On coefficients of edge domination polynomial of a graph

B. Chaluvaraju \& V. Chaitra

To cite this article: B. Chaluvaraju \& V. Chaitra (2016) On coefficients of edge domination polynomial of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 19:2, 413-423, DOI: 10.1080/09720529.2015.1107974

To link to this article: http://dx.doi.org/10.1080/09720529.2015.1107974

Published online: 14 Jun 2016.

Submit your article to this journal

Article views: 1

View related articles

View Crossmark data \nearrow

On coefficients of edge domination polynomial of a graph

B. Chaluvaraju *
V. Chaitra ${ }^{\dagger}$
Department of Mathematics
Bangalore University, Central College Campus
Bangalore -560 001
India

Abstract

An edge domination polynomial of a graph G is the polynomial $D_{e}(G, x)=\sum_{t=\gamma_{e}}^{m}(G)^{d_{e}}(G, t) x^{t}$, where $d_{e}(G, t)$ is the number of edge dominating sets of G of cardinality t. In this paper, we provide tables which contain coefficient of edge domination polynomial of path and cycle. Also, certain properties of edge dominating polynomial are given.

Keywords: Graph, edge domination number, domination polynomial, edge domination polynomial. 2010 Mathematics Subject Classication: 05C69, 05C70

1. Introduction

All the graphs $G=(V, E)$ considered here are simple, finite, nontrivial and undirected, where $|V|=n$ denotes number of vertices and $|E|=m$ denotes number of edges of G. Let $V=V_{1} \cup V_{2}$, where V_{1} and V_{2} be two partitions of the vertex set of G. The graph G^{c} is called complement of a graph G, if G and G^{c} have the same vertex set and two vertices are adjacent in G if and only if they are not adjacent in G^{c}. The line graph of a graph

[^0]G, denoted by $L(G)$ is derived graph where the vertices of $L(G)$ are the lines of G, with two vertices of $L(G)$ adjacent whenever the corresponding lines of G are adjacent. A collection of independent edges of a graph G is called a matching of G. If there is a matching consisting of all vertices of G it is called a perfect matching. The number of distinct subsets with r vertices that can be selected from a set with n vertices is denoted by $\binom{n}{r}$ or $n C_{r}=\frac{n!}{(n-r)!r!}$. This number $\binom{n}{r}$ is called a binomial coefficient. For any undefined term in this paper, we refer Harary [7].

A set $D \subseteq V$ is a dominating set if every vertex not in D is adjacent to one or more vertices in D. The minimum cardinality taken over all dominating sets in G is called domination number $\gamma(G)$. For a complete review on theory of domination, we follow [8].

A set $S \subseteq E$ is an edge dominating set if every edge not in S is adjacent to one or more vertices in S. The minimum cardinality taken over all edge dominating sets in G is called edge domination number $\gamma_{e}(G)$. The concept of edge domination was initiated by Mitchell et al.[10] and studied by [5], [9] and [11].

A domination polynomial of a graph G is the polynomial $D(G, x)=\sum_{t=\gamma(G)}^{n} d(G, t) x^{t}$, where $d(G, t)$ is number of dominating sets of G of cardinality t. Domination polynomial was initiated by Arocha et al. [4] and later studied by Alikhani et al. [1], [2] and [3].

Analogously, edge domination polynomial was studied by Askari et al. [5]. An edge domination polynomial of a graph G is the polynomial $D_{e}(G, x)=\sum_{t=\gamma_{e}(G)}^{m} d_{e}(G, t) x^{t}$, where $d_{e}(G, t)$ is the number of edge dominating sets of G of cardinality t. In this paper, we obtain further results on edge domination polynomial.

An element a is said to be zero of a polynomial $f(x)$ if $f(a)=0$. An element a is called a zero of a polynomial of multiplicity p if $(x-a)^{p} / f(x)$ and $(x-a)^{p+1}$ is not a divisor of $f(x)$. A polynomial in which coefficient of highest order term is 1 is monic polynomial.

