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The main objective of this article is to study the effect of magnetic field on the combined buoyancy and
surface tension driven convection in a cylindrical annular enclosure. In this study, the top surface of the
annulus is assumed to be free, and the bottom wall is insulated, whereas the inner and the outer cylin-
drical walls are kept at hot and cold temperatures respectively. The governing equations of the flow sys-
tem are numerically solved using an implicit finite difference technique. The numerical results for various
governing parameters of the problem are discussed in terms of the streamlines, isotherms, Nusselt num-
ber and velocity profiles in the annuli. Our results reveal that, in tall cavities, the axial magnetic field sup-
presses the surface tension flow more effectively than the radial magnetic field, whereas, the radial
magnetic field is found to be better for suppressing the buoyancy driven flow compared to axial magnetic
field. However, the axial magnetic field is found to be effective in suppressing both the flows in shallow
cavities. From the results, we also found that the surface tension effect is predominant in shallow cavities
compared to the square and tall annulus. Further, the heat transfer rate increases with radii ratio, but
decreases with the Hartmann number.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Thermocapillary convection is a fluid motion driven by the sur-
face tension variation at a free surface resulting from the thermal
gradients along the surface. The combination of buoyancy and free
surface shear frequently exhibits a complex flow field. These two
forces may assist or compete with each other to dominate the flow
field. In Czochralski crystal growth process, the convection may be
driven either by a buoyancy due to density gradient caused by lat-
eral heating, or a surface tension force due to temperature gradient
along the free surface. The ever-growing demand for a high quality
crystal material has resulted in a substantial research focused on
the understanding, and eventually controlling the convection in
material processing systems. Since the convective flow is the major
cause of some macroscopic defects in the crystal produced, it is
desirable to remove this deleterious flow. One of the effective
methods to control a thermally induced flow is the magnetic
damping, in which the applied magnetic field will generate a
Lorentz force to damp the convective flow. The damping effect
depends on the strength of the applied magnetic field and its
ll rights reserved.

: +82 53 950 7954.
kar).
orientation with respect to the convective flow direction. Substan-
tial theoretical and numerical work thus far has appeared on the
magnetic damping of natural convection.

Langlois (1985) has made a detailed review on the effect of an
external magnetic field on Czochralski crystal growth. He con-
cluded that when the magnetic Reynolds number is very small, it
is not necessary to consider the complete MHD theory to investi-
gate the Czochralski flow. A theoretical analysis of the effect of
magnetic field on the source distribution in Czochralski grown
crystals has been given by Kobayashi (1986). A review on the sur-
face tension driven convection in the crystal growth melt flow has
been carried out by Schwabe (1988). Ozoe and Okada (1989) have
numerically investigated the effect of magnetic damping in a cubic
enclosure. They found that the strongest damping effect is
achieved when the magnetic field is applied perpendicular to the
hot wall. Venkatachalappa and Subbaraya (1993) investigated nat-
ural convection in a rectangular enclosure in the presence of a
vertical magnetic field. Their numerical results revealed that
the temperature and velocity fields are significantly modified by
the applied magnetic field. BenHadid and Henry (1997) studied
the damping effect of a steady convection in a 4 � 1 � 1 cavity with
a magnetic field applied in different directions. Their results were
in good agreement with the analytical predictions of Garandet
et al. (1992) and Alboussière et al. (1996).
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Nomenclature

A aspect ratio
B0 magnetic field strength
(B0r, B0x) magnetic field strength in (r, x) direction
D annulus gap
(Fr, Fx) electromagnetic force components in (r, x) direction
g acceleration due to gravity
Har Hartmann number due to radial magnetic field
Hax Hartmann number due to axial magnetic field
L height of the annulus
Ma Marangoni number
Nu Nusselt number
P pressure
Pr Prandtl number
Ra Rayleigh number
T dimensionless temperature
t dimensional time
(r, x) dimensional radial and axial co-ordinates
(R, X) dimensionless radial and axial co-ordinates
(ri, r0) radii of inner and outer cylinders
(u, v) dimensional velocity components in (r, x) direction
(U, V) dimensionless velocity components in (R, X) direction

Greek letters
b coefficient of thermal expansion

c coefficient of surface tension
g� dimensional vorticity
g dimensionless vorticity
h dimensional temperature
j thermal diffusivity
k radii ratio
m kinematic viscosity
q fluid density
r surface tension
re electrical conductivity
s dimensionless time
w dimensional stream function
W dimensionless stream function
Wmax,s maximum value of thermocapillary driven stream func-

