J. metamorphic Geol., 1993, 11, 879-888

Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian transition zone (Krishnagiri area); comparison with older Peninsular gneisses from the Gorur-Hassan area

J. J. PEUCAT,¹ B. MAHABALESWAR² AND M. JAYANANDA²

¹Laboratoire de Géochimie Isotopique et Géochronologie; Géosciences Rennes-CNRS, 35042 Rennes Cedex, France ²Denastment of Coology, University of Rengelore, Rengelore, 50056 Ludio

²Department of Geology, University of Bangalore, Bangalore, 560056 India

ABSTRACT A major episode of continental crust formation, associated with granulite facies metamorphism, occurred at 2.55–2.51 Ga and was related to accretional processes of juvenile crust. Dating of tonalitictrondhjemitic, granitic gneisses and charnockites from the Krishnagiri area of South India indicates that magmatic protoliths are $2550-2530 \pm 5$ Ma, as shown by both U-Pb and $^{207}Pb/^{206}Pb$ single zircon methods. Monazite ages indicate high temperatures of cooling corresponding to conditions close to granulite facies metamorphism at 2510 ± 10 Ma. These data provide precise time constraints and Sr-Nd isotopes confirm the existence of late tonalitic-granodioritic juvenile gneisses at 2550 Ma. Pb single zircon ages from the older Peninsular gneisses (Gorur-Hassan area) are in agreement with some previous Sr ages and range between 3200 ± 20 and 3328 ± 10 Ma. These gneisses were derived from a 3.3-3.5-Ga mantle source as indicated from Nd isotopes. They did not participate significantly in the genesis of the 2.55-Ga juvenile magmas. All these data, together with previous work, suggest that the 2.51-Ga granulite facies metamorphism occurred near the contact of the ancient Peninsular gneisses and the 2.55-2.52-Ga 'juvenile' tonalitic-trondhjemitic terranes during synaccretional processes (subduction, mantle plume?). Rb-Sr biotite ages between 2060 and 2340 Ma indicate late cooling probably related to the dextral major east-west shearing which displaced the 2.5-Ga juvenile terranes toward the west.

Key words: juvenile tonalitic magmas; syn- to post-accretional granulites; 2550-2510 Ma; U-Pb, Sr, Nd isotopes.

INTRODUCTION

South Indian granulites, in the vicinity of the Transition Zone of the southern Karnataka craton, are known to be derived from metamorphism of older Archaean gneisses, close to 2.5 Ga. In fact, geochronological and isotope data suggest the occurrence of two types of granulites (Peucat et al., 1987, 1989). One type results from the metamorphism of 3.0-Ga or older Peninsular gneisses (BR Hills-type charnockites), and the second was derived from the metamorphism of a younger tonalitic-granodioritic suite. The latter was emplaced shortly before the development of the granulite facies metamorphism (Nilgiris, Krishnagiri, Salem-type charnockites). The tonalitic-granodioritic magmatism may be of importance in constraining the genesis of the granulite facies metamorphism since it may be related to accretional processes of juvenile crust in subduction or mantle-plume environments.

Previous investigations of the Krishnagiri area (south of

Kolar, Fig. 1; Peucat *et al.*, 1987, 1989) have shown that the ages of the magmatic precursors to the tonalitic gneisses and granites, as well as of the granulite facies metamorphic event, are similar and close to 2.5 Ga. This contrasts with some charnockites further west that were derived from 3.0-Ga protoliths. These ages were calculated from Rb–Sr and Sm–Nd whole-rock isochrons, which provided relatively high errors on the ages, in particular when based on different rock types.

The aims of the present study are: (i) to date more precisely these rocks using U-Pb zircon and monazite techniques, in order to constrain the timing of plutonism and metamorphism; (ii) to compare the initial Sr and Nd isotopic signatures of these gneisses with those of the 3.3-Ga Gorur-Hassan gneisses, an example of Peninsular gneisses, to determine whether the latter are possible source rocks; (iii) to elucidate the low-temperature cooling history from Rb-Sr systematics of micas.

879

Fig. 1.. (a) South India Peninsula: 1, Archaean greenstone belts and low-grade Peninsular gneisses; 2, Closepet Granites; 3, high-grade Peninsular gneiss; T-Z, transition zone; K, Krishnagiri. (b) Geological sketch map of Dharwar craton: 1, Closepet batholith; 2, Kolar schist belt; 3, Holenarsipur schist belt; 4, Segegudda schist belt; a, supracrustal belts; b, Peninsular gneisses; c, granulitic old Peninsular gneisses; d, 2.5-Ga charnockites; N, Nilgiri Hills; B, Biligirirangan Hills (BR Hills), K, Krishnagiri.

GEOLOGICAL SETTING OF THE KRISHNAGIRI AREA

South Indian granulites have been described extensively in previous studies (e.g. Pichamuthu, 1961; Friend, 1981; Janardhan et al., 1982; and see the Special Issue of Journal of Geology, 94, 1986, the Lunar and Planetary Institute Technical Report, 88-06, 1988, and the Memoir of the Geological Society of India, 17, 1990). The geology of the transition zone near Krishnagiri was described in detail by Condie et al. (1982) where tonalitic, trondhjemitic and granodioritic-granitic gneisses were partially to completely transformed into charnockites (Fig. 2). Granitic gneisses were probably developed from tonalitic gneisses at the beginning of granulite facies metamorphism. Rb-Sr isochron ages are 2457 ± 174 , 2529 ± 114 and $2490 \pm$ 171 Ma for the tonalitic, granitic gneisses and charnockites, respectively $(2463 \pm 65 \text{ Ma} \text{ for a composite isochron};$ Peucat et al., 1987, 1989); an Sm-Nd isochron age of 2455 ± 121 Ma was obtained using all rock types. In addition to the problem of precision, the age of the tonalitic gneisses was younger than expected (3 Ga) and, in spite of Nd and Sr systems being in agreement, it was not possible to rule out isotopic resetting during the granulitic metamorphism.

