

On coefficients of edge domination polynomial of a graph

B. Chaluvaraju & V. Chaitra

To cite this article: B. Chaluvaraju & V. Chaitra (2016) On coefficients of edge domination polynomial of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 19:2, 413-423, DOI: 10.1080/09720529.2015.1107974

To link to this article: http://dx.doi.org/10.1080/09720529.2015.1107974

-	1	(<u>}</u>
Г			

Published online: 14 Jun 2016.

Submit your article to this journal 🕑

Article views: 1

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdmc20

On coefficients of edge domination polynomial of a graph

B. Chaluvaraju * V. Chaitra[†] Department of Mathematics Bangalore University, Central College Campus Bangalore -560 001 India

Abstract

An edge domination polynomial of a graph *G* is the polynomial $D_e(G,x) = \sum_{t=\gamma_e(G)}^m d_e(G,t)x^t$, where $d_e(G,t)$ is the number of edge dominating sets of *G* of cardinality *t*. In this paper, we provide tables which contain coefficient of edge domination polynomial of path and cycle. Also, certain properties of edge dominating polynomial are given.

Keywords: Graph, edge domination number, domination polynomial, edge domination polynomial. **2010** *Mathematics Subject Classication:* 05C69, 05C70

1. Introduction

All the graphs G = (V, E) considered here are simple, finite, nontrivial and undirected, where |V| = n denotes number of vertices and |E| = mdenotes number of edges of *G*. Let $V = V_1 \cup V_2$, where V_1 and V_2 be two partitions of the vertex set of *G*. The graph G^c is called complement of a graph *G*, if *G* and G^c have the same vertex set and two vertices are adjacent in *G* if and only if they are not adjacent in G^c . The line graph of a graph

^tE-mail: chaitrashok@gmail.com

^{*}E-mail: bchaluvaraju@gmail.com

G, denoted by L(G) is derived graph where the vertices of L(G) are the lines of *G*, with two vertices of L(G) adjacent whenever the corresponding lines of *G* are adjacent. A collection of independent edges of a graph *G* is called a matching of *G*. If there is a matching consisting of all vertices of *G* it is called a perfect matching. The number of distinct subsets with

r vertices that can be selected from a set with *n* vertices is denoted by $\binom{n}{r}$

or $nC_r = \frac{n!}{(n-r)!r!}$. This number $\binom{n}{r}$ is called a binomial coefficient. For

any undefined term in this paper, we refer Harary [7].

A set $D \subseteq V$ is a dominating set if every vertex not in D is adjacent to one or more vertices in D. The minimum cardinality taken over all dominating sets in G is called domination number $\gamma(G)$. For a complete review on theory of domination, we follow [8].

A set $S \subseteq E$ is an edge dominating set if every edge not in S is adjacent to one or more vertices in S. The minimum cardinality taken over all edge dominating sets in G is called edge domination number $\gamma_e(G)$. The concept of edge domination was initiated by Mitchell et al.[10] and studied by [5], [9] and [11].

A domination polynomial of a graph *G* is the polynomial $D(G,x) = \sum_{t=\gamma(G)}^{n} d(G,t)x^{t}$, where d(G, t) is number of dominating sets of *G* of cardinality *t*. Domination polynomial was initiated by Arocha et al. [4] and later studied by Alikhani et al. [1], [2] and [3].

Analogously, edge domination polynomial was studied by Askari et al. [5]. An edge domination polynomial of a graph *G* is the polynomial $D_e(G,x) = \sum_{t=\gamma_e(G)}^{m} d_e(G,t)x^t$, where $d_e(G, t)$ is the number of edge dominating sets of *G* of cardinality *t*. In this paper, we obtain further results on edge domination polynomial.

An element *a* is said to be zero of a polynomial f(x) if f(a) = 0. An element *a* is called a zero of a polynomial of multiplicity *p* if $(x-a)^p / f(x)$ and $(x-a)^{p+1}$ is not a divisor of f(x). A polynomial in which coefficient of highest order term is 1 is monic polynomial.

2. Results

Theorem 2.1: For any nontrivial graph G,

(i) $d_e(G,t) \neq 0$ for $t = \gamma_e(G)$ to m.

- (ii) $D_{e}(G, x)$ does not have a constant term.
- (iii) $D_{e}(G, x)$ is a monic polynomial.
- (iv) $x^{\gamma_e(G)}$ is a divisor of $D_e(G, x)$.
- (v) x = 0 is the zero of $D_{e}(G, x)$ of multiplicity $\gamma_{e}(G)$.