2. Results

Theorem 2.1: For any nontrivial graph G,
(i) $d_{e}(G, t) \neq 0$ for $t=\gamma_{e}(G)$ to m.
(ii) $D_{e}(G, x)$ does not have a constant term.
(iii) $D_{e}(G, x)$ is a monic polynomial.
(iv) $x^{\gamma_{e}(G)}$ is a divisor of $D_{e}(G, x)$.
(v) $x=0$ is the zero of $D_{e}(G, x)$ of multiplicity $\gamma_{e}(G)$.
(vi) $d_{e}(G, m)=1$ and $d_{e}(G, m-1)=m$.

Proof: Let G be a graph with n vertices and m edges.
(i) $d_{e}(G, t)$ denotes number of edge dominating sets with cardinality t. As nontrivial graph will have an edge dominating set of minimum cardinality 1, (i) follows.
(ii) As $D_{e}(G, x)=\sum_{t=\gamma_{e}(G)}^{m} d_{e}(G, t) x^{t}$ and $\gamma_{e}(G) \geq 1$, it follows that every term of $D_{e}(G, x)$ has an x in it. Hence there is no constant term.
(iii) Coefficient of x^{m} in $D_{e}(G, x)$ is $d_{e}(G, m)$ which is the number of edge dominating set with cardinality m. That is $d_{e}(G, m)=m C_{m}=1$. Highest power of x in $D_{e}(G, x)$ is 1 which implies $D_{e}(G, x)$ is a monic polynomial.
(iv) Since t ranges from $\gamma_{e}(G)$ to m, least power of x is $\gamma_{e}(G)$ and highest power of x is m. Also from (ii) $D_{e}(G, x)$ has no constant term. Hence $\gamma_{e}(G)$ is a divisor of $D_{e}(G, x)$.
(v) If $D_{e}(G, x)=0$, from (iv) it follows that $x=0$ is zero of $D(G, x)$ of multiplicity $\gamma_{e}(G)$.
(vi) $d_{e}(G, m)=m C_{m}=1$ and $d_{e}(G, m-1)=m C_{m-1}=m$.

Theorem 2.2: For any graph $G \cong K_{r, s}$ with $1 \leq r \leq s$ vertices,

$$
D_{e}(G, x)=\left[(1+x)^{s}-1\right]^{r} .
$$

Proof: We shall prove the result for $r=1$. As $\gamma_{e}(G)=\gamma(L(G))$, we shall find domination set of $L(G)$. If $G \cong K_{1, s}, L(G) \cong K_{s}$, for which $\gamma(L(G))=1$. For $d(L(G), 1)$: choose any one vertex from s vertices of $L(G)$, which can be done in $s C_{1}$ ways. For $d(L(G), 2)$ choose 2 vertices out of s vertices which can be done in $s C_{2}$ ways. Continuing this procedure till s terms, $d(L(G), s)=s C_{s}$. The edge domination polynomial for $r=1$ is $D_{e}(G, x)=D(L(G), x)=\sum_{t=1}^{s} d(L(G), t)=s C_{1} x+s C_{2} x^{2}+\ldots \ldots .+s C_{s} x^{s}=(1+x)^{s}-1$.

For $r=2$, that is $\left|V_{1}\right|=2$ and $\left|V_{2}\right|=s \geq 2$. Thus the number of edges of G are $2 s$ edges. Let E_{1} be set of edges incident to a vertex of V_{1} and E_{2} be set of edges incident to another vertex of V_{1}. An edge of E_{1} dominates remaining $(s-1)$ edges of E_{1}. Similarly an edge of E_{2} dominates remaining $(s-1)$ edges of E_{2}. Thus $\gamma_{e}(G)=2$ and $t \in\{2,3, \ldots ., 2 s\}$. The edges of E_{1} along with vertices on which they are incident forms graph $K_{1, s}$ and similarly edges of E_{2} along with vertices on which they are incident forms graph $K_{1, s}$. For an edge dominating set E of cardinality t, all t vertices cannot be selected only from E_{1} or only from E_{2} as it leads to contradiction of E being edge dominating set. Hence j edges are selected from E_{1} and $(t-j)$ edges are selected from E_{2}. The total number of ways of doing this is the coefficient of x^{t} in $D_{e}\left(K_{1, s}, x\right) D_{e}\left(K_{1, s}, x\right)$. Hence $D_{e}(G, x)=\left[(1+x)^{s}-1\right]^{2}$.

