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The combined effects of basic cubic temperature profiles andmagneticfield dependent (MFD) viscosity on the onset
of Bénard-Marangoni convection in a ferrofluid layer are studied. The lower boundary is rigid-isothermal, while the
upper free boundary open to the atmosphere is flat and subject to a general thermal boundary condition. The
Galerkin technique is employed to extract the critical stability parameters numerically. The results indicate that
the basic cubic temperature profiles have a profound influence on the stability characteristics of the system and
can be effectively used to either suppress or augment the onset of Bénard–Marangoni ferroconvection. Besides,
increasing the magnetic Rayleigh number and the nonlinearity of magnetization hastens, while an increase in the
Biot number and MFD viscosity parameter delays the onset of Bénard–Marangoni ferroconvection. The existing
results in the literature are obtained as particular cases from the present study.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Ferrofluids are stable colloidal suspensions ofmagnetic nano-particles
dispersed in a carrier liquid. In the absence of an external magnetic field
the magnetic moments of the particles are randomly orientated and
there is no net macroscopic magnetization. In an external magnetic
field, however, the magnetic moments of particles easily orient and a
large (induced)magnetization prevails. There are two additional features
in ferrofluids not found in ordinary fluids, the Kelvin force and the body
couple [1]. In addition, in an external magnetic field, a ferrofluid exhibits
additional rheological properties such as a field-dependent viscosity, spe-
cial adhesion properties, and a non-Newtonian behavior, among others
[2]. The theory of thermal convective instability in a ferrofluid layer
began with Finlayson [3] and extensively continued over the years
([4–6]). Recently, Shivakumara et al. [7] have investigated the onset of
thermogravitational convection in a horizontal ferrofluid layer with
viscosity depending exponentially on temperature.

On the other hand, if the surface of a ferrofluid layer is free and open
to the atmosphere then convection can also be induced by temperature
dependent surface tension forces at the free surface known asMarangoni
ferroconvection. In view of the fact that heat transfer is greatly enhanced
due to convection, Marangoni ferroconvection offers new possibilities
for application in cooling ofmotors in space, loudspeakers, transmission
ppa).
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lines and other equipments in micro-gravity environment where a
magnetic field is already present. In most of the cases, the combined
effect of buoyancy and surface tension forces on convective instability
in a ferrofluid layer becomes important. Realizing these aspects, a limit-
ed number of studies have addressed the effect of surface tension forces
on ferroconvection in a horizontal ferrofluid layer. Linear and nonlinear
stability of combined buoyancy–surface tension effects in a ferrofluid
layer heated from below has been analyzed by Qin and Kaloni [8]. The
linear stability analysis of a layer of a magnetic fluid with a deformable
free surface which is heated uniformly from below and subject to a
vertical magnetic field has been analyzed considering the temperature
dependence of the surface tension and buoyancy by Weilepp and Brand
[9]. Odenbach [10] has investigated experimentally the stability of a free
surface of a magnetic fluid subjected to a magnetic field parallel to the
fluid surface under strongly reduced gravity. The Bénard–Marangoni
problem of ferrofluids has been studied for different situations in Refs.
[11–13]. Idris and Hashim [14] have investigated the instability of
Bénard–Marangoni convection in a horizontal layer of ferrofluid under
the influence of a linear feedback control and cubic temperature profile.
Nanjundappa et al. [15] have studied the effect of internal heat generation
on the onset of Bénard–Marangoni convection in a horizontal ferrofluid
layer heated from below in the presence of a uniform vertical mag-
netic field. Recently, the effect of temperature dependent viscosity
on Marangoni ferroconvection is considered by Nanjundappa et al.
[16]. In the contemporary heat transfer research involving ferrofluids
it is imperative to understand themechanisms for control (suppression
or augmentation) of Bénard–Marangoni ferroconvection which is
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useful in materials science processing under microgravity conditions.
One of the effective mechanisms is to maintain a non-uniform basic
temperature gradient across the ferrofluid layer. The main objective of
the present study is to consider this aspect and analyze different
forms of basic cubic temperature profiles on the onset of Bénard–
Marangoni convection in a horizontal ferrofluid layer in the presence
of a uniform verticalmagnetic field. In investigating the problem, the ef-
fect of magnetic field dependent viscosity is also considered as the vis-
cosity of the ferrofluid varies significantly with magnetic field. The
lower boundary of the ferrofluid layer is rigid-isothermal, while the
upper boundary is free, non-deformable and subject to a general ther-
mal boundary condition. Moreover, at the upper free boundary the sur-
face tension effects due to temperature are considered. The resulting
eigenvalue problem is solved numerically by employing the Galerkin
technique with Chebyshev polynomials as trial functions.