(vi) $d_{\rho}(G, m) = 1$ and $d_{\rho}(G, m-1) = m$.

Proof: Let *G* be a graph with *n* vertices and *m* edges.

- (i) d_e(G,t) denotes number of edge dominating sets with cardinality t. As nontrivial graph will have an edge dominating set of minimum cardinality 1, (i) follows.
- (ii) As $D_e(G, x) = \sum_{t=\gamma_e(G)}^m d_e(G, t) x^t$ and $\gamma_e(G) \ge 1$, it follows that every term of $D_e(G, x)$ has an x in it. Hence there is no constant term.
- (iii) Coefficient of x^m in $D_e(G, x)$ is $d_e(G, m)$ which is the number of edge dominating set with cardinality m. That is $d_e(G, m) = mC_m = 1$. Highest power of x in $D_e(G, x)$ is 1 which implies $D_e(G, x)$ is a monic polynomial.
- (iv) Since *t* ranges from $\gamma_e(G)$ to *m*, least power of *x* is $\gamma_e(G)$ and highest power of *x* is *m*. Also from (ii) $D_e(G, x)$ has no constant term. Hence $\gamma_e(G)$ is a divisor of $D_e(G, x)$.
- (v) If $D_e(G,x) = 0$, from (iv) it follows that x = 0 is zero of D(G,x) of multiplicity $\gamma_e(G)$.
- (vi) $d_e(G,m) = mC_m = 1$ and $d_e(G,m-1) = mC_{m-1} = m$.

Theorem 2.2: For any graph $G \cong K_{rs}$ with $1 \le r \le s$ vertices,

$$D_e(G, x) = [(1+x)^s - 1]^r.$$

Proof: We shall prove the result for r = 1. As $\gamma_e(G) = \gamma(L(G))$, we shall find domination set of L(G). If $G \cong K_{1,s}$, $L(G) \cong K_s$, for which $\gamma(L(G)) = 1$. For d(L(G),1): choose any one vertex from s vertices of L(G), which can be done in sC_1 ways. For d(L(G),2) choose 2 vertices out of s vertices which can be done in sC_2 ways. Continuing this procedure till s terms, $d(L(G),s) = sC_s$. The edge domination polynomial for r = 1 is $D_e(G,x) = D(L(G),x) = \sum_{r=1}^s d(L(G),r) = sC_1x + sC_2x^2 + \dots + sC_sx^s = (1+x)^s - 1$.

For r = 2, that is $|V_1| = 2$ and $|V_2| = s \ge 2$. Thus the number of edges of *G* are 2*s* edges. Let E_1 be set of edges incident to a vertex of V_1 and E_2 be set of edges incident to another vertex of V_1 . An edge of E_1 dominates remaining (s - 1) edges of E_1 . Similarly an edge of E_2 dominates remaining (s - 1) edges of E_2 . Thus $\gamma_e(G) = 2$ and $t \in \{2, 3, ..., 2s\}$. The edges of E_1 along with vertices on which they are incident forms graph $K_{1,s}$ and similarly edges of E_2 along with vertices on which they are incident forms graph $K_{1,s}$. For an edge dominating set *E* of cardinality *t*, all *t* vertices cannot be selected only from E_1 or only from E_2 as it leads to contradiction of *E* being edge dominating set. Hence *j* edges are selected from E_1 and (t - j) edges are selected from E_2 . The total number of ways of doing this is the coefficient of x^t in $D_e(K_{1,s}, x)D_e(K_{1,s}, x)$. Hence $D_e(G, x) = [(1+x)^s - 1]^2$.

The above method can be followed to prove the result for a graph *G* with $|V_1| = r$.

To prove next result, we use the following definition:

The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 , where i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 .

Theorem 2.3: Let $H = K_n^c \circ K_1$, be corona of graphs K_n^c and K_1 with $n \ge 1$ vertices. Then,

$$D_{e}(H,x) = x^{n},$$

where K_n^c is complement of complete graph.

Proof: Since K_n^c has *n* vertices, *H* has 2n vertices connected by *n* edges. There is a perfect matching. The edge dominating set of *H* consist of all the edges of *H*. Hence $D_e(H, x) = x^n$.

To prove next result, we use Theorem stated and proved in [3].