The above method can be followed to prove the result for a graph G with $\left|V_{1}\right|=r$.

To prove next result, we use the following definition:
The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{t h}$ copy of G_{2}.

Theorem 2.3: Let $H=K_{n}^{c} \circ K_{1}$, be corona of graphs K_{n}^{c} and K_{1} with $n \geq 1$ vertices. Then,

$$
D_{e}(H, x)=x^{n},
$$

where K_{n}^{c} is complement of complete graph.
Proof: Since K_{n}^{c} has n vertices, H has $2 n$ vertices connected by n edges. There is a perfect matching. The edge dominating set of H consist of all the edges of H. Hence $D_{e}(H, x)=x^{n}$.

To prove next result, we use Theorem stated and proved in [3].

Theorem 2.4: For any path P_{n} with $n \geq 4$ vertices,
(i) $d\left(P_{n}, t\right)=d\left(P_{n-1}, t-1\right)+d\left(P_{n-2}, t-1\right)+d\left(P_{n-3}, t-1\right)$.
(ii) $D\left(P_{n}, x\right)=x\left[D\left(P_{n-1}, x\right)+D\left(P_{n-2}, x\right)+D\left(P_{n-3}, x\right)\right]$.

Theorem 2.5: For any path p_{n} with $n \geq 5$ vertices,
(i) $\quad d_{e}\left(P_{n}, t\right)=d_{e}\left(P_{n-1}, t-1\right)+d_{e}\left(P_{n-2}, t-1\right)+d_{e}\left(P_{n-3}, t-1\right)$.
(ii) $D_{e}\left(P_{n}, x\right)=x\left[D_{e}\left(P_{n-1}, x\right)+D_{e}\left(P_{n-2}, x\right)+D_{e}\left(P_{n-3}, x\right)\right]$.

Proof: For any graph G, edge domination of G is same as vertex domination of line graph of G and for a path $P_{n}, L\left(P_{n}\right) \cong P_{n-1}$. Hence in the above theorem replace n by $n-1$, that is $d_{e}\left(P_{n}, t\right)=d\left(P_{n-1}, t\right)$ and $D_{e}\left(P_{n}, x\right)=D\left(P_{n-1}, x\right)$. Hence the proof.

With this theorem we form a table for $d_{e}\left(P_{n^{\prime}}, t\right)$.

	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n																
1		-														
2		1														
3		2	1													
4		1	3	1												
5		0	4	4	1											
6		0	3	8	5	1										
7		0	1	10	13	6	1									
8		0	0	8	22	19	7	1								
9		0	0	4	26	40	26	8	1							
10		0	0	1	22	61	65	34	9	1						
11		0	0	0	13	70	20	98	43	10	1					
12		0	0	0	5	61	71	211	140	53	11	1				
13		0	0	0	1	40	92	356	343	192	64	12	1			
14		0	0	0	0	19	71	483	665	526	255	76	13	1		
15		0	0	0	0	6	20	534	050	1148	71	330	89	14	1	

Theorem 2.6. From the above table, we get following properties:
(i) $\quad d_{e}\left(P_{n}, n-1\right)=1$.
(ii) $\quad d_{e}\left(P_{n}, n-2\right)=n-1$.
(iii) $\quad d_{e}\left(P_{n}, t\right)=0$ for $t \leq\left\lceil\frac{n-1}{3}\right\rceil$.
(iv) $\quad d_{e}\left(P_{3 n+1}, n\right)=1$.
(v) $d_{e}\left(P_{n}, n-3\right)=(n-1) C_{2}-2$
(vi) $\quad d_{e}\left(P_{3 n}, n\right)=n+1$
(vii) $\quad d_{e}\left(P_{3 n-1}, n\right)=\frac{(n+1)(n+2)}{2}-2$.
(viii) For $n \in N$ and $k=0,1,2, \ldots, n-1$,

