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Abstract—Security in wireless sensor networks is critical due
to its way of open communication. In this paper we have
considered suite of attacks - packet modification, packet dropping,
sybil attack, packet misrouting, and bad mouthing attack, and
provided a solution to detect attacks. In literature, many schemes
have been proposed to mitigate such attacks but very few detect
the malicious nodes effectively and also no single solution detects
all attacks. In the proposed approach, each node chooses the
parent node for forwarding the packet towards sink. Each node
adds its identity and trust on parent as a routing path marker
and encrypts only the bytes added by node in packet before
forwarding to parent. Sink can identify the malicious node based
on trust value and node identities marked in packet. Child node
observes the parent and decides the trust on parent based on
successful and unsuccessful transactions. Data transmission is
divided into multiple rounds of equal time duration. Each node
chooses the parent node at the beginning of a round based on its
own observation on parent. Simulated the algorithm in NS-3 and
performance analysis is discussed by comparing the results with
other two recently proposed approaches. With the combination
of trust factor and fixed path routing to detect malicious activity,
simulation results show that proposed method detect malicious
nodes efficiently and early, and also with low percentage of false
detection.

Keywords—WSN, trust based, malicious node, packet modifica-
tion, sybil attack, misrouting, packet dropping, bad mouthing attack

I. INTRODUCTION

A wireless sensor network (WSN) consists of spatially
distributed autonomous devices having sensing, computing
and communication capabilities. Sensor nodes cooperatively
monitor physical or environmental conditions, such as temper-
ature, pressure, sound, vibration, motion or pollutants. Wireless
sensor networks are used in environmental conditions where
information is difficult to access. Sensor node, also known as
a ’mote’, is a node in a wireless sensor network that is capable
of performing some processing, gathering sensory information
and communicating with other connected nodes in the network.
Sensor network transmits the data from one node to another
node in an adhoc way and finally to a base station where the
data is stored, processed and displayed.

Sensor nodes are vulnerable to a wide range of attacks [1].
Attacker can listen to radio transmissions, modify the packet
before forwarding, misroute the packet to unintended next hop
node, inject false data in the channel, replay previously heard

packets to drain the energy of other nodes as battery power
is crucial in nodes. Attacker may deploy few malicious nodes
with similar or better hardware capabilities or by ’turning’ few
legitimate nodes by capturing them and physically overwriting
their memory. Sybil attack - attacker deployed nodes may also
use the identities of the other genuine nodes to frame other
genuine node as malicious. Packet dropping, modification,
misrouting are basic problems which have large impact on
the information gathered by sensor nodes as network loses lot
of important sensed data. Cryptography techniques alone are
not sufficient to protect the data. Attacks such as colluding
collision[2], misrouting, power control, wormhole, rushing
attacks can be launched without the help of cryptography keys
[3].

In this paper, we propose simple yet effective scheme
’Catching Malicious Nodes with Trust Support (CMNTS)’
to identify malicious nodes which performs any or all of
packet modification, packet dropping, misrouting, using wrong
identity, and bad mouthing attacks. After deployment, each
node selects a list of parent nodes which have equal and
shortest distance to sink node. Each node selects a parent node
among the identified parent nodes and sends parent selection
information to sink. Sink establishes a routing tree rooted
at sink node based on the information received from each
node. Data transmission is divided into rounds of equal time
duration. Each node chooses a different parent node in the
beginning of a round or phase among the selected parents
based on the trust they have on the parent.

Intermediate node prepares marker data containing node
identity and trust factor on its parent node, encrypts the marker
data and adds to the packet before forwarding the packet
to parent node. Each node builds trust value on parent by
observing the parent node for malicious activities such as
packet modification, dropping and misrouting. Marker data
added by each node helps sink to trace the nodes in the routing
path and helps to detect sybil attacks, misrouting and packet
modification. Sink finds the nodes which are responsible for
malicious activity while processing the packet. If Sink fails
to process the packet then uses the trust value to filter the
malicious node among the suspicious pair of nodes. Sink uses
aggregated trust value collected by each child node on parent
to avoid bad mouthing attack.