Theorem 2.4: For any path P_n with $n \ge 4$ vertices,

- (i) $d(P_{n,t}) = d(P_{n-1}, t-1) + d(P_{n-2}, t-1) + d(P_{n-3}, t-1).$
- (ii) $D(P_n, x) = x[D(P_{n-1}, x) + D(P_{n-2}, x) + D(P_{n-3}, x)].$

Theorem 2.5: For any path p_n with $n \ge 5$ vertices,

- (i) $d_e(P_n,t) = d_e(P_{n-1},t-1) + d_e(P_{n-2},t-1) + d_e(P_{n-3},t-1).$
- (ii) $D_e(P_n, x) = x[D_e(P_{n-1}, x) + D_e(P_{n-2}, x) + D_e(P_{n-3}, x)].$

Proof: For any graph *G*, edge domination of *G* is same as vertex domination of line graph of *G* and for a path P_n , $L(P_n) \cong P_{n-1}$. Hence in the above theorem replace *n* by n - 1, that is $d_e(P_n, t) = d(P_{n-1}, t)$ and $D_e(P_n, x) = D(P_{n-1}, x)$. Hence the proof.

With this theorem we form a table for $d_e(P_{n'}t)$.

	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
п																
1		-														
2		1														
3		2	1													
4		1	3	1												
5		0	4	4	1											
6		0	3	8	5	1										
7		0	1	10	13	6	1									
8		0	0	8	22	19	7	1								
9		0	0	4	26	40	26	8	1							
10		0	0	1	22	61	65	34	9	1						
11		0	0	0	13	70	20	98	43	10	1					
12		0	0	0	5	61	71	211	140	53	11	1				
13		0	0	0	1	40	92	356	343	192	64	12	1			
14		0	0	0	0	19	71	483	665	526	255	76	13	1		
15		0	0	0	0	6	20	534	050	1148	71	330	89	14	1	

417

Theorem 2.6. *From the above table, we get following properties:*

(i)
$$d_e(P_n, n-1) = 1.$$

(ii)
$$d_e(P_n, n-2) = n-1.$$

(iii)
$$d_e(P_n,t) = 0$$
 for $t \le \left\lceil \frac{n-1}{3} \right\rceil$

(iv)
$$d_e(P_{3n+1}, n) = 1.$$

(v)
$$d_e(P_n, n-3) = (n-1)C_2 - 2$$

(vi)
$$d_e(P_{3n}, n) = n+1$$

(vii)
$$d_e(P_{3n-1}, n) = \frac{(n+1)(n+2)}{2} - 2$$

(viii) For $n \in N$ and k = 0, 1, 2, ..., n - 1,

$$d_e(P_{2n+2+k}, n) = d_e(P_{2n-k}, n)$$

Proof: Let $G \cong P_n$ with $n \ge 2$ vertices. Then G has m = (n - 1) edges.

- (i) For $d_e(P_n, n-1)$, choose (n-1) edges from (n-1) edges of *G* which can be done in $(n-1)C_{(n-1)}$ ways.
- (ii) For $d_e(P_n, n-2)$, choose (n-2) edges from (n-1) edges of *G* which can be done in $(n-1)C_{n-2} = n-1$ ways.
- (iii) For a path with m = n 1 edges, for every three edges there is one dominating edge belonging to the edge dominating set. For $m \ge 4$ there is no edge dominating set with cardinality one. Also for $m \ge 7$ there is no edge dominating set with cardinality one and

two. Hence
$$d_e(G,t) = 0$$
 for $t \le \left|\frac{m}{3}\right|$

(iv) From Theorem 2.5, $d_e(P_{3n+1}, n) = d_e(P_{3n}, n-1) + d_e(P_{3n-1}, n-1) + d_e(P_{3n-2}, n-1)$. Since $d_e(P_4, 1) = 1$ and from (i), (ii) and (iii) result follows.

(v) We shall prove this result by induction hypothesis on n - 1 with the condition $d_e(P_4, 1) = 1$. Assume the result to be true for a graph *G* with (n - 2) edges. We shall prove the result for a graph with n-1 edges. From Theorem 2.5, $d_e(P_n, n-3) = d_e(P_{n-1}, n-4) + d_e(P_{n-2}, n-4) + d_e(P_{n-3}, n-4)$. From (i) and (ii)

$$d_e(P_n, n-3) = (n-2)C_2 - 2 + n - 3 + 1,$$

= (n-1)C_2 - 2.