$$
d_{e}\left(P_{2 n+2+k}, n\right)=d_{e}\left(P_{2 n-k}, n\right)
$$

Proof: Let $G \cong P_{n}$ with $n \geq 2$ vertices. Then G has $m=(n-1)$ edges.
(i) For $d_{e}\left(P_{n}, n-1\right)$, choose $(n-1)$ edges from $(n-1)$ edges of G which can be done in $(n-1) C_{(n-1)}$ ways.
(ii) For $d_{e}\left(P_{n}, n-2\right)$, choose $(n-2)$ edges from $(n-1)$ edges of G which can be done in $(n-1) C_{n-2}=n-1$ ways.
(iii) For a path with $m=n-1$ edges, for every three edges there is one dominating edge belonging to the edge dominating set. For $m \geq 4$ there is no edge dominating set with cardinality one. Also for $m \geq 7$ there is no edge dominating set with cardinality one and two. Hence $d_{e}(G, t)=0$ for $t \leq\left\lceil\frac{m}{3}\right\rceil$.
(iv) From Theorem 2.5, $d_{e}\left(P_{3 n+1}, n\right)=d_{e}\left(P_{3 n}, n-1\right)+d_{e}\left(P_{3 n-1}, n-1\right)+$ $d_{e}\left(P_{3 n-2}, n-1\right)$. Since $d_{e}\left(P_{4}, 1\right)=1$ and from (i), (ii) and (iii) result follows.
(v) We shall prove this result by induction hypothesis on $n-1$ with the condition $d_{e}\left(P_{4}, 1\right)=1$. Assume the result to be true for a graph G with $(n-2)$ edges. We shall prove the result for a graph with $n-1$ edges. From Theorem 2.5, $d_{e}\left(P_{n}, n-3\right)=d_{e}\left(P_{n-1}, n-4\right)+d_{e}\left(P_{n-2}\right.$, $n-4)+d_{e}\left(P_{n-3}, n-4\right)$. From (i) and (ii)

$$
\begin{aligned}
d_{e}\left(P_{n}, n-3\right) & =(n-2) C_{2}-2+n-3+1 \\
& =(n-1) C_{2}-2
\end{aligned}
$$

(vi) We shall prove this result by induction hypothesis on n with the condition $d_{e}\left(P_{2}, 1\right)=2$. Assume the result to be true for a graph G with $(n-1)$ edges. We shall prove the result for a graph with n edges. From Theorem 2.5, $d_{e}\left(P_{3 n}, n\right)=d_{e}\left(P_{3 n-1}, n-1\right)+d_{e}\left(P_{3 n-2}\right.$, $n-1)+d_{e}\left(P_{3 n-3}, n-1\right)$. From (iii)

$$
\begin{aligned}
d_{e}\left(P_{3 n}, n\right) & =d_{e}\left(P_{3(n-1)+2}, n-1\right)+d_{e}\left(P_{3(n-1)+1}, n-1\right)+d_{e}\left(P_{3(n-1)}, n-1\right), \\
& =1+n .
\end{aligned}
$$

(vii) We shall use induction hypothesis to prove the result. Assume the result is true for a graph G with $(n-1)$ edges. We shall prove the result for a graph with n edges. From theorem 2.5,

$$
\begin{aligned}
d_{e}\left(P_{3 n-1}, n\right) & =d_{e}\left(P_{3 n-2}, n-1\right)+d_{e}\left(P_{3 n-3}, n-1\right)+d_{e}\left(P_{3 n-4}, n-1\right), \\
& =d_{e}\left(P_{3(n-1)+1}, n-1\right)+d_{e}\left(P_{3(n-1)}, n-1\right)+d_{e}\left(P_{3(n-1)-1}, n-1\right) .
\end{aligned}
$$

Using results of (iii) and (iv), we have

$$
\begin{aligned}
d_{e}\left(P_{3 n-1}, n\right) & =1+n-1+1+\frac{n(n+1)}{2}-2 \\
& =\frac{(n+1)(n+2)}{2}-2
\end{aligned}
$$

