Journal of Discrete Mathematical Sciences & Cryptography Vol. 18 (2015), No. 1 & 2, pp. 47–53 DOI : 10.1080/09720529.2013.878821

On Pathos Litact Graph of a Tree

Venkanagouda M. Goudar* Department of Mathematics Sri Siddhartha Institute of Technology Sri Gouthama Research Center, Tumkur Karnataka India

Abstract

In this paper, the concept of pathos litact graph of a tree is introduced. We present a characterization of those graphs whose pathos litact graphs are planar, outerplanar, maximal nonouterplanar, crossing number, eulerian and hamiltonian.

Keywords: Line graph/lict graph/litact graph/pathos lict graph/pathos litact graph/outerplanar/crossing number.

Mathematics Subject Classification: 05C10, 30.

1. Introduction

The concept of pathos of a graph G was introduced by Harary [1] as a collection of minimum number of edge disjoint open paths whose union is G. The path number of a graph G is the number of paths in the pathos. The path number of a tree T is equal to k where 2k is the number of odd degree vertices of T. Also the end vertices of each path of any pathos of a tree are of odd degree.

The edge degree of an edge $\{u, v\}$ of a tree *T* is the sum of the degrees of *u* and *v*. The pathoslength is the number of edges which lie on a particular path P_i of pathos of *T*. A pendent pathos is a path P_i of pathos having unit length which corresponds to a pendent edge in *T*. A pathosvertex is a vertex in $P_m(T)$ corresponding to the boundary of the exterior region in any embedding of G in the plane. A graph is said to be minimally nonouterplanar if i(G) = 1.

The lict graph [4] n(G) of a graph *G* is the graph whose vertex set is the union of the set of edges and the set of cutvertices of *G* in which two

^{*}E-mail: vmgouda@gmail.com

vertices are adjacent if and only if the corresponding edges of *G* are adjacent or the corresponding members of *G* are incident.

The pathos line graph of a tree *T* denoted by PL(T) is defined as the graph whose vertex set is the union of the set of edges and paths of pathos of *T* in which two vertices are adjacent if and only if the corresponding edges of *T* are adjacent and the edge lies on the corresponding path P_i of pathos.

The pathos lict graph [5] of a tree *T* denoted by $P_n(T)$ is defined as the graph whose vertex set is the union of the set of edges, set of pathos of pathos and set of cutvertices of *T* in which two vertices are adjacent if and only if the corresponding edges of *T* are adjacent and the edge lies on the path of pathos and the edges are incident to the cutvertex.

The litact graph [4] m (T) of a graph G is the graph whose vertex set is the union of edges and the set of cut vertices of G in which two vertices are adjacent if and only if the corresponding edges of G are adjacent or the corresponding members of G are incident or the cutvertices are adjacent.

The pathos litact graph of a tree *T* denoted by $P_m(T)$ is defined as the graph whose vertex set is the union of the set of edges, set of paths of pathos and set of cutvertices of *T*, in which two vertices are adjacent if and only if the corresponding edges of *T* are adjacent, the edge lies on the path of pathos, edges are incident to the cutvertices and the cutvertices are adjacent. Since the system of path of pathos for a tree *T* is not unique, the corresponding pathos litact graph is also not unique. The pathos litact graph is defined for a tree having at least two cutvertices

All the undefined terms may be referred to Harary [2]. All graphs considered here are finite, undirected and without loops or multiple edges.

2. Preliminary results

We need the following Theorems for the proof of our further results.

Theorem 2.1 [Ref.3]. *If G* is a (*p*. *q*) graph whose vertices have degree d_i then its pathos line graph *PL*(*T*) has (*q* + *k*) vertices & $\frac{1}{2} \sum d_i^2$ edges, where *k* is the path number.