(vi) We shall prove this result by induction hypothesis on *n* with the condition $d_e(P_2, 1) = 2$. Assume the result to be true for a graph *G* with (n - 1) edges. We shall prove the result for a graph with *n* edges. From Theorem 2.5, $d_e(P_{3n}, n) = d_e(P_{3n-1}, n-1) + d_e(P_{3n-2}, n-1) + d_e(P_{3n-3}, n-1)$. From (iii)

$$d_e(P_{3n},n) = d_e(P_{3(n-1)+2},n-1) + d_e(P_{3(n-1)+1},n-1) + d_e(P_{3(n-1)},n-1),$$

= 1+n.

(vii) We shall use induction hypothesis to prove the result. Assume the result is true for a graph G with (n - 1) edges. We shall prove the result for a graph with n edges. From theorem 2.5,

$$\begin{aligned} d_e(P_{3n-1},n) &= d_e(P_{3n-2},n-1) + d_e(P_{3n-3},n-1) + d_e(P_{3n-4},n-1), \\ &= d_e(P_{3(n-1)+1},n-1) + d_e(P_{3(n-1)},n-1) + d_e(P_{3(n-1)-1},n-1). \end{aligned}$$

Using results of (iii) and (iv), we have

$$d_e(P_{3n-1},n) = 1+n-1+1+\frac{n(n+1)}{2}-2,$$

= $\frac{(n+1)(n+2)}{2}-2.$

(viii) The proof is by induction hypothesis on *n*. Since $d_e(P_2, 1) = d_e(p_4, 1)$, the result is true for n = 1. Assume the result to be true for n - 1 edges. We shall prove the result in a graph with *n* edges. By Theorem 2.5,

$$d_e(P_{2n-k}, n) = d_e(P_{2n-1-k}, n-1) + d_e(P_{2n-2-k}, n-1) + d_e(P_{2n-3-k}, n-1),$$

$$\begin{split} &= d_e(P_{2(n-1)+1-k}, n-1) + d_e(P_{2(n-1)-k}, n-1) + d_e(P_{2(n-1)-1-k}, n-1), \\ &= d_e(P_{2(n-1)+2+k-1}, n-1) + d_e(P_{2(n-1)+2+k}, n-1) + d_e(P_{2(n-1)+2+k+1}, n-1)) \\ &= d_e(P_{2n-1+k}, n-1) + d_e(P_{2n+k}, n-1) + d_e(P_{2n+1+k}, n-1), \\ &= d_e(P_{2n+2+k}, n). \end{split}$$

To prove our next result, we make use of the following Theorem [2].

Theorem 2.7: For any cycle C_n with $n \ge 4$ vertices,

(i) $d(C_n,t) = d(C_{n-1},t-1) + d(C_{n-2},t-1) + d(C_{n-3},t-1).$

(ii)
$$D(C_n, x) = x[D(C_{n-1}, x) + D(C_{n-2}, x) + D(C_{n-3}, x)].$$

Theorem 2.8: For any cycle C_n with $n \ge 5$ vertices,

- (i) $d_e(C_n,t) = d(C_{n-1},t-1) + d(C_{n-2},t-1) + d(C_{n-3},t-1).$
- (ii) $D_e(C_n, x) = x[D(C_{n-1}, x) + D(C_{n-2}, x) + D(C_{n-3}, x)].$

Proof: As the edge domination of *G* is same as the vertex domination of line graph L(G) of *G*. For C_n , $L(C_n) \cong C_n$. Hence, from above Theorem the result follows.

From the above Theorem, we form a table 2 for $d_e(C_{n'}t)$

	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
п																
3		3	3	1												
4		0	6	4	1											
5		0	5	10	5	1										
6		0	3	14	15	6	1									
7		0	0	14	28	21	7	1								
8		0	0	8	38	48	28	8	1							
9		0	0	3	36	81	75	36	9	1						
10		0	0	0	25	102	150	110	45	10	1					
11		0	0	0	11	99	231	253	154	55	11	1				
12		0	0	0	3	72	282	456	399	208	66	12	1			
13		0	0	0	0	39	273	663	819	598	273	78	13	1		
14		0	0	0	0	14	210	786	1372	1372	861	350	91	14	1	
15		0	0	0	0	3	125	765	1905	2590	2178	1200	440	105	15	1

Theorem 2.9: *From the above table, we get following properties:*

- (i) $d_e(C_n, m) = 1.$
- (ii) $d_e(C_n, m-1) = m.$
- (iii) $d_e(C_n,t) = 0$ for $t \le \left\lceil \frac{m}{3} \right\rceil$.
- (iv) $d_e(C_n, m-2) = mC_2$.
- (v) $d_e(C_{3n}, m) = 3.$
- (vi) $d_e(C_{3n-1}, m) = 3m-1.$
- (vii) $D_e(C_{3n+1}, m+1) = \frac{m(3m+7)+2}{2}$.

