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Highlights 

1. Synthesis via hydrothermal method without using any surfactant in acidic medium.  

2. Rings were formed in a wide range of temperature from 100-180 °C for 1-3 days.  

3. The cyclability of Li ion battery of the material is relatively good.  

4. Because of mixed phase it is not possible to compare with pure V2O5 battery.  

5.  A probable reaction mechanism for the formation of V2O5 nanorings is proposed. 
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ABSTRACT 

This paper describes the hydrothermal synthesis of vanadium oxide nanorings and nanobelts 

from aqueous precursors without using any template. These nanorings are formed via the 

acidification of sodium metavanadate solution. A simple ion intercalation/de-intercalation 

process occurs under mild hydrothermal conditions leading to the self-rolling of exfoliated 

vanadium oxide nanobelts. The structure and morphology of the products are characterized by 

XRD, SEM, TEM and charge-discharge measurement. XRD pattern reveals that the products 

consist of V2O5 nanorings and Na0.3V2O5 nanobelts evidenced by SEAD pattern and EDS. 

Highly magnified TEM images exhibit nanorings made of nanoribbons of width about 300 nm 

and thickness of about 60 nm. Electrochemical analyses revealed that the V2O5 

nanorings/nanobelts delivers an initial lithium-ion intercalation capacity of 280 mAh g-1 and 

reaches a stabilized capacity of 200 mAh g-1 at a current density of 100 mA g-1. 

 

Keywords: A. Nanostructures; A. Layered compound; B. Chemical synthesis; B. Intercalation 

reactions; C. X-ray diffraction; C: Electrochemical measurements; D: Energy storage. 
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1. Introduction  

 1-D nanostructured transition metal oxides exhibits a unique class of materials because of their 

redox activity, which is connected with outstanding electrochemical and catalytic properties. 

Among transition metal oxides, layered vanadium pentoxide (Eg = 2.8 eV) and its compounds 

allow a wide range of practical applications such as lithium batteries [1-6], catalysis, [7,8], 

electro-chromic devices [9], supercapacitors [10], actuators [11], sensors [12] etc, due to their 

outstanding structural flexibility combined with chemical and physical properties.  

 V2O5 is a typical intercalation compound with a layered crystal structure that can be reversibly 

intercalated and de-intercalated between the layers has been extensively studied as a cathode 

material for rechargeable lithium batteries because of its low cost, abundance, easy synthesis and 

high energy density [13]. However, the development of rechargeable lithium batteries with V2O5 

as a cathode material has been limited due to its poor structural stability, low electronic and ionic 

conductivity, and slow electrochemical kinetics [14,15]. It is well known that the structure and 

morphology of V2O5 can strongly influence its electrochemical performance. In recent years, a 

lot of research has been focused on the synthesis and fabrication of 1-D nanostructured V2O5. It 

has been demonstrated that V2O5 nanorods, nanotubes, nanowires, nanoribbons, etc, are regarded 

as promising active lithium intercalation cathode materials because they provide shorter path 

lengths for both electronic and Li ionic transport [16]. 

 V2O5. nH2O and cation intercalated V2O5 [M0.3V2O5.nH2O (M = Li+, Na+)] have been 

extensively studied for their electrochemical properties. They consist of V2O5 bilayers whose 

interlayer space is occupied by water molecules (V2O5. nH2O) and cations (Na0.3V2O5. nH2O). In 

the case of Na0.3V2O5. nH2O, the structural anisotropy of the particles was shown to induce a 
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better electrochemical response, compared to the analogous compound synthesized by solid state 

reactions [17,18]. 

 Although various methods are available for the synthesis of low dimensional V2O5 

nanostructured electrode materials [19-25], many of them suffer from the limits of high 

temperatures, special equipment’s and/or special experimental conditions. The hydrothermal 

synthesis remains interesting because it is a powerful tool to transform transition metal oxides 

into high quality nanostructures and nanostructured vanadium oxides in different morphologies 

besides lower temperature involved in the cost effective environmentally benign process. 

 A common preparative procedure for nanostructured vanadium oxide materials from molecular 

clusters to 1-D and 2-D layered compounds involves the hydrothermal treatment of a vanadium 

precursor (Ex. NH4VO3, Vanadium alkoxides, V2O5 or VOSO4). Nanotubes are obtained via a 

self-rolling process while amazing morphologies such as nanospheres, nanoflowers and even 

nanourchins are formed via the self-assembling of nanoparticles [26]. Control over the 

nucleation and growth may be crucial in the tailoring of the size, shape, surface structure and 

consequently to the final properties of the resultant VOx materials.  