Theorem 2.2 [Ref.3]. *The pathos line graph PL* (*T*) *is planar if and only if* Δ (*T*)<4 *for every vertex v of T.*

Theorem 2.3 [Ref.4]. *For any graph G, the litact graph m (G) is minimally outerplanar if and only if G is a path.*

Theorem 2.4 [Ref.4]. *The litact graph m (G) of a graph G is planar if and only if G is planar and the degree of each vertex is at most 3.*

Theorem 2.5 [Ref.4]. *For any graph G, the litact graph m (G) is maximal outerplanar if and only is G is a path.*

3. Pathos litact graphs

Remark 3.1. For any tree *T* with $p \ge 3$ vertices $L(T) \subset PL(T) \subset P_m(T)$ and $L(T) \subset n(T) \subset m(T) \subset P_n(T) \subset P_m(T)$.

Remark 3.2. If the edge degree of an edge uv in a tree *T* is even (or odd) and u and v are cutvertices then the corresponding vertex in $P_m(T)$ is of odd (or even) degree.

Remark 3.3. If the edge degree of an edge in a tree *T* is even (or odd) and the edge is a pendent edge then the corresponding vertex in $P_m(T)$ is of even (or odd) degree.

Remark 3.4. The degree of pathosvertex in $P_m(T)$ is equal to the pathoslength of the corresponding path p_i of pathos of *T*.

Remark 3.5. Every pendent pathos in a tree *T* adds one cutvertex to $P_m(T)$ and the number of cutvertices in $P_m(T)$ is the number of pendent pathos in *T*.

In the following Theorem we obtain the number of vertices and edges in a pathos litact graph.

Theorem 3.6. For any (p, q) graph T whose vertices have degree d_i and cutvertices c have degree c_j , the pathos litact graph P_m (T) has (q+k+c) vertices and $\frac{1}{2}\sum d_i^2 + \sum c_j + (c-1)$ edges, where k is the path number.

Proof. By Theorem 1, PL(T) has (q + k) vertices and $\frac{1}{2}\sum d_i^2$ edges. The number of vertices of $P_m(T)$ is the sum of number of vertices of PL(T) and the number of cutvertices *c* in *T*. Hence $P_m(T)$ has (q + k + c) vertices.

The number of edges in $P_m(T)$ is the sum of edges in PL(T), the number of edges incident with cutvertices in T and the number of edges in c(G). By Theorem 2.1, the number of edges in PL(T) is $\sum d_i^2$, the number of edges incident to cutvertices is $\sum c_j$ and the c(G) has $\sum \frac{c_j(c_j-1)}{2}$ edges.

Since *T* contains at most two adjacent vertices, $\sum \frac{c_j(c_j-1)}{2} + (c-1)$. Hence $P_m(T)$ has $\frac{1}{2}\sum d_i^2 + \sum c_j + (c-1)$ edges.

The following Lemma gives the number of regions in pathos litact graph.

Lemma 3.7. For any (p, q) graph *T*, the number of regions in pathos litact graph $P_m(T)$ is (p + q + c - 3).

In the following theorems we obtain the condition for planarity of pathos litact graph.

Theorem 3.8. *The pathos litact graph* $p_m(T)$ *of a tree* T *is planar if and only if* Δ (T) < 3, *for every vertex* v *of* T.

Proof. Suppose $P_m(T)$ is planar. Assume $\Delta(T) < 4$. If there exists a vertex v of degree 4, then by Theorem 2.2, PL(T) is planar and contains K_4 as induced subgraph. In $P_m(T)$, the vertex v having degree 4 is adjacent to all the vertices of $\langle K_4 \rangle$ and it gives $\langle K_5 \rangle$ as subgraph. Clearly $P_m(T)$ is nonplanar, a contradiction.

Conversely, suppose Δ (*T*) < 3. By Theorem 2.4, *m*(*T*) is planar. Each block of *m*(*T*) is either *K*₃ or *K*₄. The pathosvertex is adjacent to almost two vertices of each block of *m*(*T*). This gives a planar *Pm*(*T*).

We now present a characterization of trees whose pathos litact graphs are non outer planar and minimally nonouterplanar.