tion

Subscripts
h condition at hot wall
c condition at cold wall.
0 reference state
max maximum value
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Carpenter and Homsy (1989) have studied the problem of com-
bined buoyancy and thermocapillary convection in a differentially
heated square cavity with a free surface. Numerical simulations of
combined buoyancy and surface tension driven convection in a
rectangular cavity have been performed by Rudraiah et al. (1995)
in the presence of a magnetic field. They found that the average
Nusselt number increases with Marangoni number, but decreases
with Hartmann number. Some notable studies on the numerical
simulation of combined buoyancy and/or thermocapillary convec-
tion in a differentially heated rectangular enclosures are due to
Strani et al. (1983), Srinivasan and Basu (1986), Bergman and
Ramadhyani (1986), Bergman and Keller (1988), Juel et al.
(1999), Moessner and Mueller (1999) and Gelfgat and Bar-Yoseph
(2001). The effect of magnetic field on the combined buoyancy and
thermocapillary driven convection in a rectangular enclosure con-
taining a heat generating substance has been numerically investi-
gated by Hossain et al. (2005). Their study was mainly focused
upon the magnetic field direction and the effect of a heat genera-
tion parameter on the flow and heat transfer. Ha and Kim (2005)
investigated the transient molten pool geometry during a laser
melting process with a deformable flat surface. The recent studies
on the natural convection in rectangular enclosure under the influ-
ence of magnetic field are by Lee and Hyun (2005) and Sarris et al.
(2005).

Vrentas et al. (1981) have studied the surface tension and buoy-
ancy driven convection in a vertical circular cylinder for a wide
range of aspect ratios. They determined the critical Marangoni
and Rayleigh numbers, structure of convective motion, and nature
of bifurcation branching. An experimental study of oscillatory ther-
mocapillary convection in cylindrical containers with a heating
wire placed along the axis of a vertical cylinder was performed
by Kamotani et al. (1992). From the experimental results they have
observed an oscillatory thermocapillary flow, beyond a certain
temperature difference between the container wall and the heating
wire. Schwabe et al. (2003) have performed microgravity experi-
ments on the thermocapillary convection in a cylindrical annulus
with a free liquid surface. They measured the critical temperature
difference for the onset of temperature oscillations detecting
hydrothermal waves. Sim et al. (2003) carried out numerical sim-
ulations of oscillatory thermocapillary convection in a cylindrical
annulus with a free liquid surface and found a steady and axisym-
metric convection at sufficiently low Reynolds numbers. Bauer and
Eidel (2007) analytically investigated the effect of aspect and diam-
eter ratios on the thermocapillary convection in an annular cylin-
drical container. Recently, Kim and Kim (2008) performed a
numerical investigation of two-dimensional axisymmetric thermo-
capillary convection during laser melting processes with deform-
able free surfaces. More recently, Kakarantzas et al. (2009)
demonstrated the effect of sinusoidal temperature on the magne-
tohydrodynamic natural convection in a cylindrical cavity.

Most of the previous studies found in the literature on the com-
bined buoyancy and surface tension driven convection were con-
centrated either on a rectangular cavity, with or without a
magnetic field, or on a cylindrical geometry without a magnetic
field. However, to the best of our knowledge, the problem of com-
bined buoyancy and surface tension driven convection in a vertical
cylindrical annulus with a free surface has not yet been studied in
the presence of a magnetic field. This problem attracts by its sheer
existence and intellectual curiosity, but its treatment and investi-
gation would be quite complex and expensive for the experiments.
Thus the objective of the present numerical study is to investigate
the effect of direction of magnetic field on the combined buoyancy
and surface tension driven convection in a vertical cylindrical
annulus, which is filled with an electrically conducting fluid.
2. Mathematical formulation

The physical configuration of the present study consists of a
cylindrical annular enclosure formed by two vertical, concentric
cylinders of inner and outer radii ri and r0, as shown schematically
in Fig. 1. The inner and outer walls of the annulus are isothermal,
but maintained at different temperatures, hh at the inner hot wall
and hc at the outer cold wall, resulting in a radial temperature gra-
dient. The free surface and bottom wall of the annulus are assumed
to be adiabatic, and all the walls are electrically insulated. The
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Fig. 1. Flow configuration and co-ordinate system.
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annular cavity is filled with an electrically conducting low Prandtl
number fluid, and is placed in a constant magnetic field. The fluid is
assumed to be Newtonian with constant physical properties (kine-
matic viscosity t, thermal diffusivity j, density q), except for the
density in the buoyancy term, which in the Boussinesq approxima-
tion linearly depends on the temperature in the axial momentum
equation. Assuming the axi-symmetry, a semi-vertical plane,
marked as PQRS in Fig. 1, is considered for the analysis.

