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Abstract 

  

A chiral molecule is a type of molecule that lacks an internal plane of symmetry and thus has a non-superposable mirror 

image of a molecule. Chiral fluid is a fluid which has molecules and exhibits the chirality. The influence of viscous 

dissipation on convective flow, heat transfer, and mass transfer through viscous incompressible chiral fluid through a 

vertical porous layer immersed in porous medium in the presence of a uniform magnetic field is investigated. The 

coupled non-linear equations governing the motion are solved analytically using the regular perturbation method with 

Eckert number Ec as perturbation parameter. The effect of magnetochiral number M, porous parameter σ, Grashof 

number Gr, Eckert number E, and Schmidt number Sc on velocity, temperature distribution, mass flow rate, skin friction 

and rate of heat transfer are depicted graphically and some important conclusions are drawn. 

 

Keywords: Oberbeck convection, chiral fluid and porous medium. 

 

 

1. Introduction 

 
1
 Coupled heat and mass transfer driven by buoyancy due to 

temperature and concentration variations in a saturated 

porous medium, has several important applications in 

geothermal and geophysical such as the migration of 

moisture through the air contained in the fibrous 

insulation, the extraction of geothermal energy and so on 

(Sharma et. al, 2011).  The fluid flow and heat transfer in a 

porous medium is still a topic of current research interest 

due to its numerous industrial and environmental 

applications. Several comprehensive works published in 

this field (see, e.g., Rudraiah etal 1980, effect Nield and 

Bejan, 2006, Vafai, 2005, Bejan 2004, Pop, 2001,Sharma 

et, al., 2011, Barletta et. al., 2007, Ahmed, 2008,2009,  

Sahin et. al., 2011, )give a convincing evidence of this 

development. Special attention has been given to the 

internal flows in ducts and channels filled with porous 

media, with a broad application in building physics, 

mechanical, electrical, chemical, energy and 

environmental engineering. The thermally developing 

forced convection flow in a parallel-plate channel or 

circular tube filled by a saturated porous medium with 

walls at uniform temperature or uniform heat flux, with 

axial conduction and viscous dissipation, has been 

investigated by an extended Graetz method in a series of 

papers by Nield et al. (2003,2004) and Kuznetsov et al. 

(2003). 

                                                           
*Coresponding author: Nagaraju 

In spite of some similarities compared to the viscous flow 

of clear fluids, the internal (forced, free and mixed) 

convection in saturated porous media shows also essential 

differences. Nevertheless, the vast literature accumulated 

along the decades in the latter field (see, e.g., the 

comprehensive overviews by Shah and London ,1978 and 

Kakac and Yener, 1995) offers a solid orientation and help 

in the investigation of analogous problems in porous 

media. Thus, Storesletten and Pop (1996) have extended 

the problem of buoyancy–driven viscous flow in a vertical 

parallel plane channel posed by Banks and Zaturska 

(1991) to the case of a vertical porous layer with non-

uniform wall temperature. The effect of viscous 

dissipation has been included in the study of the combined 

free and forced convection in a porous medium between 

two vertical walls by Ingham et al. (1990). Al-Hadhrami et 

al. (2003) proposed a new model for viscous dissipation in 

porous media across a range of permeability values, while 

Umavathi et al. (2005) presented a numerical and 

analytical study of the mixed convection in a vertical 

porous channel using the Brinkman-Forchheimer model 

with various combinations of boundary conditions and 

with viscous dissipation effects included. More recent 

contributions to the effect of viscous dissipation in 

addition to the buoyancy effects have been published by 

Nield (2000), (2004) and by Magyari et al. (2005).Chamka 

(2004) studied the unsteady MHD convective heat and 

mass transfer past a semi-infinite vertical permeable 

moving plate wi h heat absorption. Combined heat and 
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mass transfer in MHD free convection from a vertical 

surface with Ohmic heating and viscous dissipation was 

presented by Chien (2004). The study of vertical channel 

flow bounded by a wavy wall and a vertical flat plate filled 

with a porous medium was presented by Ahmed (2008). 

Later on Ahmed (2009) also investigated the effects of 

free convection heat transfer on three-dimensional channel 

flow through a porous medium with periodic injection 

velocity. Fasogbon (2010) studied the simultaneous 

buoyancy force effects of thermal and species diffusion 

through a vertical irregular channel by using the parameter 

perturbation technique. 