Theorem 3.9. For any tree *T*, the pathos litact graph $P_m(T)$ is nonouterplanar.

Proof. Suppose $P_m(T)$ of a tree T is outerplanar. We use contradiction for the proof of the theorem. Now we consider the following cases:

Case 1. If *T* is a path P_t of length $t \ge 3$. By Theorem 2.5, *m* (*T*) is maximal outer planar and the pathosvertex is adjacent to (*t*-1) vertices. Hence $P_m(T)$ has inner vertices, which is nonouterplanar.

Case 2. If $\Delta(T) \leq 3$, for any vertex v of T. By Theorem 2.4, m(T) is planar. The vertex v having degree 3 is adjacent to all the vertices to form $\langle K_3 \rangle$ as a subgraph. Also the pathosvertex is adjacent to all vertices of $\langle K_3 \rangle$ to form $\langle K_4 \rangle$ as a subgraph, which is nonouterplanar, a contradiction. Hence $P_m(T)$ is nonouterplanar.

Theorem 3.10. *The pathos litact graph* $P_m(T)$ *of a tree* T *is minimally nonouterplanar if and only if* T *is a path of length 3.*

Proof. Suppose $P_m(T)$ is minimally nonouterplanar. Assume that T is a path P_t for t > 3. By Theorem 3.8, $P_m(T)$ has at least (t-2) inner vertices, i.e. $i [P_m(T)] > 1$, a contradiction. Thus t = 3.

Conversely, suppose *T* is a path of length 3. Then $P_m(T)$ has (3-2) =1, inner vertex. Hence $i [P_m(T)] = 1$, which is minimally nonouterplanar.

The noneulerian property of P_m (*T*) is given by the following Theorem.

Theorem 3.11. For any tree *T*, the pathos litact graph $P_m(T)$ is noneulerian.

Proof. Suppose *T* is a tree with *p*<3 vertices, then $P_m(T) = PL(T) = K_1 \text{ or } K_2$ and the result is obvious.

Suppose *T* is a tree with p = 3 vertices, then $P_m(T) = K_4 - x$ which is noneulerian. Suppose *T* is a tree with $p \ge 4$ vertices, then there exists at least two cutvertices v_1 and v_2 such that an edge $q = v_1v_2$ between these two vertices. We consider the following cases:

Case 1. If edge degree of q is even, then by the Remark 2, the corresponding vertex in $P_m(T)$ is of odd degree vertex. Hence $P_m(T)$ is noneulerian.

Case 2. If edge degree of q is odd, then it contains one pendent edge. By definition, P_m (*T*) contains an odd degree vertex. Hence P_m (*T*) is noneulerian.

From the above two cases, $P_m(T)$ is noneulerian.

In the following Theorem we obtain a condition for $P_m(T)$ to be a block.

Theorem 3.12 *The pathos litact graph of a tree is a block if and only if every cutvertex of T is of even degree.*

Proof. Suppose the pathos litact graph of a tree *T* is a block. Assume that *T* has one cutvertex of odd degree \geq 3. Since every path of pathos of *T* starts and ends with an odd degree vertex, there is a pendent pathos in *T* coinciding with the odd degree vertex . By the Remark 3.5, *P*_m (*T*) contains at least one cutvertex. Thus *P*_m (*T*) is not a block, a contradiction.

Conversely, suppose T has all its cutvertices of even degree 2n. Then n number of paths of pathos passes through these cutvertices and the pathoslength of every path is at least two. Since there is no pendent pathos

in T and none of the non end edges coincide with an end edge of path of pathos. By the Remark 3.5, $P_m(T)$ has no cutvertex. Thus $P_m(T)$ is a block. The next Theorem Characterizes $P_m(T)$ in terms of crossing number.

Theorem 3.13: *The pathos litact graph of a tree T has crossing number two if and only if* Δ (*T*) \leq 4 *for every vertex v of T and has a unique vertex of degree* 4.