Samples

Condie et al. (1982) described the tonalitic gneisses as being composed of 40–50% sodic plagioclase, 30-40%quartz and 5–10% microcline. Accessory minerals are hornblende, apatite, magnetite, hypersthene, titanite, allanite and zircon. The granitic gneisses, which range from granodioritic to granitic in composition, have similar assemblages except that microcline increases to 10-30%and other minerals decrease proportionally. The charnockites exhibit the same proportions of feldspar and quartz as the tonalitic gneisses, but they contain 5-10%hypersthene. The chemical compositions of samples used in this study are reported in Table 1. On a

Fig. 2. Simplified geological map of Krishnagiri area (K on Fig. 1) from Condie *et al.* (1982) showing location of samples: 1, charnockitic gneisses; 2, granitic gneisses; 3, tonalitic gneisses.

CaO-Na₂O-K₂O diagram (Fig. 3), most samples are transitional between tonalite and granodiorite. Sample 1 is a tonalite and sample 2 is a granodioritic-granitic gneiss; no true granite nor monzogranite samples were at our disposal.

Table 1. Major element contents, determined by XRF, of tonalitic gneisses (87K1, K3, K4), granitic gneiss (87K2) and charnockitic gneisses (87K5, K6, K7, K8).

							_	
	87K1	87K2	87K3	87K4	87K5	87K6	87K7	87K8
	9138	9139	9100	9101	9102	9103	9104	9105
SiO ₂	69.21	65.96	58.42	59.34	65.76	62.41	69.07	63.78
TiO ₂	0.34	0.45	1.26	0.77	0.66	0.68	0.29	0.56
Al ₂ O ₃	15.78	16.1	15.97	16.01	14.42	15.65	15.74	15.57
Fe ₂ O ₃	3.04	3.94	7.86	6.68	6.66	5.53	2.88	5.15
MnO	0.04	0.05	0.11	0.11	0.11	0.11	0.03	0.07
MgO	0.98	1.38	2.87	3.44	2.29	3.02	0.97	2.34
CaO	3.58	3.58	5.48	5.48	3.49	5.24	3.45	4.53
Na ₂ O	5.01	4.50	4.43	4.35	3.63	4.17	4.32	4.14
K,0	1.34	2.92	2.16	2.09	2.02	1.72	2.18	2.44
P,O,	0.12	0.23	0,45	0.27	0.15	0.2	0.12	0.25
LOI	0.48	0.41	0.39	0.58	0.71	0.99	0.77	0.52
Total	99,92	99.52	99.4	99.12	99.9	99 .72	99.82	99.35

U-Pb AND Rb-St RESULTS OF THE KRISHNAGIRI AREA

Zircon dating

Zircons were dated using two methods. Conventional dating was performed following the dissolution method of Krogh (1973) using 2–5 mg of zircon. These results are presented on standard U–Pb concordia diagrams. A discordia was obtained from each of three rocks analysed. The samples were also dated by the single-crystal evaporation method (Kober, 1986, 1987). This yields only ²⁰⁷Pb/²⁰⁶Pb ages as U and Pb contents cannot be determined. If the zircons have not experienced significant disturbance, this age should correspond to the upper intercept of the discordia. Zircons from seven samples were analysed by this technique.

Fig. 3. CaO-Na₂O-K₂O (wt%) diagram. Sample position shown by 87K1, 1; 87K2, 2; etc. Black circles, tonalitic gneisses; open circles, charnockitic gneisses; cross, granitic sample 87K2. T, tonalite-trondhjemite; Gd, granodiorite; Qm, quartz monzonite; G, granite. Fields of Krishnagiri tonalitic and granitic gneisses are reported from Condie *et al.* (1982).

Tonalitic samples

Three samples from the tonalite suite were analysed, one by both techniques (87K3) and two additional samples by the single-grain method (87K1, 87K4). Zircons are euhedral to subhedral and elongate in shape and are transparent; zoning is seen in some samples, tips are often rounded and overgrowths and cores are not visible (Fig. 4).

Sample 87K3. U-Pb data are reported in Table 2 and Fig. 4. The four size fractions analysed define an upper intercept on the concordia of 2532 ± 15 Ma. They are only slightly discordant so it is unlikely that the lower intercept is of significance. A single grain was evaporated in three steps and similar ages of 2530 Ma were obtained (Table 3; Fig. 5b). These agree with the discordia age.

Sample 87K1. A single grain provides a 207 Pb/ 206 Pb age of 2552 ± 14 Ma (Table 3).

Sample 87K4. One grain provides a 207 Pb/ 206 Pb age of 2533 ± 3 Ma (Table 3) and the second 2539 ± 1 Ma.