 Increasing attention is being nowadays paid to ring [27-32] like nanomaterials because of their 

size, special morphology-related properties and potential nanoscale applications [31]. This paper 

reports on the synthesis and the electrochemical performance of V2O5 nanorings and Na0.3V2O5 

nanoribbons obtained under hydrothermal conditions. The mechanism for the formation of 

nanorings is also discussed.  

2. Experimental 

 Hydrothermal process was carried out like our previous report to synthesis Ammonium vanadate 

nanorings or Cadmium carbonate nanorings [33, 34]. 0.27 g NaVO3 was dissolved in 20 mL 
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distilled water taken in a 30 mL capacity Teflon tube. Two drops of HCl (pH≈ 3-4) was added to 

it to maintain acidic medium and stirred for 10 min. The resultant wine-red solution was 

subjected to hydrothermal treatment from 100 °C to 180 °C for 1-3 days. The reddish-brown 

non-adherent spongy-like bulky material was collected and washed with distilled water and 

absolute alcohol several times before being dried in air. 

2.1 Characterizations 

 Powder X-ray diffraction data were recorded on Philips X’pert PRO X-ray diffractometer with 

graphite monochromatized Cu-Kα (1.5418 Å) radiation. The Fourier transform infrared spectrum 

(FTIR) of the sample was collected using Bruker Alpha-P spectrometer. The absorption 

spectrum of the sample was measured on a Perkin Elmer Lambda-750 UV-Visible spectrometer. 

The morphology of the product was examined by JEOL-JSM–6490 LV scanning electron 

microscope (SEM) and CM12 Philips transmission electron microscope (TEM) equipped with 

energy dispersive X-ray spectrometer (EDS). The BET-surface area measurements were carried 

out using QUADRASORB SI quantachrome instrument.  

 The electrochemical properties of the V2O5 nanorings/nanoribbons were tested in Swagelok 

cells assembled in an argon filled glove box (Jacomex). The cathode electrodes were made by 

mixing 70 wt.% active material (V2O5 nanorings/ribbons), 20 wt.% conductive material 

(acetylene black) and 10 wt.% binder [poly(vinylene difluoride, PVDF]. The slurry prepared 

using 1-methyl-2-pyrrolidone (NMP) as a solvent was coated on Al foil as a current collector, 

finally dried in the oven at 120 0C for one day. Lithium metal was used as the counter and 

reference electrodes. The electrolyte was 1 M LiPF6 in ethylene carbonate (EC) and dimethylene 

carbonate (DMC) (1:1 v/v). Cyclic voltammetry (CV) measurements are performed using CHI 

660C (CH Instrument Electrochemical workstation) between 1.5 - 4.0 V versus Li+/Li at a scan 
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rate of 0.5 mVs−1. Galvanostatic discharge/charge measurements were performed on an Arbin 

BT-2000 battery tester between 1.5 - 4.0 V versus Li+/Li.  

3. Results and Discussion 

3.1 Structural characterization 

The XRD patterns (Fig. 1) exhibit the phases and purities of the samples V2O5 nanorings (JCPDS 

85-2422) and Na0.3V2O5 nanoribbons/ribbons (JCPDS 75-0544). The composition of V2O5 

nanorings and Na0.3V2O5 nanoribbons were well evidenced by EDS analyses (Fig. 2). EDS 

spectrum taken on the nanorings shows the absence of sodium clearly indicates that nanorings 

are made up of only V and O.  

 Fig. 3a shows the FTIR spectrum of the V2O5 nanorings/nanoribbons. The peak at 1002 cm−1 is 

characteristic of the stretching vibration of the terminal vanadyl V=O. The absorption bands at 

826 and 534 cm-1 can be attributed to the asymmetric and symmetric stretching vibrations of V-

O-V bonds respectively. The IR spectrum of the Na0.3V2O5 is quite similar except for the bands 

corresponding to the stretching vibration of V=O. Indeed, in addition to the vibration at 1002 cm-

1 a shoulder at 965 cm-1, corresponding to a weaker V=O vibration is evidenced and its intensity 

increases with initial pH values [18, 35]. To evaluate the optical properties of the V2O5 

nanorings/nanoribbons, UV–Vis spectrum was recorded from 200-800 nm and is shown in Fig. 

3b V2O5 nanorings/nanoribbons shows maximum absorbance at 462 nm is blue-shifted compared 

to that of bulk V2O5 powders (470 nm). The origin of the blue shift in the absorption band is 

suggested to be the contribution of a quantum size effect in V2O5 nanorings/nanoribbons [32]. 