2. Mathematical formulation

We consider a Boussinesq ferrofluid layer of thickness d in the pres-
ence of a uniform vertical magnetic field H0. The lower and upper
boundaries are maintained at constant but different temperatures T0
and T1(b T0) respectively. A Cartesian co-ordinate system (x, y, z) is
used with the origin at the bottom of the porous layer and the z-axis
is directed vertically upward. The gravitational force (0, 0, −g) acts in
the negative z-direction. Experimentally, it has been demonstrated
that the viscosity η of ferrofluids varies significantly with respect to
the magnetic field (Rosensweig et al. [17]). As a first approximation,
for small field variation, the linear variation of viscosity with magnetic

field has been considered in the form η ¼ η0 1þ δ
!� B!

� �
, where δ

!
is

the variation coefficient of magnetic field dependent viscosity and is
considered to be isotropic (Vaidyanathan et al. [18]), and η0 is the vis-
cosity of the fluid in the absence of magnetic field. Several investigators
in the past have followed this assumption in the study of Marangoni
convection and the free surface is assumed to be non-deformable
(zero capillary number). At the upper free surface, the surface tension
σ is assumed to vary linearly with temperature in the form

σ ¼ σ0−σT T−T0ð Þ; ð1Þ
where,σ0 is the unperturbed value and−σT is the rate of change of sur-
face tension with temperature T.

The governing equations under the Oberbeck–Boussinesq approxi-
mation are given by the following:
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Maxwell's equations in the magnetostatic limit:

∇ � B!¼ 0;∇� H
!¼ 0; B

!¼ μ0 M
!þ H

!� �
ð6a;b; cÞ

M
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Here, q! is the velocity, p the pressure, ρ thefluid density,M
!

themag-

netization, H
!

the magnetic field intensity, B
!

the magnetic flux density,
μ0 themagnetic permeability of vacuum, kt the thermal conductivity, CV,
H the specific heat at constant volume and magnetic field, ρ0 the refer-
ence density, αt the thermal expansion coefficient, Ta = (T0 + T1)/2
the average temperature, M0 = M(H0,T0), χ ¼ ∂M=∂Hð ÞH0

;T0
the mag-

netic susceptibility, K ¼ − ∂M=∂Tð ÞH0
;T0

the pyromagnetic co-

efficient, H ¼ H
!��� ��� and M ¼ M

!��� ���.
The basic state is quiescent and given by

q!¼ 0;p ¼ pb zð Þ;η ¼ ηb zð Þ;− dTb

dz
¼ f zð Þ; H!b ¼ H0−

Kβz
1þ χ

� �
k̂;

M
!
b ¼ M0 þ

Kβz
1þ χ

� �
k̂;

ð8aÞ

where, β = (Tl − Tu)/d is the temperature gradient, k̂ is the unit vector
in the vertical direction and the subscript b denotes the basic state.
Following [14,19], the basic state cubic temperature profile is taken in
the form

Tb ¼ T1−a1 z−dð Þ−a2 z−dð Þ2−a3 z−dð Þ3; ð8bÞ

where, a1, a2 and a3 are constants. The principle of exchange of stability
is assumed to be valid as there are no physical mechanisms to set up
oscillatory motions. Following the standard linear stability analysis
procedure, the stability equations in dimensionless form can then be
shown to be (for details see [3,13,14]):

1þ Λð Þ D2−a2
� �2

W ¼ Raa2Θ−RaM1a
2 f zð Þ DΘ−Θð Þ ð9Þ

D2−a2
� �

Θ ¼ − 1−M2ð Þ f zð ÞW ð10Þ

D2−a2M3

� �
Φ ¼ DΘ; ð11Þ

where, D = d/dz is the differential operator, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
the overall

horizontal wave number, W the amplitude of vertical component of
perturbed velocity, Θ the amplitude of perturbed temperature, Φ the
amplitude of perturbed magnetic potential, Ra = αtgβd2/κν the
thermal Rayleigh number, M1 = μ0K2β/(1 + χ)αtρ0g the magnetic
number,M2 = μ0T0K2/ρ0C0(1 + χ) the non-dimensional parameter,
M3 = (1 + M0/H0)/(1 + χ) the measure of nonlinearity of fluid
magnetization parameter and Λ = δμ0(M0 + H0) the MFD viscosity
parameter and the non-dimensional temperature gradient f(z) is
given by

f zð Þ ¼ a�1 þ 2a�2 z−1ð Þ þ 3a�3 z−1ð Þ2: ð12Þ

The typical value of M2 for magnetic fluids with different carrier
liquids turns out to be of the order of 10−6 ([3]) and hence its effect is
neglected as compared to unity. Three types of basic temperature gradi-
ents are considered for discussion as mentioned below ([14,19]):
Reference steady-state temperature
gradient
f(z)
 a1
∗
 a2