These ages, which range between 2530 and 2550 Ma, are considered to be crystallization ages corresponding to the emplacement of the tonalitic magmas because: (1) zircons do not show overgrowth which would suggest resetting of the U-Pb system; (2) the data have only a restricted range in ages; and (3) the 207 Pb/ 206 Pb ages are similar to the upper intercept of the discordia.

Granitic sample

Zircons are euhedral, elongate and strongly zoned, with rounded tips. No cores or overgrowths are visible, but a

Fig. 4. Zircon U-Pb concordia plot of the tonalitic sample 87K3. Morphology of zircons as observed from SEM pictures, two crystals on left. Crystals on right correspond to internal structures under optical microscope.

Table 2. U-Pb zircon and monazite data from Krishnagiri gneisses (dissolution method).

Sample	Analysis	U (ppm)	Pb (ppm)	^{21%} Рb/ ²⁰⁴ Рb	²¹⁷⁷ РЬ/ ²¹¹⁶⁶ РЪ	^{21Ж} РЬ/ ^{21Ж} РЪ	^{21м} РЬ/ ^{23स} U	²⁽¹⁷ Pb/ ²³⁵ U	²¹¹⁷ Pb/ ²¹¹⁶ Pb	^{2нь} Рb/ ^{23н} U	²¹⁷ Pb/ ²³⁵ U	^{2н7} Рb/ ^{2н6} Рb
(1111)		(Fr)	(PP)	meas.	meas.	meas.	calc.	calc.	согт.	(Ma)	(Ma)	(Ma)
Zircon 87K2	9159					_						
<37		361	174	10902	0.16973	0.15202	0.42485	9.8756	0.16859	2282	2423	2544
<37				9704	0.16914	0.15056						2536
80-100		410	204	10077	0.17004	0.14732	0.43917	10.2215	0.16880	2347	2455	2546
80100				17543	0.16987	0.14770						2549
105-120		401	201	12209	0.17013	0.14530	0.44396	10.3518	0.16911	2368	2467	2549
105-120				23327	0.16940	0.14437						2547
>149		373	186	15802	0.16983	0.13947	0.44435	10.3567	0.16904	2370	2467	2548
>149				14927	0.16973	0.13868						2547
Monazite 87K2	9159	125	4235	1977	0.17113	84.42	0.4576	10.398	0.1648	2429	2471	2506
Zircon 87K3	9160											
<37		244	132	16363	0.16743	0.20170	0.46049	10.5821	0.16666	2442	2487	2525
<37				8553	0.16789	0.10324			0.16643			2522
37-55		218	117	15856	0.16730	0.18459	0.46338	10.6387	0.16651	2454	2492	2523
37-55				10095	0.16737	0.09927			0.16614			2519
55-69		179	87.7	15479	0.16685	0.09712	0.45112	10.3282	0.16605	2400	2465	2518
>69		171	84.7	16644	0.16695	0.09775	0.45627	10.4559	0.16620	2423	2476	2520
Zircon 87K8	9165											
<37		279	157	23912	0.16943	0.2139	0.47361	11.0301	0.16891	2499	2526	2547
<37				14189	0.16937	0.2127			0.16849			2543
80-100		250	139	24885	0.16963	0.2090	0.47008	10.9621	0.16913	2484	2520	2549
80100				1992	0.17471	0.2210			0.16845			2542
100105		210	119	30683	0.16980	0.2121	0.47638	11.1264	0.1 694 0	2511	2534	2552
100 105				37997	0.16965	0.2021			0.16932			2551
120-149		191	106	27888	0.16949	0.1976	0.47318	11.0288	0.16904	2497	2526	2548
120 149				30927	0.16987	0.1980			0.16947			2552
Monazite 87K3	9165	70	5125	1419	0.17471	190.7	0.4359	9.9714	0.1659	2332	2432	2517

Sample	Analysis	Step current (A)	²¹¹⁶⁶ Pb/ ²¹¹⁴⁶ Pb meas.	²¹⁷⁷ Pb/ ²¹⁶⁶ Pb meas.	Error $(2\sigma_m \times 10^{-4})$	²¹¹⁷ РЬ/ ²¹¹⁶ РЪ согг.	Age ^{21/7} Pb/ ^{21/6} Pb (Ma)	Error (1σ) (Ma)
Krishnagiri								
87K1	9158	2.9	25,287	0.1698	14	0.1695	2552	30
87K2	9159	2.7	45,258	0.1696	1	0.1695	2552	3
87K3	9160	2.6	100 ,000e .	0.1673	3	0.1670	2528	8
		2.8	100,000 c.	0.1672	1	0.1671	2529	3
		3.1	100 ,000 e .	0.1675	1	0.1673	2531	3
87K4	9161	3.2	24,768	0.1680	3	0.1675	2533	7
87K4(2)		2.6	175,693	0.1682	1	0.1681	2539	5
87K5	9162	3.2	46,697	0.1674	2	0.1671	2529	7
87K5(2)		2.6	8989	0.1701	l	0.1689	2546	7
		3.2	8989	0.1702	6	0.1690	2548	8
87K6	9163	2.8	37,853	0.1699	5	0.1695	2553	11
87K8	9165	2.6	100,000c.	0.1692	2	0.1691	2548	7
		3.2	100,000 c.	0.1684	7	0.1683	2541	13
Gorur								
Ind 55c	10446	2.6	1609	0.2618	28	0.2546	3212	76
		2.8	2891	0.2739	10	0.2705	3309	7
Ind 55d	10447	2.6	5400	0.2567	12	0.2540	3210	5
		2.8	16,280	0.2600	2	0.2591	3242	15
Segegudda								
Ind 56a	10448	2.6	4018	0.2602	5	0.2579	3234	8
		2.9	13,043	0.2744	4	0.2737	3328	10
Halekote								
HL5a	11209	2.6	5000c.	0.2548	12	0.2529	3203	19
Chikmagalur Ind 57a	10449	2.6	1244	0.2694	16	0.2607	3251	33

Table 3. ²⁰⁷Pb/²⁰⁶Pb single zircon data from Krishnagiri and Gorur-Hassan-type gneisses (evaporation method). e., estimated.