 SEM is used as important technique to identify the morphological architecture of the samples 

prepared under hydrothermal method from 100-180 C for 1-3 days. Selective images of SEM 
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with interesting morphologies have been taken into consideration. Nanorings obtained at 100 °C 

and 110 °C for 3 days (Fig. 4) were made of ribbons that have typical diameters of 3-4 μm and 

0.5-1 µm wide shells with a thickness of about 60-80 nm. Samples obtained at 130 °C for 1 day 

(Fig. 5a,) consist of nanorings of various sizes made of nanoribbons and nanoribbons. Curving of 

nanoribbons/ribbons takes place extensively under this condition. SEM images of the product 

prepared at 130 C for 2 days (Fig. 5b-c, Fig. S1) show that the dispersed nanorings lay on 

randomly folded nanocarpets made of nanoribbons only. Highly magnified SEM images exhibit 

nanorings made of nanoribbons of width 200-300 nm and thickness of about 60 nm. With an 

increase in temperature to 150 C for 1 day, concentric nanorings resembling tires of 

automobiles (Fig. 5d) are formed. As the reaction time was an increase from 2 to 3 days (Fig. 

S2), nest structure gradually decreases. At 130 °C (Fig. 5b-c) and 150 °C (Fig. 5e-f) for 2 days, a 

significant amount of nanoribbons were curved into perfect circular shape, which was not found 

for nanoribbons or nanowires of the VOx family. The synthesized samples are composed of many 

freestanding nanorings at a significant percentage ( 40 to 50%) of the yield and 70% of the 

reproducibility from run to run.   

 Experiments were carried out to know the effect of temperature, nature of the acid, 

concentration of the precursor, nature of the precursor, etc. on the morphology of the product 

obtained. Nanorings were not formed for H2SO4 and HNO3 at 130 °C for 2 days. Nanorings are 

not observed when the concentration of the precursor is halved and only few nanorings were 

observed when the concentration is doubled (Fig. S3b). Fig. S4 and Fig. S5 shows the 

morphology of the product prepared at 160 °C and 180 °C for 1-3 days. It shows that at higher 

temperature, number of rings formed was decreases. Changing the precursor from sodium 
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vanadate to ammonium vanadate, no rings were observed at all experimental conditions (Fig. 

S6), which clearly indicates that sodium, was necessary for the formation of V2O5 nanorings.  

 Fig. 6 shows the TEM image and SAED pattern of nanorings/nanoribbons prepared at 110 °C 

for 3 days and 150 °C for 2 days. The sample (Fig. 6a,b) was composed mainly of nanoribbons 

and nanorings. The thickness of the nanorings was found to be about 200 nm and nanoribbons 

was 100-200nm. The HRTEM image (Fig. 6b inset) recorded on the quadrate area of nanorings 

shows clearly the resolved inter planar distances (d= 0.71 nm), which determine the (101) 

growth direction of the nanorings. The clear diffraction circles shown in the SAED pattern (Fig. 

6e) can be well attributed to the diffraction of (202), (111), (211), (401) and (502) planes of V2O5 

nanoring from inside to outside. The lattice fringe with a spacing of 0.71 nm in HRTEM image is 

in agreement with the ‘d’ value (0.706 nm) of orthorhombic V2O5. TEM images of the sample 

prepared at 150 °C for 2 days (Fig. 6c,d) shows that the width of the nanorings is 300nm and the 

shows several micrometer in diameter. Thickness of the nanoribbons were found to be in the 

range of 100-250nm. SAED pattern (Fig. 6f) taken on the nanoribbons of the sample corresponds 

to Na0.3V2O5. Above observation clearly shows that the rings are made up of nanoribbons or 

nanorods or nanowires. 

3.2 Electrochemical performance of V2O5 nanorings/nanoribbons 

Cyclic voltammetry (CV) experiments were conducted to evaluate the electrochemical 

performance of V2O5 nanorings/nanoribbons at a scanning rate of 0.5 mVs-1 over the voltage 

range 1.5 – 4 V. Fig. 7 shows the cyclic voltammograms of the product prepared at various 

conditions. Well-defined reduction (cathodic) and oxidation (anodic) peaks occur at 2.4 V 
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(lithiation) and 2.8 V (delithiation) respectively, for the V2O5 nanorings/nanobets. The reversible 

chemical intercalation and deintercalation reaction [36,37] can be described as  

1
2 5 0.5 2 5α V O 0.5Li 0.5e Li V O         (1) 

1
0.5 2 5 2 5Li V O 0.5Li 0.5 δe LiV O         (2) 

 

 The capacity and cycle performance of V2O5 nanorings/nanoribbons electrodes are evaluated by 

galvanostatic discharge–charge measurements (Fig. 8) at a current density of 100 mA g-1. The 