∗
 a3
∗

Linear
 1
 1
 0
 0

Cubic 1
 3 (z − 1)2
 0
 0
 1

Cubic 2
 0.66 + 1.02 (z − 1)2
 0.66
 0
 0.34
The boundary conditions are:

W ¼ DW ¼ Θ ¼ Φ ¼ 0atz ¼ 0 ð13aÞ

W ¼ 1þ Λð ÞD2W þ a2MaΘ ¼ DΘþ BiΘ ¼ Φ ¼ 0atz ¼ 1; ð13bÞ

where,Ma = σTΔTd/μκ is the Marangoni number Bi = hd/kt is the Biot
number. The case Bi = 0 and Bi → ∞ respectively correspond to
constant heat flux and isothermal conditions at the upper boundary.
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3. Method of solution

Eqs. (9)–(11) together with the boundary conditions constitute an
eigenvalue problem with Rt or Ma as an eigenvalue. The eigenvalue
problem is solved numerically using the Galerkin method with wave
number as a perturbation parameter. Accordingly, the variables are
written in a series of basis functions as

W zð Þ ¼
Xn
i¼1

AiWi zð Þ;Θ zð Þ ¼
Xn
i¼1

Bi Θi zð Þ;Φ zð Þ ¼
Xn
i¼1

Ci Φi zð Þ; ð14Þ

where, Ai, Bi, Ci are unknown constants to be determined. The basis
functions Wi(z), Θi(z), Φi(z) are generally chosen such that they satisfy
the corresponding boundary conditions but not the differential equa-
tions. For rigid ferromagnetic boundaries, they are chosen as

Wi ¼ z4−2z3 þ z2
� �

T �
i−1;Θi ¼ z−z2=2

� �
T �
i−1;Φi ¼ z−z2

� �
T �
i−1; ð15Þ

where, Ti⁎ ' s are the modified Chebyshev polynomials. The above
trial functions satisfy all the boundary conditions except, (1 + Λ)
D2W + a2MaΘ = 0 = DΘ + BiΘ at z = 1 but the residual from
this is included as the residual from Eqs. (9)–(11). Multiplyingmomen-
tum Eq. (9) by Wi(z), energy Eq. (10) by Θi(z), magnetic potential
Eq. (11) by Φi(z), performing the integration by parts with respect to
z from z = 0 to z = 1 and using the boundary conditions, we obtain
a system of linear homogeneous algebraic equations inAi, Bi, Ci. A non-
trivial solution exists if and only if the characteristic determinant is
equal to zero. This leads to a relation

f Ra;Ma;Λ ;Bi;M1;M3; a
�
1 a

�
2 ; a

�
3 ; a


 � ¼ 0: ð16Þ

The critical values of Rac and Mac are determined numerically with
respect to wave numberac.

4. Numerical results and discussion

It may be noted that Eq. (16) leads to the characteristic equation
giving the Marangoni number Ma or the thermal Rayleigh number Ra
as a function of the wave number a, the parameters Rm, Bi, M1, M3, Λ
and for different forms of basic temperature profiles (i.e., linear, cubic
1 and cubic 2 temperature profiles). Computations reveal that the con-
vergence in finding the critical eigenvalue (Mac or Rac) crucially de-
pends on the value of MFD viscosity parameter Λ and various forms of
basic temperature profiles. The Galerkin method is used to find the
eigenvalues numerically as this technique is found to be more conve-
nient to tackle different forms of basic temperature profiles. The results
presented here are for i = j = 6 the order at which the convergence is
achieved, in general. To validate the numerical solution procedure used,
a newmagnetic parameter S, independent of the temperature gradient,
Table 1
Comparison of critical values of Rac and Rmc for different values ofMa and Bi for S = 10−4,
M3 = 1 and Λ = 0 with linear temperature profile f(z) = 1.