Fig. 5. Single zircon ²⁰⁷Pb/²⁰⁶Pb histogram ages from (a) the granitic gneiss 87K2, (b) the tonalitic gneiss 87K3 and (c) the charnockitic gneiss 87K8.

strongly zoned centre suggests several stages of growth during magmatic processes (Fig. 6).

Sample 87K2. Four size fractions define an upper intercept with the concordia at 2557 ± 16 Ma (Table 2, Fig. 6). A single grain analysed by the evaporation method provides a similar result of 2551 ± 1 Ma (Table 3, Fig. 5a).

Fig. 6. Zircon U-Pb concordia plot for the granitic sample 87K2. The 207 Pb/ 206 Pb monazite age is reported on the concordia curve.

Charnockitic samples

Zircons are similar to those found in the granitic sample (Fig. 7).

Sample 87K8. Dissolution and evaporation methods provide the same result (Tables 2 & 3, Fig. 7); an upper intercept of 2557 ± 16 Ma and a 207 Pb/ 206 Pb age of 2548 ± 3 Ma. Samples 87K5 and K6 give similar 207 Pb/ 206 Pb ages of 2548 ± 5 Ma and 2553 ± 5 MA, respectively (Table 3).

All samples from tonalitic gneisses as well as those from the charnockites provide homogeneous results close to 2550 Ma.

Monazite dating

Monazite was found only in the samples of granitic gneiss (87K2) and charnockite (87K8). They are relatively poor in uranium (125 and 70 ppm); their high content of lead corresponds to more than 90% of the ^{21N}Pb derived from ²³²Th (Table 2). The points are slightly discordant, defining ²¹⁷Pb/²⁰⁵Pb ages of 2506 ± 10 and 2517 ± 10 Ma, respectively.

Biotite dating

Rb-Sr whole-rock biotite pair ages were obtained from three samples (87K2, K3, K8). These ages are 2092, 2067 and 2337 ± 10 Ma, respectively (Table 4).

Table 4. Rb-Sr mica and corresponding whole-rock (WR) data from Krishnagiri gneisses

Sample (analysis)	Nature	Rb (ppm)	Sr (ppm)	⁸⁷ Rb/ ⁸⁶⁵ Sr	⁸⁷ Sr/ ⁸⁶ Sr	Error (2 σ_m)	Ages micas- WR pair (Ma)
87K2 (9159)	WR	64.5	627	0.21	0.71314	2	
()	'muscovite'	50.1	1056	0.13	0.70798	3	
	biotite	433	76.1	17.28	1.21752	9	2092
87K3 (9160)	WR	61.9	451	0.40	0.71632	3	
	biotite	372	33.3	35.66	1.75114	9	2067
87K8 (9165)	WR	60.8	776	0.23	0.71025	2	
	biotite	398	69.2	17.57	1.28575	8	2337

COMPARISON WITH U-Pb ZIRCON AGES AND Sr-Nd SYSTEMATICS OF THE GORUR-HASSAN PENINSULAR GNEISSES

The Gorur-Hassan migmatitic gneisses (Fig. 1) are representative of the oldest Peninsular gneisses since Rb-Sr ages of 3300-3000 Ma were obtained by Beckinsale et al. (1982), Monrad (1983), Taylor et al. (1984) and Meen et al. (1992). Our aim is restricted here to a comparison of isotope systematics between these old gneisses and the 2500-Ma and Krishnagiri gneisses, to establish whether they are derived from different precursors.

Sample	Analysis	Sm	Nd	¹⁴⁷ Sm/	¹⁴³ Nd/	Error	T _{DM}	Eps	ilon
		(ppm)	(ppm)	"**Nd	¹⁴⁴ Nd	(× 10 ⁻⁶)	(Ma)	(2.5 Ga)	(3.3 Ga)
Gorur									
Ind 55b	10445	1.44	5.98	0.1456	0.511591	5	3460	-4.15	1.06
Ind 55d	10447	13.95	53.99	0.1562	0.511835	4	3458	-2.79	1.35
Gor 3a2	11203	11.98	43.83	0.1653	0.512028	4	3504	-1.92	1.29
Gor 3b	11204	4.86	27.59	0.1065	0.510783	4	3340	-7.45	1.76
HLIa	11205	4.29	19.99	0.1297	0.511253	4	3414	-5.68	1.16
Halekote									
HL5a	11209	1.90	8.50	0.1348	0.511393	3	3368	-4.58	1.74
Segegudda									
Ind 56a	10448	9.92	44.08	0.1360	0.511441	5	3327	-4.03	2.17
Sample	Analysis	Rb	Sr	*7Rb/	⁸⁷ Sr/		Io	Sr	
•		(ppm)	(ppm)	**Sr	^{не} Sг		(2.5 Ga)	(3.3 Ga)	
Gorur						·			··
Ind 55b	10445	67.8	634	0.310	0.714876	5	0.70367	0.70000	
Ind 55d	10447	62.5	129	1.41	0.764650	5	0.71370	0.69701	
Gor 3a2	*11203	77	59	3.8	0.865441	27	0.72688	0.68149	
Gor 3b	*11204	77	474	0.5	0.718915	10	0.70191	0.69634	
HLla	*11205	62	723	0.2	0.711660	9	0.70269	0.69975	
Halekote									
HL.5a	*11209	68	835	0.236	0.711513	11	0.70300	0.70020	
Segegudda									
Ind S6a	10448	70.7	727	0.281	0.714060	6	0.70391	0.70058	

*XRF Rb and Sr data.