In order to find the packet modifiers and droppers, Catching
Packet Droppers and Modifiers(CPDM) [4] has been proposed
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recently in literature. But CPDM frames the source node even
the intermediate node drops or modifies the packet and the
percentage of false isolation is high. We proposed a solution
Catching Packet Modifiers with Trust Support (CPMTS)[5]
to over come the issues with CPMD. CPMTS does not
consider the sybil attack and packet misrouting attack, which
impacts the basic packet modifier detection mechanism of
CPMTS. The proposed approach CMNTS in this paper provide
a solution for detecting attacks not considered in CPMTS.
We provide a simulated performance analysis showing the
comparison among CPDM, CPMTS and our approach with
various parameters. The rest of the paper is organized as
follows, section II discusses about the related work, section
III describes the problem statement, section IV presents the
solution and algorithm, section V provides the performance
analysis and results, and section VI concludes the work and
discusses the future challenges.

II. RELATED WORK

To handle the packet droppers and modifiers, multi-path
routing [6], [7], [8], [9] approach is widely adopted in which
copies of a packet are forwarded along multiple paths to the
destination Sink. Neighbor node observation or monitoring is
another approach [10], [11], [12] used to find the packet mod-
ifiers, droppers and routing misbehavior in sensor networks.
In monitoring approach, nodes monitor their neighborhoods
promiscuously to collect information about the behaviors to
identify the malicious activity and take future forwarding
decisions. Monitoring method requires nodes to buffer the
packets which are forwarded to next hope node and compares
the packet forwarded by next hop node with its buffered packet
to find out packet modifications.

Energy consumption in both multipath routing and neigh-
borhood monitoring is not affordable for sensor networks
since, many nodes observe each hop while a packet being
forwarded. In [3], energy efficient sleep-wake approach along
with local monitoring method is used to detect malicious nodes
but cannot control the bad mouthing attack from observers.
CPDM [4] proposed a scheme to detect packet modifiers and
droppers without using multipath forwarding or monitoring
approach, but the method identify the malicious nodes after
long time operation of network and also has high false positive
detection. CPMTS [5] proposed a scheme to overcome the
issues with CPMD by making the child node to observe the
parent for successful or unsuccessful transactions, but suffers
from packet misrouting attack.

III. PROBLEM DEFINITION

Goal of the proposed CMNTS method is to identify the
nodes with malicious activities such as packet modification,
packet dropping, using wrong identity, misrouting the packet
and framing other nodes as bad in the wireless sensor net-
works. Child node observes the parent node for successful
and unsuccessful transactions, builds a trust value on parent
and shares the trust value with Sink. Sink node starts with
decryption of the packet with pair wise keys shared with
nodes which are in the packet forwarding path. The decryption
happens with the shared keys in the reverse order of nodes

in the forwarding path from sink node to source node. Since
each node adds the marker information and encrypts the added
information, there are two possibilities for packet modification.
case i) received packet is first modified before adding and
encrypting the marker data, case ii) packet is modified after
adding marker data and before forwarding the packet.

Fig. 1: Deployment and Topology

In figure 1, either node Y modifies the packet before
sending to node X as in case ii or node X modifies the received
packet before adding marker and forwarding further. Problem
is to find the actual modifier between the pair of < X, Y >
nodes which are equally suspected for packet modification.
Each node detects the malicious activities of parent node such
as packet modification, packet dropping and misrouting as
a node cannot detect sybil attack and bad mouthing attacks
from parent node. Sink detects the bad mouthing attack,
sybil attack, and packet modification from any node during
packet decryption process. Problem is to achieve the detection
capabilities of sensor nodes and also detection capabilities
of Sink node. Finally use both the capabilities to detect the
malicious sensor nodes in the network.

System Assumptions: CMNTS assumes the network is
static and the links are bidirectional. CMNTS assumes that
pair wise keys are shared between Sink and each network
node before deployment. Assumed no malicious activity during
topology creation. In CMNTS each node knows the current
(X,Y) location and also the location of the neighbor nodes.
Source nodes are assumed to be genuine. Assumed that packet
forwarding node uses the transmission power level such that
both current sender and next hop node hear the packet trans-
mission.

IV. CMNTS

The proposed method has several steps of operation. CM-
NTS starts with creating a network topology, selecting parent
node, generation of traffic, and identifying the malicious nodes
by Sink.

A. Topology Creation

Sink node starts with sending a tuple < node ID, distance
to Sink > = < S, 0 > to all the one hop neighbor nodes.
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Fig. 2: Steps of Operation

On receiving a tuple < u, du > = < S, 0 > where u is the
node id and du is the distance to Sink from node u, node
X records its distance to Sink as du+1. If du+1 is less than
the distance information node X has seen, then clears all the
recorded parent list and adds node u to parent list and update
the distance info to du+1. If du+1 is equal to the distance
information node X has, then adds the node u to parent list.
Intern node X sends a tuple < X, du+1 > to all its neighbor
nodes.