  The problem that we consider in the present paper is to 

find the influence of viscous dissipation and magnetic 

field on Oberbeck convection in a chiral fluid with 

saturated porous media. A chiral material characterized by 

either left handed or right handed, is a type of molecule 

that lacks an internal plane of symmetry and has a non-

super-imposable with its mirror image by any amount of 

rotation and translation (see Rudraiah et.al 2010). It is 

noticed that, the cause for chirality in molecules, is the 

presence of an asymmetric carbon atom. The term chiral, 

in general, is used to describe an object that is non-

superposable on its mirror image. Human palms are the 

most universally recognized example of chirality because 

the left or right palm is non-superposable with its mirror 

image. A mathematical approach in chirality is the concept 

of “handedness” either left handed or right handed. 

Although the origin of chirality in life is still obscure, it is 

the source of diverse phenomena at the macromolecular 

and molecular level, governing our environment and the 

existence of living organisms. Considerable amount of 

work has been done during the last three decades on 

scattering from chiral objects (Lakthakia et al, 1988, 

1994). More recently, Rudraiah et.al (2013) have studied 

the effects of variation of viscosity and viscous dissipation 

on Oberbeck magnetoconvection in a chiral fluid and also, 

the effects of variation of viscosity and viscous dissipation 

on Oberbeck magnetoconvection in a chiral fluid. Also, 

they have, studied double diffusive Oberbeck Convection 

in a chiral fluid in the presence of chemical reaction and 

thermal radiation and the effects of temperature dependent 

viscosity and coriolis force on Oberbeck convection in a 

chiral fluid in the presence of a uniform transverse 

magnetic field has not been given much attention. 

 The objective of the present study is therefore to 

investigate the effects of viscous dissipation and magnetic 

field on Oberbeck convection in a chiral fluid with 

saturated porous media in the presence of a uniform 

transverse magnetic field. The required basic equations 

along with the Maxwell equations, continuity of charges 

and the constitutive equations for chirality are given in 

section 2. Details of the non dimensional procedure and 

parameters are described in this section only. The 

equations for skin friction, heat transfer and Sherwood 

number are derived in section 2.1. Analytical solutions of 

the coupled linear momentum, energy and concentration 

of species equations are obtained. The velocity, 

temperature, skin friction, rate of heat transfer and 

Sherwood number are computed and the results obtained 

are depicted graphically, for different values of controlling 

parameters influencing the flow characteristics to reveal 

the underlying physics. 

 
2. Mathematical Formulation 

 

We consider a physical configuration as shown in Fig. 1 

which consists of an  incompressible Boussinesq chiral 

fluid saturating an infinite vertical sparsely packed porous 

layer of width h .The temperature and concentration 

differences across the boundaries are T  and C  

respectively. A Cartesian frame of reference is chosen 

with x and y axes in the vertical and horizontal directions 

respectively. A uniform magnetic field 0B is applied in the 

z direction which is perpendicular to both x and y axes 

and also a uniform suction/injection velocity 0v  is applied 

in the y direction. The flow in the porous medium is 

governed by the Darcy-Brinkman equation with fluid 

viscosity different from effective viscosity. 

 
 

Fig.1 Physical configuration 
 

The governing equations describing chiral fluid flow are 

Conservation of mass for incompressible fluid: 

 

q = 0,
                 (1)

 

Conservation of momentum: 

  2

0 ,
'

q
q q p g q J B q

t k

 
           


    (2) 

Conservation of energy: 

  2

0 ,p

T
c q T k T

t

 
      

 

   

                    (3) 

where 
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2
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           

           
  

      
            

 

 

Conservation of Species: 

  2 ,
C

q C D C
t


   

                                (4)

 

Conservation of charges 
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0,e J
t


 




                                            (5) 

where 
eJ q 

 
(since the displacement current is 

negligible compared to convective current). 

 We assumes the flow is fully developed, steady and 

unidirectional. Therefore, all the physical quantities vary 

only with respect to y  except the pressure. For a state of 

equilibrium, we have  

0

p
g

y


 




              (5a)

 

Equation of state for an incompressible Boussinesq chiral 

fluid is 

    0 0 01 *T T c c        .                     (6) 

The constitutive equations for chiral fluids [Rudraiah et. 

al,2010, Lakhtakia, 1988] are: 

,D E i B                   (7)

,B H i E                 (8) 

Under these assumptions, equations (1), (2), (3), (4) and 

(5) take the form: 

0,
v

y





                    (9)
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2

0 0 02

0 0

0

*
'

0,e

d u du
v u T T g C C g

dydy

v B

     

 


  







       (10) 

22

0 02
0,p

d T dT du
k c v

dy dydy

 
   

 
                (11) 

2

02
0,

C C
D v

yy

 
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
      (12) 

e =constant.     (13) 