Fig. 7. Zircon U-Pb concordia plot for the charnockite, sample 87K8. The ²⁰⁷Pb/²⁰⁶Pb monazite age is reported on the concordia curve.

Furthermore, we have recently obtained some preliminary single-zircon dates from two granodioritic samples (collected to the west of the Holenarsipur belt). Another sample from the Halekote trondhjemite (close to the nothern contact with the Holenarsipur schist belt) and two granodioritic gneiss from north of Hassan (south-west of

 Table 5.
 Sm-Nd and Rb-Sr data of whole-rocks

 from the Gorur-Hassan-type gneisses.

the Segegudda belt and west of Chikmagalur) were also investigated. The data are given in Table 3; various step-heating ages from two Gorur gneiss samples (Ind55) provide ages of 3210 ± 5 and 3309 ± 7 Ma. The north Hassan gneiss (Ind56) provides ages of 3234 ± 8 and 3328 ± 10 Ma; the trondhjemite sample (HL5a) gives an age of 3203 ± 19 Ma. A gneiss from the west of Chikmagalur (Ind57) provides an age of 3251 ± 33 Ma (Table 3).

Sr and Nd data are reported in Table 5. The T_{DM} (Nd) model ages of the six gneiss samples range from 3.5 to 3.3 Ga, close to the zircon ages. The ε Nd values, for 3.3 Ga, range from +1 to +2, whereas 87 Sr/ 86 Sr ratios vary between 0.681 and 0.701. Calculated back to 2.5 Ga, the ε Nd values range between -2 and -7 and the 87 Sr/ 86 Sr ratios between 0.702 and 0.727. Similar values are obtained from one sample of the Halekote trondhjemite (Table 5).

DISCUSSION

Magmatism and metamorphism

The Gorur-Hassan-type gneisses

The oldest 207 Pb/ 206 Pb ages, close to 3.3 Ga, confirm those obtained for similar gneisses using Rb–Sr (3315 ± 54 Ma) and Pb–Pb (3305 ± 13 Ma) systems (Beckinsale *et al.*, 1982); they are interpreted as magmatic ages. Step ages close to 3200 Ma may be related to migmatitic processes and/or later trondhjemite emplacement. The similar U–Pb zircon and Nd model ages of the gneisses and the trondhjemite suggest they were derived within a short period of time from similar mantle sources (Fig. 8). The individual initial Sr ratios calculated back to 3.3 Ga are very low and sometimes lower than the initial value assumed for the primitive Earth, thus suggesting an

Fig. 8. END CHUR vs. time diagram for the Gorur-Hassan gneisses. Nd isotopic growth lines are drawn using data of Table 5.

opening of the Rb-Sr system and probable resetting during migmatization.

Nevertheless, significant Rb-Sr isochron relationships are preserved (Beckinsale et al., 1982), suggesting that the opening was not very important on the scale of sampling (10 kg each sample). The age of 3203 ± 19 Ma obtained from the Halekote trondhjemite is slightly older than those from the Sr and Pb systems which give ages between 3.1 and 3.0 Ga (Beckinsale et al., 1982; Stroh et al., 1983; Meen et al., 1992). Is the zircon age therefore inherited from the surrounding gneisses or were the Sr and Pb systems slightly reset during late metamorphism? This is a question beyond the scope of this paper, which should be debated in relation to the numerous Pb and Sr ages close to 3.0 Ga which have been obtained from the gneisses near Holenarsipur and Chikmagalur (Monrad, 1983; Taylor et al., 1984; Meen et al., 1992) and apparently are younger than our zircon ages.

The Krishnagiri gneisses

The emplacement age of the tonalitic gneisses, obtained from U-Pb upper intercepts as well as from ²⁰⁷Pb/²⁰⁶Pb evaporation of single zircons, is in the range 2550-2530 Ma. Ages from charnockitic gneisses are similar. Due to the magmatic origin of these zircons and the lack of inherited structure, we consider these ages as being those of the tonalitic and granodioritic magmatic intrusion. A similar age from the granitic gneiss (2550 Ma) confirms this interpretation in terms of a magmatic event. Nevertheless, there is some question regarding one point: the granites are considered by Condie et al. (1982) to have been melted from tonalitic precursors during the granulitic event which is dated close to 2510 Ma. However, sample 87K2 is granodioritic in composition; plotting in the field of the granitic gneisses as defined by Condie et al. (1982), it is not a true granite. We presently believe that the U-Pb age close to 2550 Ma corresponds to the general tonalitic event; the true anatectic granites remain to be dated.