V2O5 nanorings/nanoribbons prepared at 130 C for 1 day shows an initial discharge capacity of 

275 mAh g-1, and the capacity gradually decreases in the further cycles but remained at 200 

mAhg-1 (27% capacity loss) after the 30th cycle (Fig. 8a). The initial high capacity of the 

nanorings/ribbons can be ascribed to the large surface area and short diffusion distances provided 

by the nanostructure. V2O5 nanorings/nanoribbons shows a surface area of 102 m2/g is expected 

to present good rate capability and cyclability as the anode material in a Li-ion battery. Fig. S7 

shows the discharge profiles exhibit one plateau which is consistent with the cyclic 

voltammogram. Fig. S8 shows the SEM images of the cathode materials after charge-discharge 

performances. It shows that there is a destruction of the structure and the product is 

agglomerated. Fig. 9 and Fig. S9 shows the cycling performances and charge-discharge profiles 

of V2O5 nanorings/nanoribbons at different current densities.  

3.3 Formation mechanism  

V2O5 nanorings are formed in aqueous solutions. Therefore, they should result from the 

condensation of molecular precursors. A whole range of molecular species can be observed in 

aqueous solutions at room temperature depending on pH and concentration. Around pH≈ 8, 

NaVO3 are built of corner-sharing four-fold coordinated [VO4] tetrahedra. Co-ordination 
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expansion occurs upon the acidification of aqueous solutions leading to vanadic species in which 

V5+ ions are in [VO5] square pyramids. The aqueous solution then turns from colorless to red. In 

dilute solutions, the neutral precursor [VO(OH)3(OH2)2]0 is obtained around pH≈2. 

Deprotonation occurs at higher pH leading to [VO(OH)4(OH2)]- species around pH≈6.  

 It is well known that the acidification of aqueous metavanadate solutions leads to the 

formation of V2O5. nH2O gels [2]. These are formed of ribbon-like V2O5 particles about 1 µm 

long, 20 nm wide and 2 nm thick. Because of the high polarizing power of small V5+ ions, 

surface V-OH groups exhibit acidic properties so that V2O5 gels could also be described as 

poyvanadic acids HnV2O5 (n≈ 0.3). Acidic protons can be easily exchanged with alkaline cations 

leading to M0.3V2O5. nH2O (M = Li, Na, …) intercalated compounds. 

 The acidification of metavanadate solutions can be conveniently performed via an ion 

exchange between Na+ and H+ in a resin leading to the formation of V2O5. nH2O. Na+ ions are 

not removed when acidification is performed by adding an acid, they remain intercalated within 

the layered oxide leading to a poorly crystallized Na0.3V2O5,1.5H2O. Moreover, the presence of 

foreign cations introduces new electrostatic interactions leading to floculation rather than 

gelation [18]. Two phases can actually be formed upon acidification of sodium metavanadate 

aqueous solutions namely Na0.3V2O5.nH2O ribbons and a layered NaV3O8. 1.5H2O. Their 

respective amounts depend on experimental conditions, pH, temperature, ageing, etc. The 

hydrated trivanadate is formed above pH 5 while a mixture of Na0.3V2O5,1.5H2O and 

NaV3O8,1.5H2O is observed in the pH range 3-5 [18]. These solid phases are formed via the 

condensation of hydroxyl V-OH groups in the equatorial ‘xy’ plane. Olation and oxolation 

reactions of the neutral precursor [VO(OH)3(OH2)2]0 around pH≈2 lead to the 1-D ribbon-like 

particles of V2O5. nH2O gels whereas only oxolation reactions occur with [VO(OH)4(OH2)]- at a 
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neutral pH leading to 2-D structures. The hydrated trivanadate results from the co-condensation 

of both molecular precursors, [VO(OH)3(OH2)2]0 and [VO(OH)4(OH2)]- leading to the formation 

of trivanadate [V3O8]- layers with intercalated Na+ in order to compensate the negative charge of 

the layers. Upon hydrothermal conditions, electrostatic interactions between the V2O5 layers 

decrease, leading to the progressive deintercalation/ extraction of Na+ cations from the 

Na0.3V2O5. nH2O phase. The self-rolling of flexible exfoliated V2O5 nanoribbons can then occur. 

A similar process has already been suggested for the synthesis of TiO2 nanotubes via the 

exfoliation of layered titanate Na2Ti3O7
 [38] or niobium oxide from K4Nb6O17[39].  