Bi Ma Qin and Kaloni [8]
Rac Rmc

Present analysis
Rac Rmc

0 0 652.87 42.624 649.84 42.229
20 493.23 24.426 491.07 24.115
40 335.98 11.255 335.38 11.248
60 171.44 2.939 171.90 2.955
70 85.67 0.734 85.74 0.735
79.61 0.00 0.00 0.00 0.00

10 0 892.06 79.577 903.55 81.640
150 628.88 39.298 638.19 40.729
250 418.23 17.492 427.29 18.258
300 301.89 9.114 302.73 9.405
350 176.10 3.101 177.74 3.158
413.4 0.00 0.00 0.00 0.00
was introduced in the form Rm = Ra2 S, where S = μ0K2κν/
(1 + χ)ρ0g2α2d4. The critical thermal Rayleigh number (Rac) and
the critical magnetic Rayleigh number (Rmc) obtained for different
values of Marangoni number Ma and for linear temperature profile
(i.e., a1

∗ = 1, a2∗ = 0 and a3
∗ = 0) are exhibited in Table 1 when

S = 10−4 and Λ = 0 along with the results of Qin and Kaloni [8]. We
note that there is a close agreement between the results of present
analysis and those obtained by Qin and Kaloni [8] using different
numerical approach (see Table 1). The values of magnetic parame-
ters chosen are based on the physical parameters for a commer-
cially available magnetic fluid EMG 905 produced by Ferrofluidics
[20]; density ρ[kg/m3] = 1.24 × 103, kinematic viscosity (27 °C)
ν[m2/s] = 12 × 10−6, thermal diffusivity κ[m2/s] = 8 × 10−8,
heat capacity cp[J/kgK] = 1.47 × 103, coefficient of thermal expan-
sion αt[1/K] = 8.6 × 10−4, susceptibility at low field χ = 1.9, pyro-
magnetic coefficient at H = 50 kA/m[A/km] = 110 and mean particle
diameter [nm] = 10.2. For such fluids the magnetic parameters have
the following order of magnitudeM1 ~ 10−4 − 10 andM3 ≥ 1.
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We now look into the solution of the complete problem, which in-
volves the effect of all the parameters Ra, Ma, Rm, Bi, Λ,M1 and M3 on
the criterion for the onset of ferroconvection. The salient characteristics
of these parameters are exhibited graphically in Figs. 1–7. These figures
exhibit a tight coupling between the buoyancy, magnetic and surface
tension forces. Fig. 1(a) shows the locus of the critical Marangoni num-
berMac and the Rayleigh number Rac for different values ofMFD viscos-
ity parameter Λ for Bi = 2, M1 = 2 and M3 = 1 for different forms of
basic temperature profiles. It is seen that the curves are slightly convex
and an increase in the Rayleigh number has a destabilizing effect on the
system. That is, buoyancy and surface tension forces complement with
each other. Also, an increase in the MFD viscosity parameter has a
stabilizing effect on the system. Moreover, (Mac or Rac)linear b (Mac
or Rac)cubic 2 b (Mac or Rac)cubic 1 suggesting that the cubic 1 tempera-
ture profile is more stabilizing than cubic 2 and the linear temperature
profile is the least stable. Thus, it is possible to control Bénard–Marangoni
ferroconvection effectively by the choice of different forms of basic
temperature profiles. The variation in ac as a function of Ra is elucidated
in Fig. 1(b) for different forms of basic temperature profile with different
values of Λ. It may be noted that the critical wave number ac increases
monotonically with increasing Ra. Moreover, an increase in the value of
Λ is to decrease ac and thus its effect is to reduce the size of convection
cells and also (ac)cubic 1 b (ac)cubic 2 b (ac)linear.

The plots in Fig. 2(a) represent the locus ofMac and Rac for different
values of heat transfer coefficient Bi (i.e., Biot number) when Λ = 0.2,
M3 = 1 andM1 = 2 for three different forms of basic temperature pro-
files. From the figure it is evident that an increase in the value of Bi is to
increase Rac as well as Mac and thus its effect is to delay the onset of
Bénard–Marangoni ferroconvection. This may be attributed to the fact
that with increasing Bi, the thermal disturbances can easily dissipate
into the ambient surrounding due to a better convective heat transfer
coefficient at the top surface and hence higher heating is required to
make the system unstable. Fig. 2(b) represents the corresponding criti-
cal wave number ac and it indicates that increase in the value of Bi and
Ra is to increase ac and thus their effect is to reduce the size of convec-
tion cells.