The timing of the granulitic event is better constrained from the U-Pb monazite ages of 2517 and 2506 Ma. At 2510 ± 10 Ma, they fall in the range of average monazite dates obtained from several charnockite massifs along the transition zone (Buhl, 1987; in Peucat et al., unpubl. data). Monazite ages are known to record cooling above 600° C and are sometimes estimated up to 700-750°C (Parrish, 1990). These conditions are close to those defined for granulite metamorphism in the transition zone (e.g. Janardhan et al., 1982; Raith et al., 1983; Hansen et al., 1984); thus we consider the age of 2510 ± 10 Ma as the best estimate of the granulitic event in the Krishnagiri area as well as along the South Indian transition zone. This result is in agreement with recent data from the Closepet Batholith, where anatectic granites are dated at $2513 \pm$ 5 Ma (Friend & Nutman, 1991) and the intrusive granites are dated at 2518 ± 5 Ma (Jayananda et al., unpubl. data). This batholith was affected by and probably related to the granulitic event (Friend, 1983).

Nature of the 2.5-Ga magmas from Sr and Nd systematics

On Fig. 9, the isotopic signatures of Sr and Nd systems (recalculated at 2.5 Ga) in Krishnagiri gneisses (Peucat et al., 1989) are compared with those of the 2.52-Ga Closepet granites (Jayananda et al., unpubl. data), the 3.3-Ga gneisses from the Gorur-Hassan region (Table 5) and the ancient massive charnockites (Peucat et al., 1989). The Krishnagiri gneisses have positive or zero ε Nd and initial *7Sr/*6Sr close to 0.702. This clearly indicates that they were not derived by melting of the 3.3-Ga gneisses which had εNd (2.5 Ga) values of -4 to -15 and initial *7Sr/*6Sr ratios of 0.702-0.750. They also differ from the Closepet granites, which contain anatectic granites derived from the ancient Peninsular gneisses. They also contrast with the intrusive granites which exhibit negative εNd values despite clear major juvenile input during their petrogenesis (Jayananda et al., 1993).

Assuming an εNd value close to +5 for the mantle at this time, we can calculate that an ancient crustal contamination may have occurred in the source. According to the model of Martin (1987), where tonalitic magmas are melted from enriched tholeiite, 10% of older gneisses can be mixed with 90% of enriched tholeiite to produce tonalitic magmas with an εNd value close to zero. Consequently, the Krishnagiri gneisses are at present the most juvenile magmas recognized close to 2.5 Ga in this region.

Just to the north of the Krishnagiri area is the amphibolite facies Kolar schist belt (Fig. 1b). Krogstad *et al.* (1989, 1991) have shown that this lower grade belt corresponds to a possible suture which joins eastern terranes c. 2.5 Ga old with older western terranes. It is also possible to recognize two main blocks involved in the 2.5-Ga granulite metamorphism (Peucat *et al.*, 1989). One block may correspond to a 'western' craton involving 3-Ga or older gneisses and another more 'eastern' block containing 2.5-Ga juvenile crust, which possibly runs from the Madras area (Bernard-Griffiths *et al.*, 1987) to

Fig. 9. ENd vs. "Sr/"Sr diagram for the Krishnagiri gneisses, Closepet granites and 3.3-Ga gneisses at 2.50 Ga.

Krishnagiri and the Nilgiri Hills; it represents a major period of accretion (2.5 Ga ago) probably at the boundary of the older craton. These blocks could have been joined in suture zones close to the Kolar and Closepet areas 2.5 Ga ago and probably dislocated during major dextral shearing before 2.3 Ga ago (as suggested by mica cooling ages).

CONCLUSIONS

The 3.3-Ga Peninsular gneisses in the vicinity of Holenarsipur constitute an early episode of continental crust formation from the mantle; this gneiss did not participate in the genesis of the 2.5-Ga magmas close to the transition zone. A second major episode of continental crust formation, associated with the granulite facies metamorphism, occurred at 2.55-2.51 Ga and was related to accretional processes of juvenile crust in subduction or mantle-plume environments.

The sequence of events around 2.5 Ga in the transition zone can be summarized as follows (references in the text):

1 $2550-2530 \pm 5$ Ma corresponds to the accretion of a juvenile crust of tonalitic-granodioritic composition with positive or zero initial ϵ Nd and low initial strontium ratios; 2 $2518-2513 \pm 5$ Ma corresponds to the emplacement of juvenile intrusive granitoids and the melting of 3.0-Ga gneisses to produce anatectic granites in the southern part of the Closepet batholith.

 $3\ 2510 \pm 10$ Ma corresponds to the age of the granulite facies metamorphism which occurred 10-30 Ma later than the accretion event;

4 2300-2100 Ma corresponds to late cooling close to $300-350^{\circ}$ C, representing the limit in the main high-temperature (Raith *et al.*, 1990) shear zones along the transition zone.

The transition zone is mainly localized at the boundary of ancient Peninsular gneisses with newly formed 2.5-Ga tonalite-trondhjemitic terranes to the south.

ACKNOWLEDGEMENTS

The English version of this paper was improved by M. S. N. Carpenter. We thank J. Cornichet, M. A. Fuminier, J. Macé and N. Morin for technical assistance. The XRF analyses were performed in Rennes by M. Le Coz and M. Lemoine. We thank B. Auvray, H. Bouhallier, P. Choukroune, S. Fourcade, G. Gruau and H. Martin for fruitful discussions. H. Bouhallier provided samples HL1a-5a and Gor3a2-3b. We also thank A. Mohan, J. K. Meen, J. J. W. Rogers and an anonymous referee for their critical comments and useful suggestions. This study was supported by the Archaean DBT project of INSU (CNRS) in France.