Once all distance information is processed, every node
contains smallest distance to the Sink node and also parent
nodes list through which Sink can be reached with equal and
least distance. Each node selects a parent among the recorded
parents for transmitting the data to Sink. Each node V picks
a random number Vs in the range 0 to Np where Np is the
maximum number of parents recorded and uses the random
number Vs as a short id of node V. Each node sends its ID,
short id, selected parent node ID, and recorded parents list to
Sink node. Based on the information received from each node,
Sink builds a tree topology with all parent-child relations and
uses this relations for step by step data decryption and for
finding the malicious nodes. Alongside each node V broadcasts
to its one hop neighbors about the selected parent. This helps
the children of V to identify the misrouting attacks from V.

B. Traffic Generation and forwarding

When a source node Z has data to send, node Z creates
a message m1 = < Zs, Z, Ty , Zseq , D > and encrypts the
message m1 with Zkey to generate mz . Where Zs is the short
ID of node Z, Z is ID of node, Ty is node Z’s trust value on
parent Y, Zseq is the sequence number of the packet, D is the
data generated from source node Z, and Zkey is the key shared
with Sink. Node Z sends the message mz to parent Y, Y being
intermediate node prepares marker information < Ys, Tx >

and encrypts with Ykey to create m2, where Ys is the short
id of node Y, Tx is the node Y’s trust value on parent X, and
Ykey is the key shared with Sink. Node Y creates message my

= < m2, mz > by adding encrypted marker information to
mz . similarly all forwarding node’s adds the encrypted marker
information to the packet. A child node observes the parent
node after dispatching the packet to parent for a timeout period
to determine the packet modification, dropping, and misrouting
attacks from parent.

C. Packet Processing at Sink

The received packet at the Sink consists of sequence
of marker information added by each forwarding node and
message from source node. On receiving a data packet m,
Sink starts decryption of the packet.

i) First marker information of message m is decrypted with
key of first level child node say X of Sink to generate m

′
. If

m
′

starts with < Xs, Ts > then X is the forwarded node. Else
Sink decrypts with key of next immediate first level child node
and tries to match the marker information.

ii) If marker information does not match with any of the
first level children, then Sink decrypts the complete message
with key of first level child say X to generate m

′
. If m

′
starts

with < Xs, X > then X is the source node. Else Sink decrypts
with key of next first level child node and tries to check for
source.

iii) If marker matches a node say X in step i, then m
′

is
updated m

′
= m

′
- < Xs, Ts > by removing the marker added

by X. Now the step i and step ii are performed for all children
of X to match for forwarding node or source node.

iv) if step i and step ii fails for all children nodes at same
level, that confirms the packet modification either from current
parent or any child of the current parent. So the suspicious pair
< parent, child > is added to suspicious list for all immediate
children nodes of the parent.

v) In step i and step ii after decryption, if short ID in
packet say Vs does not match with the node whose key used
for decryption then Sink checks whether other siblings of node
V has the matching short id. With this Sink can detect the usage
of others identity by node V.

Notations:
m: received packet at Sink
U, V, S: node id
Vkey: shared key between Sink and node V
Vs: short id of node V
success: boolean to track successful decryption
Algorithm 1: Packet Processing at Sink
1: Input: Packet <m>
2: U = S, m = m; success = false;
3: for each child node V of node U do
4: P = decMarker(Vkey , m); /*decrypts only marker which
is two units*/
5: if P starts with [Vs, T] then
6: record the T on U from V;
7: trim [Vs, T] from P and get m = P-[Vs, T];
8: U = V; go to line 3;
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9: else
10: if P starts with siblingID(V) then
11: add suspicious pair <U, V> to suspicious list;
12: continue;
13: for each child node V of node U do
14: P = decSourceMsg(Vkey , m); /*decrypts source message
which is five units*/
15: if P starts with [Vs, V] then /*V is the source node*/
16: record the T on U from V;
17: success = true; break;
18: if success = false then
19: drop this packet;
20: for each child node V of node U do
21: add suspicious pair <U, V> to suspicious list;

The malicious node is identified from suspicious pairs with
the help of trust value recorded for each node. During the
success of step i and step ii, Sink records the trust value shared
by child on its parent.