We make these equations (9) to (13) dimensionless using 

the quantities: 

 
   

0

2 2 2 2
0 0 0

0 0 0 0

* , * , * ,
/

, .
'

e

e

v u
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T T v k c c v D
C

q m
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

 
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


  


 

    (14) 

Using eqn (14), eqns (10), (11) and (12) neglecting the 

asterisks (*) for simplicity, become 
2 2

2 2 2
0,

Re Re

d u du M
Gr GmC u

dydy
     


        (15) 

22

2
Pr 0,

d d du
Pe Ec

dy dydy

 
   

 

 

    

(16)

2

2
0.

d C dC
Sc

dydy
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   (17)

 

where 

 2 2 2

0 0 0

e

e E B B
M

h



  

Magnetochiral number, 

0

e

v h
R

v
 Reynolds number,

h

k
 Porous parameter,

 
2

4

0

r

g q
G

k


 


Grashof number for heat 

0

* 2

4m

g m
G

k


 


Grashof number for mass,

  
3

0

'
c

p

K
E

q C





    Eckert number 

p

r

C
P

K



Prandtl number, cS
D




 Schmidt number. 

We solve the equations (12) to (14) analytically using the 

following boundary conditions on velocity and isothermal 

conditions on temperature in dimensionless form are  

0u  at 0y  , 0u  at 1y                          (18a) 

1  at 0y  , 0 at 1y                               (18b) 

1C at 0y  , 0C at 1y                               (18c) 

 

3. Analytical Solution 
 

Equations (15) and (16) are the coupled non-linear 

differential equations whose analytical solutions are 

obtained using a Regular perturbation technique with 

Eckert number Ec as a perturbation parameter. In this 

technique we express u and   in the series form as 
2

0 1 2 .........u u Ecu Ec u                     (19a) 

2

0 1 2 .........Ec Ec      
                

(19b) 

satisfying the boundary conditions (18a,b,c). Substituting 

the equations (19a) and (19b) into the eqns (15) and (16) 

and equating to the like powers of Ec,Ec
2
, we get the 

following boundary value problems. Since we assumed 

that Ec<<1, we restricted our solution only up to order 1. 

 

Zeroth order equations: 
2

0 0

2
0,

d d
Pe

dydy
 

 
             (20) 

2 2

0 0

0 02 2 2
Re .

Re Re

d u du M
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dydy
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


   

(21) 

 First order equations: 
22

01 1

2
Pr Pr ,

dud d

dy dydy

 
    

 

 

   

       (22) 

2 2

1 1

1 12 2
.

Re

d u du
u Gr

dydy
   


           (23) 

The solution for eqns. (17), (20), (21), (22) and (23) are 
Pr

0 Pr

1
, ,

1 1

Sc Sc y y

Sc

e e e
C

e e

 
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 


  
       (24),&(25)                                                              

1 2 Pr

0 0 1 2 3 4 ,
m y m y y Sc yu a a e a e a e a e                      (26) 
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4. Skin-friction and Nusselt numbers 
 

The equations defining the wall skin-friction (τ) and Local 

Nusselt number (Nu) are given by  

0 0

,
y y
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Fig. 2 Velocity profiles for different values of M when 

E=0.1, Pr=5,Re=1,σ=0.01 Sc=0.22,Gm=0.5, and Gr=0.5 
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Fig. 3 Velocity profiles for different values of E when 

M=5, Pr=5,Re=1,σ=0.01 Sc=0.22,Gm=0.5, and Gr=0.5 
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Fig. 4 Velocity profiles for different values of Sc when 

M=5, E=0.1,Pr=5,Re=1,σ=0.01,Gm=0.5, and Gr=0.5 
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Fig. 5 Velocity profiles for different values of σ when 

M=5, E=0.1, Pr=5, Re=1, Sc =0.22, Gm=0.5, and Gr=0.5 
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Fig. 6 Temperature profiles for different values of M when 

E=0.1,Pr=5,Re=1, Sc =0.22, σ =0.01,Gm=0.5, and Gr=0.5 
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Fig. 7 Temperature profiles for different values of E when 

M=5, Pr=5, Re=1, Sc =0.22, σ =0.01,Gm=0.5, and Gr=0.5 
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Fig. 9 Temperature profiles for different values of σ when 

M=5, E=0.1, Pr=5, Re=1, Sc =0.22, Gm=0.5, and Gr=0.5 
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Table 1 Comparison of variation of skin friction 

coefficient at the plate with magnetochiral number M, 

where Pr=0.71, Sc0.22, Gm=2.0,Gr=2.0.σ=1.0,E=0.02 and 

Re=5.0.  