REFERENCES

Beckinsale, R. D., Reeves-Smith, G., Gale, N. H., Holt, R. W. & Thompson, B., 1982. Rb-Sr and Pb-Pb isochron ages and

REE data for Archaean gneisses and granites, Karnataka state, South India. In: Indo-U.S. Workshop on the Precambrian of South India, pp. 35-36. Abstracts of papers. National Geophysical Institute, Hyderabad, India.

- Bernard-Griffiths, J., Jahn, B. M. & Sen, S. K., 1987. Sm-Nd isotopes and REE geochemistry of Madras granulites, India: an introductory statement. *Precambrian Research*, 37, 343-355.
- Buhl, D., 1987. U-Pb and Rb-Sr altersbestmmungen und untersuchungen zum strontium isotopenaustausch und granuliten sudindiens. Unpubl. PhD Thesis. University of Nurnberg.
- Condie, K. C., Allen, P. & Nayarana, B. L., 1982. Geochemistry of the Archaean low to high grade transition zone, Southern India. Contributions to Mineralogy and Petrology, 81, 157-167.
- Friend, C. R. L., 1981. Charnockite and granite formation and influx of CO₂ at Kabbaldurga. *Nature*, 294, 550-552.
- Friend, C. R. L., 1983. The link between granite production and the formation of charnockites: evidence from Kabbaldurga, Karnataka. In: Migmatites, Melting and Metamorphism (eds Atherton, M. P. & Gribble, C. D.), pp. 264–276. Shiva Press, Nantwich.
- Friend, C. R. L. & Nutman, A. P., 1991. Shrimp U-Pb geochronology of the Closepet granite and Peninsular gneiss, Karnataka, South India. Journal of the Geological Society of India, 38, 357-368.
- Hansen, E. C., Newton, R. C. & Janardhan, A. S., 1984. Pressures, temperatures and metamorphic fluids across an unbroken amphibolite facies to granulite facies transition in Southern Karnataka. In: Archaean Geochemistry (eds Kröner, A., Hanson, G. N. & Goodwin, A. M.), pp. 161-181. Springer-Verlag, Berlin.
- Janardhan, A. S., Newton, R. C. & Hansen, E. C., 1982. The transformation of amphibolite facies gneiss to charnockite in Southern Karnataka and Northern Tamil Nadu, India. Contributions to Mineralogy and Petrology, 79, 130–149. Kober, B., 1986. Whole-grain evaporation for ²⁴⁷Pb/²⁰⁶Pb age
- Kober, B., 1986. Whole-grain evaporation for ²⁰⁷Pb/²⁰⁸Pb age investigations on single zircons using a double-filament thermal ion source. Contributions to Mineralogy and Petrology, 93, 482-490.
- Kober, B., 1987. Single-grain evaporation combined with Pb + emitter bedding for ²⁰⁷Pb/²⁰⁶Pb age investigations using thermal ion mass spectrometry, and implications to zirconology. *Contributions to Mineralogy and Petrology*, **96**, 63–71.
- Krogh, T. E., 1973. A low contamination method for decomposition of zircon and extraction of U and Pb for isotopic age determinations. *Geochimica et Cosmochimica Acta*, 37, 485-494.
- Krogstad, E. J., Hanson, G. N. & Rajamani, V., 1991. U-Pb ages of zircon and sphene for two gneiss terranes adjacent to the Kolar schist belt, South India: evidence for separate crustal evolution histories. *Journal of Geology*, 99, 801-816.
- Krogstad, E. J., Mukhopadhyay, D. K., Rajamani, V. & Hanson, G. N., 1989. Plate tectonics 2.5 Billion years ago: evidence at Kolar, South India. Science, 243, 1337-1340.
- Ludwig, K. R., 1980. Calculations of uncertainties of U-Pb isotope data. Earth and Planetary Science Letters, 46, 212-220.
- Martin, H., 1987. Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from Eastern Finland: major and trace element geochemistry. *Journal of Petrology*, 28, 921–953.
- Meen, J. K., Rogers, J. J. W. & Fullargar, P. D., 1992. Lead isotopic compositions of the Western Dharwar Craton, southern India: evidence for distinct middle Archean terranes in a late Archean craton. Geochimica et Cosmochimica Acta, 56, 2455-2470.
- Monrad, J. R., 1983. Evolution of sialic terranes in the vicinity of the Holenarasipur belt, Hassan district, Karnataka, India. In: *Precambrian of South India* (eds Navqvi, S. M. & Rogers, J. J. W.), Memoirs of the Geological Society of India, 4, 343-364.
- Parrish, R. R., 1990. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27, 1431-1450.
- Peucat, J., Vidal, P., Bernard-Griffiths, J. & Condie, K. C., 1987. Sr, Nd and Pb systems across the amphibolite to granulite facies

transition in Southern India. Terra Cognita, 7, 333.