D. Identifying Malicious Node

After a round of traffic generation, Sink has a list of
suspicious pair < Parent Node, Child Node > of nodes and
also trust on a parent from their child nodes. For each parent
node Sink does the below. i) Calculate the average trust based
on the trust value received from each child. If average trust
value is less than the threshold, then Parent node is the
malicious node. ii) If average Trust value is greater than the
threshold then find a child whose average trust value less
than the threshold. If such a child is found, then child is the
malicious node. iii) If average trust values of both parent and
children are greater than threshold then they are still suspicious
pairs but not malicious yet.

Notations:
SPairs: set /*set of tuples <ParentId, ChildId>, identified
suspicious pairs*/
threshold: pre-declared system level threshold value
ParentId, ChildId: node id
AvgTrust: function averages the trust from all children of a
node
Algorithm 2: Malicious Node Identification
1: for each pair SPair in SPairs do
2: if AvgTrust(SPair.ParentId) < threshold then
3: Declare SPair.ParentId is Malicious;
4: else if AvgTrust(SPair.ChildId) < threshold then
5: Declare SPair.ChildId is Malicious;
6: else
7: do nothing
8: /*both child, parent are still suspicious, need to
handle more packets in next round to identify*/

E. Changing Parent For Next Round

Traffic generation happens in several equal duration rounds
of malicious node identification phases. After a round, child
chooses a parent as per the below priority. Even Sink follows
the same priority to know parent based on the parents list
sent by each node. i) Child selects the next parent in its list

with which it never had an interaction. ii) Child selects the
parent for which trust value is high. Alongside each node say Y
broadcasts to its one hop neighbors about the selected parent X.
This helps the children of Y to identify the misrouting attacks
from Y.

Notations:
selected: boolean
ParentIds: set /*parent node ids*/
ParentID: node id /*selected parent id in this round*/
TempParentIds: set /*parent ids whose trust is greater than
threshold*/
Algorithm 3: Parent Selection at Node
1: selected = false;
2: for each ID in ParentIds do
3: if ID was never a forwarding node then /*select a parent
node which never chosen for data forwarding*/
4: selected = true;
5: ParentID = ID;
6: break;
7: if selected == false then
8: for each ID in ParentIds do
9: if Trust of ID >= Threshold then
10: add ID to TempParentIds;
11: ParentID = Random (TempParentIds);/*select any node
whose trust greater than threshold*/
12: broadcast ParentID to one-hop neighbours

V. PERFORMANCE ANALYSIS

The efficiency and effectiveness of CMNTS are evaluated
in NS-3 simulator. We have compared proposed approach with
CPDM [4] and CPMTS [5]. 100 static nodes are randomly
deployed in a square area. Each node is installed with 802.15.4
MAC protocol, with channel delay 2 milli seconds. Simulation
ran with generating 50 packets per node. Non leaf nodes are
randomly selected as malicious nodes. All nodes act as a
source node and generate the data to forward towards Sink.
Obtained simulation results from the algorithm for various
number of malicious nodes. Malicious behavior of nodes
achieved with equal probability of packet modification, packet
dropping, misrouting, using wrong identity, framing parent
with low trust and success transmission. It is observed that
performance of both CPDM and CPMTS degrades with the
injection of misrouting attack in malicious nodes.

A. Percentage of Detection

Simulated and analyzed the detection rate when the number
of malicious nodes are 10, 20, 30, and 40 out of 100 nodes in
the network.

% detection = (No. of malicious nodes detected / No. of
malicious nodes in network)*100

For each quantity of malicious nodes, traffic is generated in
5 trails and averaged the detected malicious nodes in 5 trails.
As shown in figure 3, percentage of detection is improved in
CMNTS when compare to CPDM and CPMTS approaches. In
CPDM, the percentage of detection deteriorates as the number
of malicious nodes increases. The improved performance of
the CMNTS is due to the handling of misrouting attack.
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Fig. 3: Percentage of malicious node detection

B. Percentage of False Isolation

Simulated and analyzed the false detection when the num-
ber of malicious nodes are 10, 20, 30, and 40.

% false detection = (No. of genuine nodes isolated / No.
of genuine nodes in network)*100

Fig. 4: Percentage of false isolation

As shown in figure 4, percentage of false detection is
high in CPDM approach. In CPDM approach, even though
intermediate node modifies the packet, Sink considers the
source node for malicious detection as the approach is solely
based on sequence number of the packet. CPMTS reduces the
false isolation compare to CPDM, but false isolation increases
on injecting misrouting attack. In proposed approach, only
the current parent and children where the packet decryption
fails are considered for identifying the malicious node. And
considered trust from all children node to avoid bad mouthing
attack from a particular child which tries to frame the parent
as malicious by sending low trust value to Sink.