The fluid is permeated by a uniform magnetic field B0 either in
the r- or x-direction. The effect of constant magnetic field is added
through the Lorentz force to the momentum equation. For calcula-
tion of this magnetic damping term, the low magnetic Reynolds
number approximation is used (Moreau, 1998). In this approxima-
tion, the induced magnetic field is considered to be very weak
when compared with the external magnetic field B0. This is true
for low magnetic Reynolds number flows as those of liquid-metal
flows used in laboratory scale experiments. A useful discussion
for the validity limits of this approximation in natural convection
flows can be found in Sarris et al. (2006). We also assumed that
the surface tension coefficient on the upper boundary is assumed
to vary linearly with the temperature, that is, r ¼ r0

½1� cðh� h0Þ�, where c ¼ ð�1=r0Þ @r@h is the temperature coefficient
of surface tension and the subscript 0 refers to the reference state.
Further it is assumed that, the upper (free) boundary is flat and the
fluid above the free surface is assumed to be a gas of negligible vis-
cosity and conductivity, and hence it will not influence the flow
and temperature fields in the fluid. Employing the above assump-
tions, the vorticity stream function form of the governing equa-
tions can be expressed as (Sankar et al., 2006):
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The unsteady terms are retained for the purpose of numerical
calculations, and the large-time converged solutions will be taken
as the steady state values. It may be noted Eqs. (1)–(4) of the cur-
rent formulation can be readily converted to a rectangular cavity
case by just substituting D = 0.

The non-dimensional variables used in the present study are gi-
ven by

U ¼ uD
j

A; V ¼ vL
jA

; T ¼ h� hc

hh � hc
; R ¼ r � ri

D
;

X ¼ x
L
; s ¼ tj

D2 ; g ¼ g�D2

t
; W ¼ w

rij
; D ¼ ro � ri ð5Þ

The initial and boundary conditions in dimensionless form are:

s ¼ 0 : U ¼ V ¼ T ¼ 0; W ¼ g ¼ 0; 0 6 R 6 1; 0 6 X 6 1:

s > 0 : W ¼ @W
@R
¼ 0; T ¼ 1; R ¼ 0;

W ¼ @W
@R
¼ 0; T ¼ 0; R ¼ 1;

W ¼ @W
@X
¼ 0;

@T
@X
¼ 0; X ¼ 0;

W ¼ @U
@X
¼ @

2W

@X2 ¼ 0;
@T
@X
¼ 0; X ¼ 1:

The dynamical condition on the upper free surface represents
the balance between the shear stress and surface tension gradient,
which is responsible for the establishment of thermocapillary flow
in the cavity. We also assumed that the free surface of the annulus
is maintained at adiabatic condition. This was a common assump-
tion in the analysis of combined buoyancy and surface tension dri-
ven convection in finite enclosures with a free surface. In the
convection heat transfer problems, the dominant heat transfer is
due to free convection from the hot wall. The existing studies have
estimated the heat loss by convection from the free surface to the
surrounding gas, and found that the magnitude of heat loss from
the free surface to the surrounding fluid is much lower than the
heat transfer from the hot wall to the adjacent fluid. Therefore,
the heat loss from the top free surface can be neglected and hence
the adiabatic condition at the free surface was reasonable. This
assumption has been used in many previous investigations in the
literature (Bergman and Keller, 1988; Rudraiah et al., 1995;
Hossain et al., 2005).
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To solve the vorticity at next time levels, the boundary conditions
on g has to be derived using the interior W values (Roache, 1972).
The value of vorticity on a solid boundary is deduced from the Taylor
series expansion of the stream function W near the walls. However,
at the free surface, the vorticity boundary condition is derived from
the dynamical condition between shear stress and surface tension
gradient. The boundary conditions for the vorticity is:

g ¼ ri

PrðRDþ riÞ

� �
@2W

@R2 ; R ¼ 0; R ¼ 1 and 0 6 X 6 1

g ¼ ri

A2PrðRDþ riÞ

 !
@2W

@X2 ; X ¼ 0 and 0 6 R 6 1

g ¼ @U
@X
¼ AMa

@T
@R

; X ¼ 1 and 0 6 R 6 1:

In the above equations A, Ra, Pr, Har, Hax, Ma and k are, respec-
tively, the aspect ratio, the Rayleigh number, the Prandtl number,
the Hartmann number due to radial and axial magnetic fields, the
Marangoni number and the radii ratio which are defined as below:
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D
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The overall heat transfer rate across the cavity is given by the
average Nusselt number, which is of central importance to many
technological applications. The average Nusselt number at the
hot wall is defined as

Nu ¼
Z 1

0
NudX; where Nu ¼ � @T

@R

����
R¼0

is the local Nusselt number ð6Þ
Table 1
Comparison of present results with annular cavity for A = 1 and k = 2.

Kumar and Kalam (1991) Present study

Ra ¼ 104 3.3047 3.3064

Ra ¼ 105 6.2681 6.2695

Ra ¼ 106 11.8889 11.8932

Table 2
Comparison of present results with rectangular cavity (k = 1) for A = 1.