M 
     Acharya et. Al 

(ordinary fluid) 

 

Present study for chiral 

fluid 
 

0.5 4.1612 12.9705 

1.0 3.3964 12.762 

2.0 2.6556 12.3456 

3.0 2.3278 11.9299 

4.0 2.1406 11.5151 

6.0 1.9167 10.6876 

7.0 1.8385 10.2751 

8.0 1.7725 9.86333 

 

5. Results and Discussion 
 

Analytical solutions for effects of magnetic field and 

viscous dissipation on double diffusive Oberbeck 

convection in a chiral fluid saturated porous medium are 

reported. The results are presented graphically in Fig. 2 to 

12 and conclusions are drawn for flow field and other 

physical quantities of interest that have significant effects. 

 From Fig. 2 and 6 depicts variation of velocity and 

temperature profiles, respectively, for different values of 

M when Ec=0.1, Pr=0.1, Re=5, σ=0.01, Sc=0.22, 

Gm=0.5, and Gr=0.5. Fig. 2 shows that the velocity is 

considerably reduced with the increase in the value ofM , 

because the transverse magnetic field opposes the 

transport phenomena due to the fact that the presence of a 

magnetic field produces a Lorentz force which acts in the 

opposite direction to the fluid motion which results in 

decreasing the fluid velocity and also decrease the fluid 

temperature with increase in the magnetic field (see in 

Fig.6). In addition, the momentum boundary layer 

thickness decreases with increases in the value of M while 

the same trend is observed for thermal boundary layer 

thickness as shown in Fig. 2 and 6.   

 Fig. 3 and 7 shows the effect of Eckert number on 

velocity and temperature distribution profile. The E is 

varied from 0.01 to 1.0 velocity of fluid and thickness of 

the thermal boundary layer increases. When E is less than 

1 the energy dissipation is low. The higher the E, the 

larger the temperature rises due to viscous dissipation. It is 

witnessed by a sudden increase in the fluid velocity near 

hot plate before satisfying boundary conditions.  

   The fluid velocity and temperature variations for 

various values of Schmidt number Sc in depicted in Fig. 4 

and 8. It is observed that increase in Sc there is a reduction 

in velocity for the fluid both in magnitude and extent and 

thinning of thermal boundary layer occurs. 

 Fig. 5 and 9 depicts the effect of porous parameter on 

velocity and temperature distribution. Velocity and 

temperature decreases both in magnitude and extent  with 

increase in porous parameter.  

 Fig. 10 is the plot of concentration profiles against y 

for different values of Sc. It is observed that as the 

Schmidt number Sc increases the value of C increases 

everywhere within the boundary layer. 

 The Skin friction and the rate of heat transfer are 

computed for different values of E and the results are 

presented in Fig. 11 and 12.  These physical parameters 

increase with increase in I.  The skin friction decreases 

with increase in M   and the rate of heat transfer increases 

with increase in M. 

 Finally, we have compared present work with 

Acharya‟s (2000) work. Analysis of the tabular data from 

table 1 shows that the values that are obtained for chiral 

fluid are not in good agreement. From this we can predict 

that the higher values are obtaining for chiral fluids due to 

chirality in the fluid particles. From Table 1, it is clear that 

skin-friction values are decreases for both ordinary and 

chiral fluids but the values are not at all matching with 

those compared work.  
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Nomenclature 

 
 -  kinematic viscosity                                                

D -  mass diffusion coefficient 

 -  dielectric constant                                                     

K -  thermal diffusivity 

k  -  thermal conductivity                                                 

'k - permeability of porous layer                                     

pC
- specific heat at constant pressure                            


 -  thermal expansion coefficient 

0 - reference density                                                     

0C
- species concentration at 

0y
                      

*
- solutal expansion  coefficient                                   

0T
- fluid temperature at 

0y
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C - species concentration                                               

 T  - temperature of the fluid  


- chirality factor                                                           

e  - distribution of charge density       

0v
- suction/ injection velocity                                        

H -magnetic induction                                                   

D - dielectric field                                                          

 h - width of the channel                                                 

f - viscosity of the fluid                                             


 - density of the fluid                                                 

  - porous parameter                                                  

   - dimensionless temperature  
m -mass flux per unit area     

'q
- heat flux per unit area    


 - magnetic permeability    

J -current density          

g
- gravitational field intensity         

E - electric intensity     

B - magnetic Induction                                                 
,u v

- Velocity components in x and y directions respectively 

 

 
 

 


