interacts with nearest neighbors
and it has been shown that this interaction produces
spin squeezing.[10] Spin squeezed states are routinely
produced in several laboratories as they are quite
experimentalist-friendly and in addition to the prac-
tical applications of spin squeezing such as atomic
clocks, they provide a demonstration of the entan-
gling capabilities of the system. Thus studies on spin
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squeezed states and the interaction models that pro-
duce spin squeezing form a prominent area of study.

At this juncture, an illustration of the fact
that spin-squeezing criterion given by Kitagawa and
Ueda[6] is applicable only for symmetric multiqubit
states may be in order. As any two uncorrelated non-
squeezed systems cannot possess any spin-squeezing
amongst themselves, one should not expect to obtain
positive results for spin squeezing in such states. How-
ever, one can obtain such a result when the Kitagawa–
Ueda spin-squeezing criterion is applied to some sep-
arable non-symmetric states of the form |𝜓⟩ = |𝜓1⟩ ⊗
𝜓2⟩ (|𝜓1⟩ ≠ |𝜓2⟩). For instance, the spin squeezing pa-
rameter 𝜉 of the state |𝜓⟩ =

(︀√
3/2
1/2

)︀
⊗
(︀−√

3/2
1/2

)︀
is found

to be less than 1 implying that a separable state is
spin-squeezed. On evaluation of the parameter 𝜉 for
any symmetric separable state |𝜓⟩ = |𝜓1⟩ ⊗ |𝜓1⟩, one
obtains the expected result that 𝜉 > 1 thus confirming
the applicability of the Kitagawa–Ueda spin squeez-
ing criterion to symmetric multiqubit states. Another
spin squeezing criterion, applicable to arbitrary mul-
tiqubit states, was given by Wineland et al.[7] in the
context of Ramsey spectroscopy. The squeezing pa-
rameter 𝜉𝑤 defined by Wineland et al.[7] is given by

𝜉2𝑤 =
𝑁(∆𝐽⊥)2

|⟨𝐽 · 𝑛⟩|2
, (3)

where the symbols have the same meaning as that
in Eq. (1). One can see that 𝜉𝑤 reduces to 𝜉 when
|⟨𝐽 · 𝑛⟩| = 𝐽 = 𝑁/2. The Wineland criterion[7] is
used by several authors[10,16] to detect spin squeez-
ing in multiqubit states interacting through Hamil-
tonian models such as one-dimensional Ising chains.
Spin squeezed states satisfying the criterion 𝜉𝑤 < 1
are shown to have reduced frequency noise and thus
are useful in spectroscopic studies.[7]

We wish to point out here that caution has to be
exercised while analyzing the spin squeezing nature
of a quantum state so as to relate it with the pair-
wise entanglement properties of that state. In fact,
the quantum entanglement between any two qubits
of a multiqubit system can be the same for an arbi-
trary choice of qubits only when the state is symmet-
ric under interchange of qubits. Thus, while exam-
ining the connection between pairwise entanglement
and spin-squeezing of a symmetric multiqubit system,
interacting through a particular Hamiltonian model,
one has to ascertain whether the exchange symmetry
of the state is affected by the interacting Hamiltonian
or not. As any relationship between spin squeezing
and pairwise entanglement in non-symmetric states is
bound to give invalid results, permutation symmetry
of a multiqubit state has to be ascertained before relat-
ing the spin squeezing nature to its pairwise entangle-
ment. The main motivation of the present work is to
show that permutation symmetry of an initially sym-
metric multiqubit state cannot be taken for granted
while considering its time evolution with different in-
teraction models. As exchange symmetry aspects are
not given due consideration in studies on spin squeezed

states generated through time evolution of an initially
symmetric multiqubit state with Ising type interaction
models,[19] we feel that an exploration of this aspect
in an explicit manner is important. We carry out one
such study in this article. In particular, we show that
none of the 𝑁 qubit (𝑁 ≥ 4) symmetric states, except
4-qubit 𝑊 states and their linear combinations, are
likely to retain their exchange symmetry under evolu-
tion with Ising type Hamiltonian, one of the impor-
tant interaction models considered for spin squeezing
studies.[10]

An Ising chain with two qubits (𝑁 = 2) is given
by

ℋ =
ℎ̄𝜒

4
(𝜎1𝑥𝜎2𝑥 + 𝜎2𝑥𝜎1𝑥). (4)

The states spanning the three-dimensional symmetric
subspace are the so called triplet states given by

|1, 1⟩ = |00⟩ = |0⟩ ⊗ |0⟩ ≡ spin-up state,

|1, 0⟩ = |𝜓⟩ =
|01⟩ + |10⟩√

2
=

|0⟩ ⊗ |1⟩ + |1⟩ ⊗ |0⟩√
2

,

|1,−1⟩ = |11⟩ = |1⟩ ⊗ |1⟩ ≡ spin-down state.