Ra de Vahl
Davis (1983)

Le Quere and De
Roquefort (1985)

Ho and
Lin (1997)

Present
study

103 Nu 1.116 1.118 1.118 1.117
|W|max 1.174 1.175 – 1.175
Vmax 3.696 3.697 3.697 3.698

104 Nu 2.243 2.245 2.248 2.247
|W|max 5.081 5.074 – 5.077
Vmax 19.64 19.63 19.63 19.641

105 Nu 4.517 4.522 4.528 4.521
|W|max 9.121 9.619 – 9.617
Vmax 68.68 68.64 68.63 68.627

106 Nu 8.797 8.825 8.824 8.806
|W|max 16.41 16.81 – 16.421
Vmax 221.13 220.6 219.86 221.63
3. Numerical details and model verification

A finite difference technique based on the two-step Alternating
Direction Implicit (ADI) method has been employed to solve the vor-
ticity transport and the energy equations. In order to improve the
stability of the numerical scheme and to speed up the convergence,
the non-linear convective terms in the ADI method are approxi-
mated by second upwind differences. The diffusion terms are
approximated using the central differences. On the other hand, the
elliptic stream function equation is solved by the Successive Line
Over Relaxation (SLOR) method. The discretized algebraic equations
are arranged in tri-diagonal matrix form, which can be solved using
the Thomas algorithm. Due to addition of magnetic field, the vortic-
ity equation has two additional terms. In order to retain the second
order accuracy, these terms are also approximated by the central dif-
ferences. Finally, the velocity components are evaluated using the
central difference approximation to Eq. (4). A uniform grid is used
in the calculation domain and all numerical results are checked for
the grid independency. The mesh independency test is carried out
for both cases, with and without surface tension effects. The varia-
tion of average Nusselt number is monitored for a grid system of
41 � 41, 61 � 61, 81 � 81 and 101 � 101. To save the computational
time and also due to the negligible difference between the results
obtained from 81 � 81 and 101 � 101 grid systems, a 81 � 81 grid
system for A = 1 is used for further calculations. Similar tests were
also conducted for other aspect ratios to chose the optimum grid
sizes. The solution is considered to converge when the following
convergence criterion is satisfied:

P
i

P
jjU

new
i;j �Uold

i;j jP
i

P
jjU

new
i;j j

6 C
Here U is any variable W, g, T and C is a pre-specified constant,
usually set to 10�6.
3.1. Numerical model verification

To verify the numerical method developed for the present simu-
lation, the numerical results are compared with different benchmark
solutions available in the literature for the annular and rectangular
cavities in the absence of magnetic field and surface tension. Table
1 shows the comparison of average Nusselt number obtained by
the present study and that obtained by Kumar and Kalam (1991)
for the cylindrical annular enclosure. Further, by putting D = 0 in
the governing equations (rectangular cavity) of the present study,
the average Nusselt number is measured along the hot wall of the
cavity. The quantitative results are compared with the corresponding
solutions of de Vahl Davis (1983), Le Quere and De Roquefort (1985)
and Ho and Lin (1997) for the rectangular cavity and are given in
Table 2. From Tables 1 and 2, it can be seen that our numerical results
agree well with the earlier investigations over the entire range of
Rayleigh numbers, with maximum error less than 1.05%.
4. Results and discussion

The effect of axial and radial magnetic fields on the combined
buoyancy and surface tension driven convection of an electrically
conducting fluid is numerically investigated in an annular enclosure.
The numerical simulations are carried out for a wide range of phys-
ical and geometrical parameters like Rayleigh number
ð103

6 Ra 6 106Þ, Marangoni number ð102
6Ma 6 105Þ, Hartmann

number due to radial and axial magnetic fields ð0 6 Har;
Hax 6 100Þ and radii ratio ð1 6 k 6 10Þ in an annular enclosure with
aspect ratio A = 0.5, 1 and 2. The Prandtl number is fixed at 0.054,
which corresponds to liquid metals and semi-conductor melts. The
flow and temperature fields inside the annular enclosure are pre-
sented in terms of the streamlines and isotherms. The rate of heat
transfer at the hot wall is estimated from the average Nusselt num-
ber. The main aim of the present study is to investigate the interplay
between the magnetic, buoyancy and thermocapillary forces at dif-
ferent values of the physical parameters of the problem.



Fig. 2. Streamlines and isotherms for Har = Hax = 0, Ra = 104, Ma = 105, A = 1 and k = 2.

Fig. 3. Effect of radial magnetic field on the streamlines and isotherms for Har = 100, Hax = 0, Ma = 105, A = 1 and k = 2, (upper) Ra = 104 and (lower) Ra = 106.
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4.1. Effect of magnetic field in a square annulus

The hydrodynamic flow and thermal fields inside the annular
enclosure are exemplified by the streamlines and isotherms in
Fig. 2 in the absence of radial and axial magnetic fields. The basic
mechanism related with the flow generated by the buoyancy and
thermocapillary forces are strongly different from each other. The
thermocapillary effect is a surface tension driven phenomenon,
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and hence it primarily affects the flow near the free surface of the
annulus. On the other hand, the buoyancy driven convection is
caused by the temperature gradients present in the fluid, and as
a result, its effects are distributed in the bulk of the flow field.
Fig. 2 illustrates the interaction of these two forces at different val-
ues of the chosen parameters. Since the value of Rayleigh number
is lower, compared to the Marangoni number, the flow field in the
annulus is mainly dominated by the surface tension mechanism as
indicated by the strong anti-clockwise rotating flow near the free
surface. Also, the flow is strongly divided into two regions; an
upper vortex, where the motion is induced by the surface tension,
and the lower vortex is driven by the buoyancy force (Fig. 2). When
the buoyancy and thermocapillary forces are of equal strength, the
surface tension driven cell reduces in size and the buoyancy driven
cell grows stronger, and as the Rayleigh number increases, a strong
flow driven by the buoyancy force exists in the annular enclosure.
This is due to the increasing role played by the buoyancy force that
gradually overcomes the effect of thermocapillary force in the
cavity.