Proof: Let $G \cong C_n$ with $n \ge 3$ vertices.

- (i) For d_e(C_n, m), from m edges of G choose m edges which can be done in mC_m ways.
- (ii) For $d_e(C_n, m-1)$, choose (m-1) edges from m edges of G which can be done in mC_{m-1} ways.
- (iii) For a cycle with *m* edges, for every three edges there is one dominating edge belonging to the edge dominating set. For $m \ge 4$ there is no edge dominating set with cardinality one. Also for $m \ge 7$ there is no edge dominating set with cardinality one and two.

Hence
$$d_e(G,t) = 0$$
 for $t \le \left| \frac{m}{3} \right|$.

- (iv) For $d_e(C_n, m-2)$, choose (m-2) edges from m edges which can be done in $mC_{m-2} = mC_2$ ways.
- (v) To prove this result, we shall use mathematical induction with $d_e(C_3, 1) = 3$. Assume the result to be true for a graph *G* with (m 1) edges. From Theorem 2.8, $d_e(C_{3n}, m) = d_e(C_{3n-1}, m-1) + d_e(C_{3n-2}, m-1) + d_e(C_{3n-3}, m-1)$. Using (iii), the result follows.
- (vi) We shall prove this result by induction hypothesis. Assume the result to be true for a graph *G* with (m 1) edges. We shall

prove the result for a graph with *m* edges. From Theorem 2.8, $d_e(C_{3n-1},m) = d_e(C_{3n-2},m-1) + d_e(C_{3n-3},m-1) + d_e(C_{3n-4},m-1)$. Also from (iii) and (v),

$$d_e(C_{3n-1},m) = d_e(C_{3n-2},m-1) + d_e(C_{3(n-1)},m-1) + d_e(C_{3(n-1)-1},m-1),$$

= 3 + 3(m-1) - 1 = 3m - 1.

(vii) We use mathematical induction to prove the result. Assume the result to be true for a graph *G* with (m - 1) edges. From Theorem 2.8, $d_e(C_{3n+1}, m+1) = d_e(C_{3n}, m) + d_e(C_{3n-1}, m) + d_e(C_{3n-2}, m)$. Using (v) and (vi),

$$d_e(C_{3n+1}, m+1) = 3 + 3m - 1 + \frac{(m-1)(3m+4) + 2}{2},$$
$$= \frac{m(3m+7) + 2}{2}.$$

References

- [1] S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, *Ars Combinatoria*, 114(2014) 257-266.
- [2] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of certain graphs II, *Opuscula Mathematica*, 30(1)(2010) 37-51.
- [3] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of paths, *Int. J. of Math. Math. Sci.*, (2009) Article ID 542040.
- [4] J. L. Arocha and B. Llano, Mean value for the matching and dominating polynomial Discuss. *Math. Graph theory*, 20(1)(2000) 5770.
- [5] S. Arumugam and S. Velamma, Edge domination in graphs, *Taiwan-ese J. of Math.*, 2(2)(1998) 173-179.
- [6] B. Askari and M. Alaeiyan, The vertex domination polynomial and edge domination polynomial of a graph, Acta Universitatis Apulensis, 28(2011) 157-162.
- [7] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
- [8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs: Advanced topics, Marcel Dekker, Inc., New York (1998).
- [9] S. R. Jayram, Line domination in graphs, *Graphs Combin.*,3(1987) 357-363.

- [10] S. Mitchell and S. T. Hedetniemi, Edge domination in trees, Congr. Numer., 19(1977) 489-509.
- [11] N. D. Soner and B. Chaluvaraju, Double edge domination, *Proc. Jangjeon Math. Sci.*, 1(2002) 15-20.

Received December, 2014

Downloaded by [RMIT University Library] at 19:33 19 June 2016