Proof. Suppose P_m (*T*) has crossing number two. We have the following cases:

Case 1. Assume that T has vertex of degree 5. Then the edges incident to this vertex together with the cut vertex form $\langle K_6 \rangle$ as subgraph in *m* (*T*). The pathos vertex is adjacent to at least two vertices of $\langle K_6 \rangle$ in P_m (*T*). Clearly *C* [P_m (*T*)] > 2, a contradiction.

Case 2. Assume that *T* contains two vertices v_1 and v_2 of degree 4. Then T has two $K_{1,4}$ as subgraphs. Then the cutvertices v_1 and v_2 together with their corresponding incident edges form two subgraphs as K_5 in P_m (*T*). Cleary $C[P_m(T)] > 2$, a contradiction. Thus T has exactly one cutvertex of degree 4.

Conversely, suppose T holds both the conditions of the Theorem. Then by necessity the result follows.

In the next Theorem, we characterize hamiltonian $P_m(T)$.

Theorem 3.14. *The pathos litact graph* P_m (*T*) *of a tree T is hamiltonian if and only if every pathos of path length is at least 2.*

Proof. Suppose $P_m(T)$ is hamiltonian. Assume that T has at least one path such that its pathoslength is one. By the remark 3.5, $P_m(T)$ contains a cutvertex, a contradiction. Hence, every pathos of path length is at least 2.

Conversely, suppose every pathos of path length at least 2. We now consider the following cases:

Case 1. If T is a path then it has exactly one path of pathos. Let $V[m(T)] = \{e_1, e_2, \dots, e_n\} \cup \{c_1, c_2, \dots, c_{n-2}\}$ where c_1, c_2, \dots, c_{n-2} are the cutvertices of *T*. Since each block is a triangle and each block consist vertices as $B_1 = \{e_1, c_1, e_2\}$, $B_2 = \{e_2, c_2, e_3\} \dots B_m = \{e_{n-1}, c_{n-2}, e_n\}$. In $P_m(T)$ the pathos the pathosvertex is adjacent to $[e_1, e_2, \dots, e_n]$. Hence $V[P_m(T)] = \{e_1, e_2, \dots, e_n\} \cup \{c_1, c_2, \dots, c_{n-2}\} \cup w$ form a closed path $w e_1c_1e_2c_2\dots e_{n-1}c_{n-2}e_n w$ containing all the vertices of $P_m(T)$, clearly $P_m(T)$ is hamiltonian.

Case 2. If T is not a path, and every pathos of path Length is at least two, then by the Remark 3.4, degree of every pathos vertex is at least two. Let $V[m(T)] = \{e_1, e_2 ... e_n\} \cup \{c_1, c_2 ... c_k\}$ which are cutvertices of *T*. since *T* has p_i pathosvertices $i \ge 1$, each having path length at least two, then $V[P_m(T)]$ contains $\{e_1, e_2 ... e_n\} \cup \{c_1, c_2 ... c_k\} \cup \{p_1, p_2 ... p_i\}$, vertices. But each p_i is adjacent to at least two vertices of e_n and each c_i are adjacent to form a cycle containing all the vertices $p_1, e_1, e_2, e_3, c_1, c_2, e_4....p_i$ of $P_m(T)$. Hence, $P_m(T)$ is hamiltonian.

References

- [1] Harary, F. (1977), Annals of New York Academy of Science, 175:198.
- [2] Harary, F (1969), Graph theory, Addison-Wesley Reading, mass.
- [3] Muddebihal, M.H, Gudagudi, B.R and Chandrasekhar, R., (2001), National Academy of Science Letters, 24:116.
- [4] Muddebihal, M.H. and Chandrasekhar. R. (2003), National Academy of Science Letters, Vol. 26, No. 9 and 10. 263, 270.
- [5] V.R.Kulli and M.H. Muddebihal.(2006). Lict Graph and Litact Graph of a Graph, Journal of Analysis and Computation, Vol. 2.No. 133-43.

Received May, 2013

Copyright of Journal of Discrete Mathematical Sciences & Cryptography is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.