As regards to the effect of magnetic field on the flow and ther-
mal distributions in the square annulus, two different combina-
tions of Rayleigh and Marangoni numbers are considered in Figs.
3 and 4. The values of these two parameters are chosen in such a
way that the influence of buoyancy force is meager (Ra < Ma)
and dominant (Ra > Ma) to the thermocapillary force. The influence
Fig. 4. Effect of axial magnetic field on the streamlines and isotherms for Har = 0
of radial magnetic field strength (Har = 100) on the streamlines and
isotherms is shown in Fig. 3. For Ra = 104, the dominant flow in the
annulus is due to the thermocapillary force. The flow is mainly
developed near the free surface and a large vortex located in the
upper region of the cavity is dominating the flow structure as
shown in Fig. 3(upper). The isotherms near the free surface confirm
a similar behavior, as they move towards the hot wall, due to
strong thermocapillary effect. In the middle of the annulus, a weak
flow driven by the buoyancy force exists. From Fig. 3(upper), it can
be seen that the buoyancy driven convection is almost suppressed
by the strong radial magnetic field, which is further supported by
the nearly-parallel isotherms in the middle of the annulus. On
comparing Fig. 2, the magnitude of maximum stream function of
the thermocapillary and buoyancy driven cell is reduced due to
the damping effect produced by the radial magnetic field.

It is worth to mention that the Marangoni number can be as-
signed with a positive or negative sign. The positive value of the
Marangoni number augments the buoyancy driven convection,
whereas a negative Marangoni number opposes the natural con-
vection. In the present study, the Marangoni number is associated
with a negative sign, and thereby the surface tension forces coun-
teract with the buoyancy forces. That is, the buoyancy force has to
overcome the two opposing forces, namely the thermocapillary
force and the Lorentz force due to the applied magnetic field.
Hence, the buoyancy driven flow is strongly suppressed by the
, Hax = 100, Ma = 105, A = 1 and k = 2, (upper) Ra = 104 and (lower) Ra = 106.
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magnetic field at a small value of Rayleigh number. When the
buoyancy and thermocapillary forces are equal in magnitude, the
buoyancy force overcomes the counteracting thermocapillary and
magnetic forces, and the buoyancy driven cell exists near the mid-
dle of the annulus with the same strength as that of the surface
tension driven cell. However, as the Rayleigh number increases,
the buoyancy force dominates over the thermocapillary forces,
and a strong buoyancy driven flow prevails in the annulus. The iso-
therms reveal the temperature stratification in the annulus, the
magnetic field mainly suppresses the surface tension driven flow
(Fig. 3 lower).

The influence of an axial magnetic field (Hax = 100) on the
streamline and isotherm pattern is illustrated in Fig. 4. For the case
of Ma > Ra, due to the enhanced thermocapillary effect, the
strength of surface tension driven convection outweighs the buoy-
ancy driven convection in the annulus (Fig. 4 upper). The stronger
axial magnetic field completely suppresses the buoyancy driven
flow, and the surface tension driven convection is also suppressed
Fig. 5. Effect of (a) axial and (b) radial magnetic fields on the streamlines and isotherms
Har = 100 and Hax = 0.

Fig. 6. Effect of (a) axial and (b) radial magnetic fields on the streamlines and isotherms f
and in (b) Wmax,s = 7.0, Har = 100 and Hax = 0.
up to some extent. The less distorted isotherms signify the low
convective heat transfer. However, as the Rayleigh number is in-
creased to 106, a symmetric buoyancy driven flow exists with
two vortices at the centre of the annular cavity. For the same set
of parameters, compared to the radial magnetic field, the suppres-
sion of flow strength and temperature stratification is found to be
higher for the case of an axial magnetic field. In particular, the sur-
face tension driven flow is suppressed noticeably, as compared to
the radial magnetic field case (Figs. 3 and 4). This is reasonable
to expect, since the flow driven by the thermocapillary forces are
mainly confined to a smaller region near the top free surface, and
moves along the free surface. Thus, the direction of surface tension
flow is perpendicular to the axial magnetic field, and hence the
flow is suppressed more effectively by the axial magnetic field than
the radial magnetic field. As the Rayleigh number is increased to
106, the major portion of the annulus is occupied by the buoyancy
driven flow, and the surface tension flow is confined to a tiny
region near the top free surface (Fig. 4 lower). The nearly-parallel
for A = 0.5, k = 2, Ra = 104 and Ma = 105. In figure (a) Har = 0 and Hax = 100 and in (b)

or A = 2, k = 2, Ra = 104 and Ma = 105. In figure (a) Wmax,s = 2.6, Har = 0 and Hax = 100
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isotherms, for Ra < Ma, show a considerable variation towards the
hot wall, due to the presence of strong buoyancy driven
convection.