(viii) The proof is by induction hypothesis on n. Since $d_{e}\left(P_{2}, 1\right)=d_{e}\left(p_{4}, 1\right)$, the result is true for $n=1$. Assume the result to be true for $n-$ 1 edges. We shall prove the result in a graph with n edges. By Theorem 2.5,

$$
d_{e}\left(P_{2 n-k}, n\right)=d_{e}\left(P_{2 n-1-k}, n-1\right)+d_{e}\left(P_{2 n-2-k}, n-1\right)+d_{e}\left(P_{2 n-3-k}, n-1\right)
$$

$$
\begin{aligned}
& =d_{e}\left(P_{2(n-1)+1-k}, n-1\right)+d_{e}\left(P_{2(n-1)-k}, n-1\right)+d_{e}\left(P_{2(n-1)-1-k}, n-1\right), \\
& =d_{e}\left(P_{2(n-1)+2+k-1}, n-1\right)+d_{e}\left(P_{2(n-1)+2+k}, n-1\right)+d_{e}\left(P_{2(n-1)+2+k+1}, n-1\right), \\
& =d_{e}\left(P_{2 n-1+k}, n-1\right)+d_{e}\left(P_{2 n+k}, n-1\right)+d_{e}\left(P_{2 n+1+k}, n-1\right), \\
& =d_{e}\left(P_{2 n+2+k}, n\right) .
\end{aligned}
$$

To prove our next result, we make use of the following Theorem [2].
Theorem 2.7: For any cycle C_{n} with $n \geq 4$ vertices,
(i) $d\left(C_{n}, t\right)=d\left(C_{n-1}, t-1\right)+d\left(C_{n-2}, t-1\right)+d\left(C_{n-3}, t-1\right)$.
(ii) $D\left(C_{n}, x\right)=x\left[D\left(C_{n-1}, x\right)+D\left(C_{n-2}, x\right)+D\left(C_{n-3}, x\right)\right]$.

Theorem 2.8: For any cycle C_{n} with $n \geq 5$ vertices,
(i) $\quad d_{e}\left(C_{n}, t\right)=d\left(C_{n-1}, t-1\right)+d\left(C_{n-2}, t-1\right)+d\left(C_{n-3}, t-1\right)$.
(ii) $D_{e}\left(C_{n}, x\right)=x\left[D\left(C_{n-1}, x\right)+D\left(C_{n-2}, x\right)+D\left(C_{n-3}, x\right)\right]$.

Proof: As the edge domination of G is same as the vertex domination of line graph $L(G)$ of G. For $C_{n^{\prime}} L\left(C_{n}\right) \cong C_{n}$. Hence, from above Theorem the result follows.

From the above Theorem, we form a table 2 for $d_{e}\left(C_{n}, t\right)$

	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n																
3	3	3	1													
4	0	6	4	1												
5	0	5	10	5	1											
6	0	3	14	15	6	1										
7	0	0	14	28	21	7	1									
8	0	0	8	38	48	28	8	1								
9	0	0	3	36	81	75	36	9	1							
10	0	0	0	25	102	150	110	45	10	1						
11	0	0	0	11	99	231	253	154	55	11	1					
12	0	0	0	3	72	282	456	399	208	66	12	1				
13	0	0	0	0	39	273	663	819	598	273	78	13	1			
14	0	0	0	0	14	210	786	1372	1372	861	350	91	14	1		
15	0	0	0	0	3	125	765	1905	2590	2178	1200	440	105	15	1	

Theorem 2.9: From the above table, we get following properties:
(i) $\quad d_{e}\left(C_{n}, m\right)=1$.
(ii) $\quad d_{e}\left(C_{n}, m-1\right)=m$.
(iii) $\quad d_{e}\left(C_{n}, t\right)=0$ for $t \leq\left\lceil\frac{m}{3}\right\rceil$.
(iv) $d_{e}\left(C_{n}, m-2\right)=m C_{2}$.
(v) $d_{e}\left(C_{3 n}, m\right)=3$.
(vi) $\quad d_{e}\left(C_{3 n-1}, m\right)=3 m-1$.
(vii) $\quad D_{e}\left(C_{3 n+1}, m+1\right)=\frac{m(3 m+7)+2}{2}$.