- Peucat, J. J., Bernard-Griffiths, J. & Condie, K. C., 1989. Sr, Nd and Pb isotopic systematics in the Archean low-to high-grade transition zone of Southern India: syn-accretion vs. postaccretion granulites. *Journal of Geology*, 97, 537-550.
- Pichamuthu, C. S., 1961. Transformation of Peninsular gneiss into charnockite in Mysore State, India. Journal of the Geological Society of India, 2, 46-49.
 Raith, M., Raase, P., Ackermand, D. & Lal, R. K., 1983.
- Raith, M., Raase, P., Ackermand, D. & Lal, R. K., 1983. Regional geothermobarometry in the granulite facies terrane of South India. Transactions of the Royal Society of Edinburgh: Earth Sciences, 73, 221–244.
- Raith, M., Srikantappa, C., Ashamanjari, K. G. & Spiering, B., 1990. The granulite terrane of the Nilgiri Hills (Southern India): characterization of high-grade metamorphism. In: *Granulites* and Crustal Evolution (eds Vielzeuf, D. & Vidal, P.), Nato ASI Series C, pp. 339-365. Kluwer Academic, Dordrecht.
- Steiger, R. H. & Jäger, E., 1977. Subcommission on Geochronology: convention to use of constraints in geo and cosmochronology. Earth and Planetary Science Letters, 36, 359-362.
- Stroh, P. T., Monrad, J. R., Fullagar, P. D., Naqvi, S. M., Hussein, S. M. & Rogers, J. J. W., 1983. 3000-m.y.-old Halecote trondhjemite: a record of stabilisation of the Dharwar craton. In: Precambrian of South India (eds Naqvi, S. M. & Rogers, J. J. W.), Memoirs of the Geological Society of India, 4, 365-376.
- Taylor, P. M., Chadwick, B., Moorbath, S., Ramarishnan, M. & Viswanatha, M. N., 1984. Petrography, chemistry and isotopic ages of Peninsular gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archaean evolution of the Karnataka craton, Southern India. Precambrian Research, 23, 349–375.
- York, D., 1969. Least squares of straight line with correlated errors. Earth and Planetary Science Letters, 5, 320-324.

Received 15 June 1992; revision accepted 4 April 1993.

APPENDIX

Analytical procedures

The major element contents were determined by XRF, using a sequential Phillips PW 1404 spectrometer. The analytical precisions are as follows: SiO₂ 1%, Al₂O₃ 1.5-3%, Fe₂O₃ 2-3%, MnO 10%, MgO 1-3%, CaO 2-5%, Na₂O 1.5-3%, K₂O 2.5%, TiO₂ 2-5%, P₂O₅%.

Rb, Sr, Sm and Nd contents were determined by isotope dilution using a Cameca THN-206 mass spectrometer. Total blanks were: Rb 0.1 ng, Sr = 1 ng, Sm = 0.2 ng, Nd < 0.5 ng. Uncertainties for ⁸⁷Rb/⁸⁶Sr ratios are 2% and for ¹⁴⁷Sm/¹⁴⁴Nd ratios 0.5%. Isotope Sr analyses of micas were performed using the Cameca THN-206 mass spectrometer and a Finnigan Mat 262 was used to determine Sr and Nd isotopic ratios of whole rocks. Replicate analyses of NBS 987 yield a mean ⁸⁷Sr/⁸⁶Sr ratio of 0.71020 ± 8 and ¹⁴³Nd/¹⁴⁴Nd mean ratio of 0.511835 ± 5 for the La Jolla standard, samples were normalized to 0.511860. T_{DM}Nd ages were calculated using values of the present depleted mantle as: ¹⁴³Nd/¹⁴⁴Nd = 0.51315(ε_0 = +10) and ¹⁴⁷Sm/¹⁴⁴Nd = 0.2137, following a radiogenic linear growth for the mantle with ε Nd tending to zero at 4.54 Ga.

U-Pb analyses were performed on the Finnigan Mat 262 on 2-5 mg of zircon separate, following Krogh (1973). Total blanks were lower than 0.5 ng and common lead assumed to have the following isotopic composition: 216 Pb/ 214 Pb 18.0, 217 Pb/ 214 Pb 15.5, 208 Pb/ 204 Pb 37.0. Uncertainties used are as follows: when 206 Pb/ 204 Pb >6000: 217 Pb/ 235 U = 0.7%, 206 Pb/ 238 U = 0.5%, $^{207}Pb/^{216}Pb = 0.1\%$; when $1000 < ^{216}Pb/^{214}Pb < 6000$: $^{207}Pb/^{235}U = 0.9\%$, $^{206}Pb/^{238}U = 0.6\%$, $^{207}Pb/^{216} = 0.4\%$. Correction for mass fractionation was 0.10% AMU. NBS 983, using Faraday cups provided $^{206}Pb/^{214}Pb = 2763 \pm 7$, $^{217}Pb/^{216}Pb = 0.071309 \pm 3$, $^{208}Pb/^{214}Pb = 0.013645 \pm 1$; $^{216}Pb/^{214}Pb$ ratios, when ^{204}Pb is recorded from the ion counting system (ICT), range between 2708 and 2780. Calculation of the concordia intercept ages is from Ludwig's (1980) program and errors (2σ) using the regression of York (1969).

Single zircon analyses were performed following the procedure proposed by Kober (1986, 1987), using both mass spectrometers. Use of ICT on the Finnigan Mat allows measurement of very high 206 Pb/ 204 Pb ratios, which sometimes had to be estimated from the Cameca measurements when the run was not of an adequate intensity.

Decay constants and isotopic abundance ratios are those listed by Steiger & Jäger (1977).