4.2. Effect of magnetic field in a shallow and tall annulus

The variations in the flow pattern and temperature distribution
with respect to aspect ratio will be of much interest, when aspect
ratio of the annulus changes from unity, and are given in Figs. 5
and 6 for Ra = 104 and Ma = 105 as a representative case. In the
shallow annulus, since the Rayleigh number is less than the
Marangoni number, the thermocapillary effects are stronger rela-
tive to the effects due to buoyancy force, and hence the annulus
is mainly occupied with surface tension driven cell (Fig. 5). The
streamline and isotherm pattern indicates that the buoyancy
Fig. 7. Effect of radial and axial magnetic fields on the axial velocity at the
driven convection is completely suppressed by the axial magnetic
field, when the Marangoni number is higher than the Rayleigh
number. But, as the Rayleigh and Marangoni numbers are equal,
the buoyancy driven convection begins to exist in the cavity and
accelerates the flow in clockwise direction. Furthermore, when
Ra > Ma, the buoyancy driven convection outweighs the thermo-
capillary convection, and hence the entire annular cavity is filled
with the buoyancy driven flow. For the same set of parameters, if
the flow and thermal fields are compared between the radial and
axial magnetic fields, one can clearly observe that the flow and
heat transfer in the annular cavity is more effectively suppressed
by the axial magnetic field rather than the radial magnetic field
(Fig. 5). Another important observation that can be made from
Fig. 5 is that the surface tension flow is effectively suppressed by
the axial magnetic field compared to the radial magnetic field. This
mid-height of the annular cavity for Ra = 106, Ma = 104, k = 2 and A = 2.
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is due to the fact that the external magnetic field suppresses the
flow more effectively when its direction is normal to the main flow.
In a shallow annulus, the main flow will be along the horizontal
direction, and hence the convective flow can be efficiently sup-
pressed by an axial magnetic field.

The effect of axial and radial magnetic fields on the flow pattern
and temperature distribution in a tall annulus (A = 2) is shown in
Fig. 6. Since the buoyancy force is smaller, the stabilizing effect
of magnetic field dominates over the destabilizing effect of buoy-
ancy, while the opposite holds if the magnitude of the temperature
gradient is sufficiently large. When the surface tension force is
higher than the buoyancy force, the existence of buoyancy driven
cell depends on the direction of magnetic field. For the axial mag-
netic field, a weak buoyancy driven cell exists near the bottom,
whereas its existence is suppressed for the case of radial magnetic
Fig. 8. Effect of radial and axial magnetic fields on the average
field. A careful observation of Fig. 6 reveals that the magnitude of
jWmax;sj, which determines the strength of surface tension flow, is
relatively higher for the case of radial magnetic field compared
to the axial magnetic field. Also, when the radial magnetic field
is applied, the surface tension driven flow is confined to a smaller
region along the free surface. Though the area occupied by the sur-
face tension flow is smaller, it exhibits a greater flow velocity along
the free surface (Fig. 6b). This indicates that the axial (radial) mag-
netic field suppresses the surface tension (buoyancy) flow more
effectively than the radial (axial) magnetic field. Thus, it can be
concluded that the magnetic field suppresses the flow more effec-
tively when it is applied perpendicular to the flow direction. Fig. 7
exemplifies the effect of radial and axial magnetic fields on the ver-
tical velocity profiles at the mid-height of the annulus (X = 0.5) for
different values of Har, Hax and A = 2. The effect of magnetic field
Nusselt number for Ra = 106, Ma = 104, k = 2 and A = 0.5.



Fig. 9. Effect of radii ratio k on the average Nusselt number for A = 1, Har = 40, Hax = 0 and Ma = 103.
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on the flow velocity is more evident from these profiles as they
change appreciably when Har and Hax increases. In particular,
since the annulus is tall, the axial velocity is more effectively sup-
pressed by the radial magnetic field than the axial magnetic field.
The figure reveals that the axial velocity decreases with the Hart-
man number in radial direction, which indicates that the convec-
tive intensity is reduced and the heat transfer between the two
side walls is dominated by heat conduction gradually.