Proof: Let $G \cong C_{n}$ with $n \geq 3$ vertices.
(i) For $d_{e}\left(C_{n}, m\right)$, from m edges of G choose m edges which can be done in $m C_{m}$ ways.
(ii) For $d_{e}\left(C_{n}, m-1\right)$, choose $(m-1)$ edges from m edges of G which can be done in $m C_{m-1}$ ways.
(iii) For a cycle with m edges, for every three edges there is one dominating edge belonging to the edge dominating set. For $m \geq 4$ there is no edge dominating set with cardinality one. Also for m ≥ 7 there is no edge dominating set with cardinality one and two. Hence $d_{e}(G, t)=0$ for $t \leq\left\lceil\frac{m}{3}\right\rceil$.
(iv) For $d_{e}\left(C_{n}, m-2\right)$, choose $(m-2)$ edges from m edges which can be done in $m C_{m-2}=m C_{2}$ ways.
(v) To prove this result, we shall use mathematical induction with $d_{e}\left(C_{3}, 1\right)=3$. Assume the result to be true for a graph G with $(m-$ 1) edges. From Theorem $2.8, d_{e}\left(C_{3 n}, m\right)=d_{e}\left(C_{3 n-1}, m-1\right)+d_{e}\left(C_{3 n-2}\right.$, $m-1)+d_{e}\left(C_{3 n-3}, m-1\right)$. Using (iii), the result follows.
(vi) We shall prove this result by induction hypothesis. Assume the result to be true for a graph G with $(m-1)$ edges. We shall
prove the result for a graph with m edges. From Theorem 2.8, $d_{e}\left(C_{3 n-1}, m\right)=d_{e}\left(C_{3 n-2}, m-1\right)+d_{e}\left(C_{3 n-3}, m-1\right)+d_{e}\left(C_{3 n-4}, m-1\right)$. Also from (iii) and (v),

$$
\begin{aligned}
d_{e}\left(C_{3 n-1}, m\right) & =d_{e}\left(C_{3 n-2}, m-1\right)+d_{e}\left(C_{3(n-1)}, m-1\right)+d_{e}\left(C_{3(n-1)-1}, m-1\right), \\
& =3+3(m-1)-1=3 m-1
\end{aligned}
$$

(vii) We use mathematical induction to prove the result. Assume the result to be true for a graph G with $(m-1)$ edges. From Theorem 2.8, $\quad d_{e}\left(C_{3 n+1}, m+1\right)=d_{e}\left(C_{3 n}, m\right)+d_{e}\left(C_{3 n-1}, m\right)+d_{e}\left(C_{3 n-2}, m\right)$. Using (v) and (vi),

$$
\begin{aligned}
d_{e}\left(C_{3 n+1}, m+1\right) & =3+3 m-1+\frac{(m-1)(3 m+4)+2}{2}, \\
& =\frac{m(3 m+7)+2}{2}
\end{aligned}
$$

References

[1] S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, Ars Combinatoria, 114(2014) 257-266.
[2] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of certain graphs II, Opuscula Mathematica, 30(1)(2010) 37-51.
[3] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of paths, Int. J. of Math. Math. Sci., (2009) Article ID 542040.
[4] J. L. Arocha and B. Llano, Mean value for the matching and dominating polynomial Discuss. Math. Graph theory, 20(1)(2000) 5770.
[5] S. Arumugam and S. Velamma, Edge domination in graphs, Taiwanese J. of Math., 2(2)(1998) 173-179.
[6] B. Askari and M. Alaeiyan, The vertex domination polynomial and edge domination polynomial of a graph, Acta Universitatis Apulensis, 28(2011) 157-162.
[7] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs: Advanced topics, Marcel Dekker, Inc., New York (1998).
[9] S. R. Jayram, Line domination in graphs, Graphs Combin.,3(1987) 357363.
[10] S. Mitchell and S. T. Hedetniemi, Edge domination in trees, Congr. Numer.,19(1977) 489-509.
[11] N. D. Soner and B. Chaluvaraju, Double edge domination, Proc. Jangjeon Math. Sci., 1(2002) 15-20.

Received December, 2014

[^0]: *E-mail: bchaluvaraju@gmail.com
 ${ }^{\dagger}$ E-mail: chaitrashok@gmail.com