Here the symbol ‘⊗’ stands for Kronecker product and
the symbol ‘|𝑗,𝑚⟩’ stand for the angular momentum
states.

As 𝜎1𝑥, 𝜎2𝑥 correspond to spin flip operation on
1st and 2nd qubit respectively, it is easy to see

ℋ|00⟩ ∝ |11⟩, ℋ|11⟩ ∝ |00⟩, ℋ|𝜓⟩ ∝ |𝜓⟩

Hence repeated application of ℋ on these states re-
sults in the same states. Thus the action of the time-
evolution operator 𝑈 = exp(−𝑖ℋ𝑡/ℎ̄) on basis states
of the symmetric subspace results in their linear com-
bination, ensuring the symmetry of the 2-qubit Dicke
states under Ising chain evolution.

Considering the Ising chain with three qubits (𝑁 =
3), we have

ℋ =
ℎ̄𝜒

4
(𝜎1𝑥𝜎2𝑥 + 𝜎2𝑥𝜎3𝑥 + 𝜎3𝑥𝜎1𝑥). (5)

The set of all symmetric 3-qubit states is spanned by
the four basis states (3-qubit Dicke states)

|𝜓1⟩ = |3/2, 3/2⟩ = |000⟩,

|𝜓2⟩ = |3/2, 1/2⟩ =
|001⟩ + |010⟩ + |100⟩√

3
,

|𝜓3⟩ = |3/2,−1/2⟩ =
|110⟩ + |101⟩ + |011⟩√

3
,

|𝜓4⟩ = |3/2,−3/2⟩ = |111⟩. (6)

Our main task here is to check whether an arbitrary
symmetric 3-qubit state retains its exchange symme-
try under Ising chain evolution. For this, we need
to examine whether the basis states of the symmet-
ric subspace of three qubits remain symmetric after
interaction with the 1D Ising chain.

Though the exchange symmetry of each of the
3-qubit Dicke states after interaction with the 1D
Ising chain can be checked by inspection as is done
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for the 2-qubit case, it is easier to examine whether
the evolved states |𝜓′

𝛼⟩ = 𝑈 |𝜓𝛼⟩ (𝛼 = 1, 2, 3, 4),
𝑈 = exp(−𝑖ℋ𝑡/ℎ̄) being the unitary operator corre-
sponding to 3-qubit Ising chain Hamiltonian, remain
in the symmetric subspace. It is a simple matter to
notice that the evolved states |𝜓′

𝛼⟩ = 𝑈 |𝜓𝛼⟩ (𝛼 = 1,
2, 3, 4) remain in the symmetric subspace iff |𝜓′

𝛼⟩
is expressible as |𝜓′

𝛼⟩ =
∑︀

𝑚 𝑐*𝑚|3/2,𝑚⟩ such that∑︀
𝑚 |𝑐𝑚|2 = 1. In fact, 𝑐𝑚 = ⟨𝜓′

𝛼|3/2,𝑚⟩ and we need
to evaluate the set of coefficients 𝑐𝑚 = ⟨𝜓′

𝛼|3/2,𝑚⟩,
𝑚 = −3/2, −1/2, 1/2, 3/2 for each 𝛼 (𝛼 = 1, 2, 3,
4). The coefficients 𝑐𝑚 for each of the states |𝜓𝛼⟩ are
given in Table 1 and it is evident that the symmetry
of the 3-qubit Dicke states is unhampered by the Ising
chain interaction.