4.3. Effect of magnetic field on heat transfer

Fig. 8 illustrates the variation of average Nusselt number for dif-
ferent values of Har, Hax in a shallow annulus (A = 0.5). From the
figure, it can be ascertained that the suppression of heat transfer
is more in the case of an axial magnetic field compared to the radial
magnetic field. This reveals the fact that the heat transfer in shal-
low enclosures can be effectively suppressed by applying an axial
magnetic field rather than a radial magnetic field. The important
geometrical parameter in the annular enclosure is its curvature ef-
fect and is given by the non-dimensional parameter namely, the
radii ratio. For the sake of brevity, the effect of radii ratio on the
streamline and isotherm plots are omitted. In order to have a bet-
ter understanding of the radii ratio on the heat transfer from the
hot wall, the rate of heat transfer along the hot wall is measured
in terms of the average Nusselt number Nu and is depicted in
Fig. 9 at different values of Rayleigh number and radii ratio. The ef-
fect of radii ratio on the average heat transfer rate is apparent from
Fig. 9 at all Rayleigh numbers. Introduction of curvature effect in-
creases the average Nusselt number on the inner wall. This is
mainly due to the modification of temperature and velocity fields
in the annulus. The boundary layer temperature profiles are
strongly affected and a lower sink temperature for the inner
boundary layer results as the radius ratio is increased. However,
it is observed that the heat transfer rate decreases at all radii ratios,
when the magnetic field is applied to the flow.

5. Conclusions

Numerical computations has been carried out to assess the ef-
fect of a radial or axial magnetic field on the combined buoyancy
and surface tension driven convection in a cylindrical annular cav-
ity by solving the Navier–Stokes equations for a wide range of
physical parameters. From the results presented, the following
main conclusions are drawn:

� For smaller and moderate Rayleigh numbers, the buoyancy dri-
ven convective flow has been controlled effectively by the mag-
netic field. On the contrary, for high Rayleigh number, the
magnetic field is effective in suppressing the thermocapillary
driven convective flow in the annulus.
� The magnetic field is more effective in suppressing the heat

transfer when it is perpendicularly applied to the direction of
the primary flow. That is, in shallow cavities, the axial magnetic
field is found to be better in controlling the flow and heat
transfer.
� In tall cavities, the axial magnetic field suppresses the surface

tension flow more effectively than the radial magnetic field.
On the contrary, the radial magnetic field is found to be better
in suppressing the buoyancy driven flow compared to axial
magnetic field.
� The quantitative results, presented in terms of the average

Nusselt number, indicate that the heat transfer rate
increases with radii ratio and decreases with the Hartmann
number.
� From the results, we also found that the surface tension effect is

predominant in the shallow cavities compared to the square
and tall annulus. Further, The surface tension forces induces a
bicellular flow in shallow and square enclosures.
Acknowledgement

M. Venkatachalappa was supported by UGC under CAS Pro-
grammes, and M. Sankar and Y. Do were supported by WCU
(World Class University) program through the Korea Science
and Engineering Foundation funded by the Ministry of
Education, Science and Technology (Grant No. R32-2009-000-
20021-0). The author M. Sankar would like to acknowledge the
support and encouragement of Chairman and Principal of EPCET,
Bangalore, India.



412 M. Sankar et al. / International Journal of Heat and Fluid Flow 32 (2011) 402–412
References

Alboussière, T., Garandet, J.P., Moreau, R., 1996. Asymptotic analysis and symmetry
in MHD convection. Phys. Fluids 8, 2215–2226.

Bauer, H.F., Eidel, W., 2007. Thermocapillary convection in an annular cylindrical
container. Heat Mass Transfer 43, 217–232.

BenHadid, H., Henry, D., 1997. Numerical study of convection in the horizontal
Bridgman configuration under that action of a constant magnetic field. Part2.
Three-dimensional flow. J. Fluid Mech. 333, 57–83.

Bergman, T.L., Ramadhyani, S., 1986. Combined buoyancy and thermocapillary
driven convection in open square cavities. Numer. Heat Transfer, Part A 9,
441–451.

Bergman, T.L., Keller, J.R., 1988. Combined buoyancy, surface tension flow in liquid
metals. Numer. Heat Transfer, Part A 13, 49–63.

Carpenter, B.M., Homsy, G.M., 1989. Combined buoyant thermocapillary flow in a
cavity. J. Fluid Mech. 207, 121–132.

de Vahl Davis, G., 1983. Natural convection of air in a square cavity: a bench mark
numerical solution. Int. J. Numer. Methods Fluids 3, 249–264.

Garandet, J.P., Alboussière, T., Moreau, R., 1992. Buoyancy-driven convection in a
rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass
Transfer 35, 741–748.

Gelfgat, A.Y., Bar-Yoseph, P.Z., 2001. Effect of an external magnetic field on
oscillatory instability of convective flows in rectangular cavity. Phys. Fluids 13,
2269–2278.

Ha, E.J., Kim, W.S., 2005. A study of low-power density laser welding process with
evolution of free surface. Int. J. Heat Fluid Flow 26, 613–621.

Ho, C.J., Lin, F.H., 1997. Simulation of natural convection in a vertical enclosure by
using a new incompressible flow formulation: pseudovorticity–velocity
formulation. Numer. Heat Transfer, Part A 31, 881–896.

Hossain, A., Hafizb, M.Z., Rees, D.A.S., 2005. Buoyancy and thermocapillary driven
convection flow of an electrically conducting fluid in an enclosure with heat
generation. Int. J. Therm. Sci. 44, 676–684.