 The self-coiling of a single nanobelt mechanism has been suggested to explain the formation of 

ZnO nanorings [27]. Because of their polar surface, flexible ZnO nanoribbons roll over into 

nanorings in order to reduce the electrostatic energy. [VO5] square pyramids also exhibit a polar 

structure with a short V=O opposite to a long V---OH2 bond along the ‘z’ axis (O=V---OH2). 

The α- V2O5 is made of chains of edge sharing [VO5] square pyramids in which V=O are 

directed towards opposite directions in two adjacent pyramids. The whole structure is therefore 

non polar. This is no longer the case for VOx nanotubes in which the oxide layers are built of two 

sheets of [VO5] square pyramids pointing in opposite directions and are linked by [VO4] 

tetrahedral [40]. Again the whole structure is non-polar, but each [VO5] sheet has a polar 

structure. VOx nanotubes are formed under hydrothermal conditions at a higher pH allowing the 

formation of tetrahedral [VO4] species. In our case, the pH of the precursor solution is too low 

for tetrahedral co-ordination to occur. V2O5 nanoloops are made of single sheets of [VO5] square 

pyramids only. Such sheets can exhibit a polar structure. The self-rolling process could involve 

nanoribbons and nanoribbons rather than nanosheets leading to nanorings rather than nanotubes. 
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The possible growth mechanism for the formation of Na0.3V2O5 nanofibers and V2O5 nanorings 

are shown in the schematic diagram 1.  

4. Conclusion 

In conclusion, we have reported the hydrothermal synthesis of V2O5 nanorings and Na0.3V2O5 

nanoribbons without using any surfactant in aqueous acidic medium. Electrochemical tests 

indicated that the V2O5 nanorings/nanoribbons has an initial specific capacity of 280 mAh g-1 in 

the 1.5-4 V vs. Li+/Li, and its stabilized capacity still remained as high as 200 mAh g-1. The 

formation mechanism of nanorings and nanoribbons involve a simple ion intercalation/ 

deintercalation process. The self-rolling process of polar [VO5] square pyramids involves 

nanoribbons and nanoribbons lead to the formation of nanorings. These nanorings exhibit a well 

ordered crystalline structure of α- V2O5. Further studies on the improvement in the quantity/ 

quality of V2O5 nanorings and the generation of other metal oxide nanorings are under research. 
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 Fig.  1.   PXRD patterns of the nanorings/nanoribbons prepared at  (a) 130 C 

for 2 days, (b)  150 C for 2 days and  (c) 110 C for 3 days.    (* = Na0.3V2O5,  

# =  V2O5) 
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     Fig. 2   EDS spectrum of (a) nanorings and (b) nanoribbons prepared at 130 °C for 2 days.   
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Fig.  3.  (a) FTIR spectrum and (b) UV-Vis spectrum of  the V2O5 nanorings/ 
nanoribbons prepared at 130 ºC for 2 days.  
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Fig. 4   SEM images of the nanorings/nanoribbons prepared at (a) 100 °C and                      
(b) 110 °C   for  3 days. 
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Fig.  5.   SEM images of the nanorings/nanoribbons prepared at (a) 130 °C for 1 day, 

(b,c)130 °C for  2 days, (d) 150 °C for 1 day and (e,f) 150 °C for 2 days. 

a b 

c d 

b e 



23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.  6 TEM image of (a,b) nanorings/nanoribbons, (inset- HRTEM of nanorings) prepared 

at 110 °C for 3 days, (c,d) nanorings/nanoribbons prepared at 150 °C for 2 days and  SAED 

patterns of (e) nanorings and (f) nanoribbons prepared at 110 °C for 3 days. 
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 Fig.  7.  Cyclic voltammograms of  the V2O5  nanorings/nanoribbons prepared at    (a) 130 º 

C for 1 day, (b) 130 º C for 2 days, (c) 150 º C for 1 day and (d) 150 º C for 2 days at a scan 

rate of 0.5 mVs-1 between 1.5-4 V. 
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Fig.  8.  Cycling performance (discharge and charge capacity), Coulombic efficiency 

of the V2O5 nanorings /nanoribbons prepared at (a) 130 º C for 1 day,  (b) 130 º C for 

2 days, (c) 150 º C for 1 day and (d) 150 º C for 2 days at a current density of  0.1 mA 

g-1. 
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Fig.  9.  Discharge and charge profile of  V2O5 nanorings/nanoribbons 

prepared at   130 º C for 2 day at a different current densities of 55 mA/g 

for 1-5 cycles,  110 mA/gfor 6-10 cycles, 165 mA/g for 11-15 cycles, 220 

mA/g for (16-20  cycles and 55 mA/g for 21-26 cycles,   
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Scheme 1. Possible schematic growth diagram of Na0.3V2O5 nanofibers/ nanorings.  