Starting with an Ising chain with 4 qubits, we eval-
uate the corresponding unitary time-evolution opera-
tor and it is given by

𝑈 = exp
(︁
− 𝑖ℋ𝑡

ℎ̄

)︁
= 𝐼 +𝐴2(cos(𝜒𝑡)−1)− 𝑖𝐴 sin(𝜒𝑡),

(7)
where

ℋ =
ℎ̄𝜒

4
(𝜎1𝑥𝜎2𝑥+𝜎2𝑥𝜎3𝑥+𝜎3𝑥𝜎4𝑥+𝜎4𝑥𝜎1𝑥), 𝐴 =

ℋ
ℎ̄𝜒

.

The basis states |𝑗,𝑚⟩ where 𝑗 = 2 and 𝑚 = −2, −1,
0, 1, 2 of the symmetric subspace are given by

|𝜑1⟩ = |2, 2⟩ = |0000⟩,

|𝜑2⟩ = |2, 1⟩ =
1

2
[|0001⟩ + |0010⟩ + |0100⟩ + |1000⟩],

|𝜑3⟩ = |2, 0⟩ =
1

2
[|0011⟩ + |1100⟩ + |0101⟩

+ |1010⟩ + |0110⟩ + |1001⟩],

|𝜑4⟩ = |2,−1⟩ =
1

2
[|1110⟩ + |1101⟩ + |1011⟩ + |0111⟩],

|𝜑5⟩ = |2,−2⟩ = |1111⟩. (8)

The time evolved states |𝜑′𝛼⟩ = 𝑈 |𝜑𝛼⟩ (𝛼 = 1,
2, 3, 4, 5) remain in the symmetric subspace iff
|𝜑′𝛼⟩ is expressible as |𝜑′𝛼⟩ =

∑︀
𝑚 𝑐*𝑚|2,𝑚⟩ such that

∑︀
𝑚 |𝑐𝑚|2 = 1. We have evaluated the set of coeffi-

cients 𝑐𝑚 = ⟨𝜑′𝛼|2,𝑚⟩, 𝑚 = −2, −1, 0, 1, 2 for each
𝛼 (𝛼 = 1, 2, 3, 4, 5) and these coefficients are given
explicitly in Table 2.

It is readily seen from Table 2 that though all the
states |𝜑𝛼⟩ (𝛼 = 1 to 5) are initially symmetric (at
time 𝑡 = 0,

∑︀
𝑚 |𝑐𝑚|2 = 1 for all 𝛼), their time-evolved

counterparts |𝜑′𝛼⟩ are not restricted to the symmet-
ric subspace. After time evolution, |𝜑2⟩ = |2, 1⟩ and
|𝜑4⟩ = |2,−1⟩ the so-called W states, are the only
two that remain in the symmetric subspace and hence
are symmetric under the interchange of particles. We
thus conclude that not all 4-qubit symmetric states
retain their exchange symmetry after Ising chain in-
teraction. Only a subclass of symmetric states, of the
form 𝑎|2, 1⟩+ 𝑏|2,−1⟩ where 𝑎, 𝑏 are any two complex
numbers can retain their exchange symmetry under
Ising chain evolution.

It is important to notice here that though the 4-
qubit 𝑊 states retain their exchange symmetry un-
der Ising chain evolution, 𝑁 qubit 𝑊 states (𝑁 ≥
5) do not possess this property of symmetry reten-
tion. For instance, if ℋ denotes the 5-qubit Ising
chain Hamiltonian with nearest-neighbor interactions,
one can see that the coefficients 𝑐𝑚, 𝑚 = 5/2,
3/2, · · ·, −5/2 for the time evolved 𝑊 state Ψ𝑤 =
exp(−𝑖ℋ𝑡/ℎ̄)|5/2, 3/2⟩ are given by

𝑐 5
2

= 𝑐 1
2

= 𝑐− 3
2

= 0,

𝑐 3
2

=
1

40

(︁
15 + 12 cos

𝜒𝑡

2
+ 13 cos𝜒𝑡+ 8𝑖 sin

𝜒𝑡

2

+ 12𝑖 sin (𝜒𝑡)
)︁
,

𝑐− 1
2

=
1

20
√

2

(︁
− 6 − 6 cos

𝜒𝑡

2
+ 12 cos𝜒𝑡

− 2𝑖 sin
𝜒𝑡

2
+ 13𝑖 sin (𝜒𝑡)

)︁
,

𝑐− 5
2

=
1

8
√

5

(︁
− 3 + 3 cos𝜒𝑡− 4𝑖 sin

𝜒𝑡

2
+ 2𝑖 sin (𝜒𝑡)

)︁
.