Fig. 3(a) presents the locus of Rac andMac for different forms of basic
temperature profiles and for various values of magnetic number M1

when Λ = 0.2,M3 = 1 and Bi = 2. The results for M1 = 0 correspond
to ordinary viscous fluid and it is observed that higher heating is
required to have instability in this case. Besides, the curves of different
M1 become closer as the value ofM1 increases. Thus the combined effect
of surface tension,magnetic and buoyancy forces is to reinforce together
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and to hasten the onset of Bénard–Marangoni ferroconvection com-
pared to their effect in isolation. Although the critical wave number ac
remains invariant for different values of M1 at lower values of Ra, it in-
creases with further increase in the value of Ra (see Fig. 3(b)). Further
inspection of Fig. 3(b) shows that the cubic 1 basic temperature profile
is more stabilizing when compared to the other two profiles. The devi-
ation in the critical wave number amongst different values of M1, with
increasing M1 as well as Ra, is to increase the critical wave number ac
and hence to reduce the size of the convection cells.

The measure of non-linearity of fluid magnetization, denoted
through the parameter M3, on the onset of ferroconvection in a
ferrofluid layer is depicted in Fig. 4(a). The curves of Mac as a function
of Rac are shown in Fig. 4(a) for different values of M3 are for Λ = 0.2,
Bi = 2 andM1 = 2. It can be seen that an increase inM3 is to decrease
Rac andMac but only marginally and thus it has a destabilizing effect on
the system. This may be due to the fact that the application of magnetic
field makes the ferrofluid to acquire larger magnetization which in turn
interacts with the imposed magnetic field and releases more energy to
drive the flow faster. Hence, the system becomes unstable with a small-
er temperature gradient as the value of M3 increases. Alternatively, a
0.0 0.2 0.4 0.6 0.8

0

440

880

1320

1760

2200

0

 0

 0

0

0

0

2

2

2

2

Marangoni ferroconvection

Benard ferroconvection

 Cubic 1
 Cubic 2
 Linear

Bi =  2

R
a c

 &
 M

a c

Fig. 7. Variation ofMac and Rac verses Λwith two values of Bi forM3 = 1 and Rm = 100.



44 C.E. Nanjundappa et al. / International Communications in Heat and Mass Transfer 51 (2014) 39–44
higher value ofM3 would arise either due to a larger pyromagnetic coef-
ficient or larger temperature gradient. Both these factors are conducive
for generating a larger gradient in the Kelvin body force field, possibly
promoting the instability. The variation of ac as a function of Ra is
shown in Fig. 4(b) for different values of M3. From the figure, we note
that increasing M3 and Ra is to increase ac and hence to decrease the
dimension of convection cells.

Figs. 5–7 show the isolation presence of surface tension and
buoyancy forces on the onset of ferroconvection. These figures il-
lustrate the variation of Mac (pure Marangoni ferroconvection,
Ra = 0) and Rac (pure Bénard ferroconvection, Ma = 0) as a func-
tion of Λ for different values of physical parameters M3, Rm and Bi
for three types of basic temperature profiles. From the figures, it
is seen that the effect of increasing Λ is the delay of the onset of
Bénard/Marangoni ferroconvection and also an increase in M3 (Fig. 5),
Rm (Fig. 6) and a decrease in Bi (Fig. 7) which decreases the critical
Rayleigh/Marangoni number and hastens the onset of ferroconvection.
Further, (Mac)linearbcubic 2 bcubic 1 b (Rac)linearbcubic 2 bcubic 1 as observed
in ordinary viscous fluids.
5. Conclusions

The buoyancy, surface tension and magnetic forces reinforce each
other to hasten the onset of ferroconvection. It is demonstrated that
the onset of Bénard–Marangoni ferroconvection can be controlled
effectively by the proper choice of basic temperature profiles. The
cubic 1 basic temperature profile delays, while linear profile hastens
the onset of Bénard–Marangoni ferroconvection. Besides, an increase in
the value of Λ, Bi and a decrease in Rm and M3 delays the onset of
Bénard–Marangoni ferroconvection. The dimension of convection cells
decreases with increasing Bi, and Λ as well as decrease in M1 and M3.
The critical wave numbers for the cubic 1 basic temperature profile
are lower than those of the cubic 2 and linear temperature profiles.
The critical Marangoni numbers are lower than the critical Rayleigh
numbers for all temperature profiles considered.
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