C. Early Detection Rate

Simulated and analyzed the early detection when the
number of malicious nodes are 20. In all CPDM, CPMTS,
and CMNTS traffic is generated in multiple rounds of equal
duration and tries to find the malicious nodes after each round.
CPDM needs several rounds of operation to confirm the bad
nodes among suspiciously bad nodes. CPDM cannot detect
most bad nodes after each round as it suspects many nodes on
the path from source to Sink. CPMTS cannot detect malicious
nodes if node performs misrouting attack.

Fig. 5: Early Detection Rate

As shown in figure 5, CMNTS detects the malicious
nodes early compare to CPDM and CPMTS so that network
cannot afford to loose lot of meaningful information before all
malicious nodes are detected.

D. Analysis of Various Security Attacks

Table 1 shows the different approaches and the list of
attacks considered to detect the malicious nodes. Each node
say Z in figure 1 sends the packet to parent Y and observes Y,
till Y forwards the packet to next hop node X.

Packet Modification: Node Z keeps the packet in buffer
till parent Y forwards the packet to next hop and listens to
the packet that Y forwards. Z compares the packet forwarded
by Y with the packet in buffer. if there is any change in the
forwarded packet then Z determines that parent Y modified the
packet and accordingly reduces the trust. Even Sink adds both
child and parent into a suspicious pair list when the packet
decryption process fails.

Packet Dropping: Node Z keeps the packet in buffer, if
node Z does not hear the packet forwarding from parent Y
with in pre-configured timeout then Z determines the packet
dropping from Y and accordingly reduces the trust on parent
Y.

Packet misrouting: packet misrouting is an attack where a
node forwards the packet to unintended next hop node. Before
starting a round of traffic generation each node announces the
parent node information with one hop neighbour nodes. In
figure 1, When Y announces its selected parent X to one hop
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TABLE I: Security Attacks Comparison

Attack Type CPDM CPMTS CMNTS
Packet Modification Yes Yes Yes
Packet Dropping Yes Yes Yes
Sybil Attack No Yes Yes
Bad Mouthing Attack No Yes Yes
MisRouting Attack No No Yes

neighbour nodes, node Z maintains the next hop node X of
selected parent Y in memory along with selected parents list.
Node Z compares the next hop node id X with the node id to
which Y forwards the packet to identify the packet misrouting
from parent and consider for calculating the trust value. Even
packet decryption process at Sink fails and adds the genuine
nodes to suspicious pair list. But the trust on genuine nodes
saves them from being framed as malicious.

Sybil Attack: A node uses wrong identity or others identity
to frame other node as malicious. In CMNTS approach while
adding the marker information, malicious node can add wrong
identity. The packet description process at Sink detects that
marker is not matching with any children at same level and
add the nodes to suspicious pair list.

Bad Mouthing Attack: even though a node intentionally
shares low trust on parent with Sink, Sink consider the average
trust from all children to suppress the bad mouthing attack.

E. Additional Cost Involved

The overall packet size is kept constant to avoid a node to
perform selective dropping attack based on packet size. So
parent node cannot decide to drop a packet received from
two or more different children based on packet size as the
received packet sizes from different children are same. This
adds overhead of transmitting lot of extra data added at each
forwarding node. Each forwarding node adds two bytes of data
in the beginning of the packet and removes two bytes in the
tail end. Packet size depends on the maximum hop distance
from a child to sink node so that even after adding two bytes
of data and removing two bytes of data at each forwarding
node the packet size remains same.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Sensor nodes with malicious activities disrupt the data and
operations in wireless sensor networks. With the malicious
activities, aggregated sensed data becomes meaningless due to
dropping the valid data and injecting the wrong data. Proposed
method is proven to be efficient to detect security problems
such as packet modification, dropping, misrouting, and using
wrong identity. CMNTS starts with creating a tree topology
having parent-child relation information in Sink node. Data
transmission happen across multiple rounds of equal time
duration. Each node chooses its parent node at the beginning
of a round. CMNTS identifies bad nodes after each round and
keeps few suspiciously bad nodes till the completion of next
round. At the end of each round, CMNTS tries to find the

bad nodes from suspiciously bad nodes. But CMNTS detects
suspiciously bad nodes during each packet decryption process
if packet decryption fails and identifies the most bad nodes
after each round of operation. Performance results show that
CMNTS detects the malicious nodes early with high detection
rate and low false detection compare to CPMD and CPMTS.
CMNTS can be further improved to avoid transmission power
level control attack and to optimize the overall packet size in
the network.
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