(9)

Table 1. Demonstration of symmetry retention in 3-qubit states under Ising chain evolution.

State 𝑐1 = ⟨𝜓′
𝛼|3/2, 3/2⟩ 𝑐2 = ⟨𝜓′

𝛼|3/2, 1/2⟩ 𝑐3 = ⟨𝜓′
𝛼|3/2,−1/2⟩ 𝑐4 = ⟨𝜓′

𝛼|3/2,−3/2⟩
∑︀

𝑚
|𝑐𝑚|2

|𝜓1⟩ 𝑒3𝑖𝜒𝑡/4

4
(1 + 3𝑒−𝑖𝜒𝑡) 0 𝑖

√
3

2
𝑒𝑖𝜒𝑡/4 sin 𝜒𝑡

2
0 1

|𝜓2⟩ 0 𝑒3𝑖𝜒𝑡/4

4
(3 + 𝑒−𝑖𝜒𝑡) 0 𝑖

√
3

2
𝑒𝑖𝜒𝑡/4 sin 𝜒𝑡

2
1

|𝜓3⟩ 𝑖
√
3

2
𝑒𝑖𝜒𝑡/4 sin 𝜒𝑡

2
0 𝑒3𝑖𝜒𝑡/4

4
(3 + 𝑒−𝑖𝜒𝑡) 0 1

|𝜓4⟩ 0 𝑖
√
3

2
𝑒𝑖𝜒𝑡/4 sin 𝜒𝑡

2
0 𝑒3𝑖𝜒𝑡/4

4
(1 + 3𝑒−𝑖𝜒𝑡) 1

Table 2. Demonstration of loss of exchange symmetry in 4-qubit states under Ising chain evolution.

State 𝑐1 = ⟨𝜑′𝛼|2, 2⟩ 𝑐2 = ⟨𝜑′𝛼|2, 1⟩ 𝑐3 = ⟨𝜑′𝛼|2, 0⟩ 𝑐4 = ⟨𝜑′𝛼|2,−1⟩ 𝑐5 = ⟨𝜑′𝛼|2,−2⟩
∑︀

𝑚
|𝑐𝑚|2

|𝜑1⟩ 1
4
(3 + cos𝜒𝑡) 0 −1+cos(𝜒𝑡)+2𝑖 sin𝜒𝑡

2
√
6

0 1
4
(−1 + cos𝜒𝑡) 1

6
(5 + cos(𝜒𝑡))

|𝜑2⟩ 0 1+𝑒𝑖𝜒𝑡

2
0 −1+𝑒𝑖𝜒𝑡

2
0 1

|𝜑3⟩ −1+cos𝜒𝑡+2𝑖 sin𝜒𝑡

2
√
6

0 1+5 cos(𝜒𝑡)+4𝑖 sin𝜒𝑡
6

0 −1+cos(𝜒𝑡)+2𝑖 sin𝜒𝑡

2
√
6

1
9
(8 + cos𝜒𝑡)

|𝜑4⟩ 0 −1+𝑒𝑖𝜒𝑡

2
0 1+𝑒𝑖𝜒𝑡

2
0 1

|𝜑5⟩ 1
4
(−1 + cos𝜒𝑡) 0 −1+cos(𝜒𝑡)+2𝑖 sin𝜒𝑡

2
√
6

0 1
4
(3 + cos𝜒𝑡) 1

6
(5 + cos(𝜒𝑡))

020305-3
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It can be readily seen that∑︁
𝑚

|𝑐𝑚|2 =
1

400

(︁
257 + 130 cos

𝜒𝑡

2
+ 11 cos(𝜒𝑡)

+ 2 cos
3𝜒𝑡

2

)︁
, (10)

clearly indicating that the state Ψ𝑤 =
exp

(︀
− 𝑖H𝑡

ℎ̄

)︀
| 52 ,

3
2 ⟩ does not belong to the 6-dimensional

symmetric subspace at times 𝑡 > 0. It is not diffi-
cult to see that for the time evolved obverse W-state
Ψ𝑤̄ = exp