Juel, A., Mullin, T., Ben Hadid, H., Henry, D., 1999. Magnetohydrodynamic
convection in molten gellium. J. Fluid Mech. 378, 97–118.

Kakarantzas, S.C., Sarris, I.E., Grecos, A.P., Vlachos, N.S., 2009. Magnetohydro-
dynamic natural convection in a sinusoidal upper heated cylindrical cavity. Int.
J. Heat Mass Transfer 52, 250–259.

Kamotani, Y., Lee, J.H., Ostrach, S., 1992. An experimental study of oscillatory
thermocapillary convection in cylindrical containers. Phys. Fluids A4 (5),
955–962.

Kim, Y.-D., Kim, W.-S., 2008. A numerical analysis of heat and fluid flow with a
deformable curved free surface in a laser melting process. Int. J. Heat Fluid Flow
29 (5), 1481–1493.

Kobayashi, S., 1986. Effects of an external magnetic field on source distribution in
Czochralski grown crystals – a theoretical analysis. J. Crystal. Growth 75,
301–308.
Kumar, R., Kalam, M.A., 1991. Laminar thermal convection between vertical co-axial
isothermal cylinders. Int. J. Heat Mass Transfer 34 (2), 513–524.

Langlois, W.E., 1985. Buoyancy-driven flows in crystal growth melts. Ann. Rev. Fluid
Mech. 17, 191–215.

Le Quere, P., De Roquefort, T.A., 1985. Computation of natural convection in two
dimensional cavity with chebyshev polynomials. J. Comp. Phys. 57, 210–228.

Lee, S.H., Hyun, J.M., 2005. Transient buoyant convection of air in an enclosure
under strong magnetic effect. Int. J. Heat Mass Transfer 48, 3097–3106.

Moessner, R., Mueller, U., 1999. A numerical investigation of three dimensional
magneto-convection in rectangular cavities. Int. J. Heat Mass Transfer 42,
1111–1121.

Moreau, R., 1998. Magnetohydrodynamics. Kluwer Academic, London.
Ozoe, H., Okada, H., 1989. The effect of the direction of the external magnetic field

on the three-dimensional natural convection in a cubic enclosure. Int. J. Heat
Mass Transfer 32, 1939–1954.

Roache, P.J., 1972. Computational Fluid Dynamics. Hermosa, Albuquerque, NM.
Rudraiah, N., Venkatachalappa, M., Subbaraya, C.K., 1995. Combined surface tension

and buoyancy-driven convection in a rectangular open cavity in the presence of
a magnetic field. Int. J. Non-Linear Mech. 30 (5), 759–770.

Sankar, M., Venkatachalappa, M., Shivakumara, I.S., 2006. Effect of magnetic field on
natural convection in a vertical cylindrical annulus. Int. J. Eng. Sci. 44,
1556–1570.

Sarris, I.E., Kakarantzas, S.C., Grecos, A.P., Vlachos, N.S., 2005. MHD natural
convection in a laterally and volumetrically heated square cavity. Int. J. Heat
Mass Transfer 48, 3443–3453.

Sarris, I.E., Zikos, G.K., Grecos, A.P., Vlachos, N.S., 2006. On the limits and validity of
the low magnetic Reynolds number approximation in MHD natural convection
heat transfer. Numer. Heat Transfer, Part B 50, 157–180.

Schwabe, D., Zebib, A., Sim, B.-C., 2003. Oscillatory thermocapillary convection in
open cylindrical annuli. Part 1. Experiments under microgravity. J. Fluid Mech.
491, 239–258.

Schwabe, D., 1988. Surface-tension-driven flow in crystal growth melts. Crystals 11,
75–112.

Sim, B.-C., Zebib, A., Schwabe, D., 2003. Oscillatory thermocapillary convection in
open cylindrical annuli. Part 2. Simulations. J. Fluid Mech. 491, 259–274.

Srinivasan, J., Basu, B., 1986. A numerical study of thermocapillary flow in a
rectangular cavity during laser melting. Int. J. Heat Mass Transfer 29, 563–572.

Strani, M., Piva, R., Graziani, G., 1983. Thermocapillary convection in a rectangular
cavity: asymptotic theory and numerical simulation. J. Fluid Mech. 130,
347–376.

Venkatachalappa, M., Subbaraya, C.K., 1993. Natural convection in a rectangular
enclosure in the presence of a magnetic field with uniform heat flux from the
side wall. Acta Mech. 96, 13–26.

Vrentas, J.S., Narayana, R., Agrawal, S.S., 1981. Free surface convection in a bounded
cylindrical geometry. Int. J. Heat Mass Transfer 24, 1513–1529.


	Effect of magnetic field on the buoyancy and thermocapillary driven convection  of an electrically conducting fluid in an annular enclosure
	Introduction
	Mathematical formulation
	Numerical details and model verification
	Numerical model verification

	Results and discussion
	Effect of magnetic field in a square annulus
	Effect of magnetic field in a shallow and tall annulus
	Effect of magnetic field on heat transfer

	Conclusions
	Acknowledgement
	References