(︀
− 𝑖ℋ𝑡

ℎ̄

)︀
| 52 ,−

3
2 ⟩, the coefficients 𝑐𝑚 are the

same (except for order) as for the state Ψ𝑤 thus re-
sulting in the same conclusion of loss of symmetry at
times 𝑡 > 0. In fact, not just W states but all 𝑁 qubit
symmetric states (𝑁 ≥ 5), the states belonging to the
(𝑁 + 1)-dimensional symmetric subspace, are likely
to lose their exchange symmetry on interaction with
an Ising chain with the nearest neighbor interactions.
This can be checked in an analogous manner by eval-
uating the coefficients 𝑐𝑚, 𝑚 = 𝑁

2 ,
𝑁
2 −1, · · · ,−𝑁

2 and
by observing that

∑︀
𝑚 |𝑐𝑚|2 ̸= 1 for all 𝑁 qubit Dicke

states. This implies that none of the time-evolved 𝑁
qubit Dicke states (𝑁 ≥ 5) are expressible in terms
of the 𝑁 qubit Dicke states themselves (which are
basis states of the (𝑁 + 1)-dimensional symmetric
subspace) and hence do not exhibit exchange symme-
try. Alternatively, one can check the loss of symmetry
through inspection (like how we illustrated the re-
tention of symmetry in 2-qubit case). The loss of
symmetry is evident in just the action of the 𝑁 -qubit
Ising chain Hamiltonian on the corresponding Dicke
states. Repeated applications of the Hamiltonian does
not initiate symmetry any further and the action of
unitary time evolution operator corresponding to 𝑁 -
qubit Ising spin chain results in non-symmetric states.

The retention/loss of exchange symmetry in ini-
tially symmetric states on time evolution with the
Ising chain interaction can be attributed to the
existence/non-existence of rotational symmetry in
the Ising chain Hamilotonian. In fact, although the
Ising chain Hamiltonians corresponding to 2 and 3
qubits exhibit rotational symmetry as they commute
with 𝐽2 (the squared collective angular momentum
operator), the Hamiltonians corresponding to 𝑁 > 3
do not commute with it and hence are rotationally
asymmetric. One needs to notice here the status of
4-qubit W states with reference to evolution with the
Ising chain; in spite of the rotational asymmetry of
4-qubit Ising chain Hamiltonian, the W-states retain
their exchange symmetry on evolution with the Ising
chain. This privilege is not preserved by the 𝑊 states
with more than 4 qubits as we have indicated above.

A discussion on the symmetry aspect for other
interactions of physical interest may be in order, at
this stage. In particular, on observing that the spin

chain modelled by isotropic Heisenberg Hamiltonian
possesses rotational symmetry for all 𝑁 , one can ex-
pect that the exchange symmetry of multiqubit sym-
metric states is to be unhampered on time evolution
with isotropic Heisenberg Hamiltonian. An anisotropy
along either 𝑥, 𝑦 or 𝑧 direction will spoil the rotational
symmetry and thereby multiqubit states interacting
with an anisotropic Heisenberg Hamiltonian are un-
likely to retain their exchange symmetry. An exam-
ination of the rotational symmetry of the interacting
Hamiltonian is therefore quite useful when considering
their effect on the exchange symmetry of multiqubit
states.

In summary, we have shown that symmetric 𝑁 -
qubit states (𝑁 ≥ 5) lose their exchange symme-
try after interaction with a spin chain modelled by
1D Ising Hamiltonian with nearest neighbor interac-
tion. Specifically we have shown that 2 and 3 qubit
symmetric states retain their exchange symmetry un-
der Ising chain evolution but all 4-qubit symmetric
states, except the states of 𝑊 type, lose their symme-
try under the same interaction. The rotational sym-
metry/asymmetry of the interacting Hamiltonian is
seen to be the main reason for retention/loss of ex-
change symmetry in multiqubit states. We emphasize
here that permutation symmetry aspects are impor-
tant either in studying the collective behavior such
as spin-squeezing or in relating the spin-squeezing be-
havior of a symmetric 𝑁 -qubit state with its pairwise
entanglement properties. However, exchange symme-
try properties are assumed to hold good under 1D
Ising chain, when such a study is reported in Ref. [19].
Through this work, we hope to initiate proper clarifi-
cations on the retention of exchange symmetry in fu-
ture investigations on spin squeezing or in any study
where exchange symmetry matters.
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