
Load Balancing in Multi ECU Configuration

Rajeshwari Hegde,
Dept of Telecommunication Engineering,

BMS College of Engineering,
Bangalore, India,

Email:rajeshwari.hegde@gmail.com.

K S Gurumurthy,

Dept of E & C,
UVCE,

Bangalore, India,
Email:drksgurumurthy@gmail.com

Abstract— Electronic Control Units (ECUs) are widely used
to improve the comfort and reliability of vehicles. It has become
the fundamental building block of any automotive subsystem and
is interfaced with electro mechanics counterpart. To meet the
system wide requirements, these ECUs are interconnected using
the communication infrastructure. Although the communication
infrastructure in terms of, predominantly, the CAN based vehicle
network took its birth to enable ECUs to work in a coordinated
manner in order to support system wide requirements, during
the past decade, this infrastructure was also viewed as a potential
means to incorporate extensibility in terms of addition of newer
ECUs which are built for implementing additional requirements.
With this paradigm, the number of ECUs started growing in a
steep manner, uncontrolled and as a result, today, it is not hard
to see a high segment automotive housing ECUs as large as 75-80.
Hence, load balancing mechanisms are needed to ease ECU
integration and for efficient utilization of CPU power in ECUs. In
this paper, we explain the mathematical approach for load
balancing across ECUs on the basis of CPU utilization.

Keywords—AUTOSAR, ECU, Load balancing, OEM.

I. INTRODUCTION
The importance of electronics in vehicles has greatly increased
over the last few years [1]. Modern car is a complex electro-
mechanical system whose comfort, safety and performance
largely depend on the number of ECUs used and the
integration of various functionalities in it. A whole range of
electronic functions such as navigation, adaptive control,
traffic information, traction control, stabilization control and
active safety systems are implemented in today’s vehicles.
Many of these new functions are not stand-alone in the sense
that they need to exchange information and sometimes with
stringent time constraints with other functions. [4]. Defects in
ECU Software (e.g. driver assistance systems such as steering
or braking assistance systems etc.) may have disastrous
impacts on the relevant OEM as well as on their suppliers.
Defective products may not only cause personal deaths or
injuries, but also result in recall actions, producing high costs
and causing material damage to the image of all companies
involved [7].The automotive supply chain including
Automotive OEMs, ECU providers and component providers
struggle to cope with an ever increasing functionality
implemented on a staggering number of ECUs.[2]. Most of the
ECUs currently used are “one box solution for each
application” resulting in ECUs of different complexities and
capabilities being supplied by different vendors functioning in
a single vehicle further adding to the complexity.[5]. To make

the situation worse, these vendors also reserve their design
philosophy and details as proprietary assets. As a result
vehicle manufacturers struggle to cope with an ever increasing
functionality implemented on a staggering number of ECUs.
Managing the complexity is one of the most important
problems to achieve required reliability and performance.[6].
Cost reduction requires integrating functionality from
multiple suppliers onto a single ECU, while system
integration requires interconnecting several ECU’s,
sensors, actuators using a network bus (e.g. CAN) and
dedicated wiring. Often, the increasing number of ECU’s is
more a consequence of bad design practice (one ECU per
sensor, local redundancy) rather than a real necessity. As a
result, buses are needed to replace the otherwise large amount
of wiring required to connect the ECU’s altogether. In
any case, both ECU SW integration and system integration are
error prone, so far mostly manual procedures. The real issue
in automotives is that no work has been done in design
environments to balance the load across ECUs.

The increasing number of ECUs warranted refinements to the
communication infrastructure so that the ECUs get integrated
with ease. The automotive industry established framework to
incorporate peer-to-peer communication stack across ECUs.
This stack was further based on OSEK operating system, a
significant innovation of early nineties. This innovation along
with other standardization initiatives streamlined the process
of ECU integration by late nineties.
As automotive OEMs gained the capability to build complex
ECUs and integrate them within automotives, the number of
ECUs started growing in a steep manner, uncontrolled. This
has resulted in the following setbacks:
1. Management of complex network of ECUs - a formidable
task.
2. Proprietary nature of the ECU owners.
3. Overall cost of the ECUs and the associated infrastructure
becoming a non-trivial fraction of the vehicle cost.
These setbacks are getting addressed by industry initiatives
and AUTOSAR (Automotive Open System Architecture) is a
recent consortium which is responsible for the standardization
of subsystem design and implementation for future vehicle
generations. AUTOSAR architecture, as a prime objective,
inherently, features mechanisms to reduce the number of
ECUs by exploiting the CPU power of the ECUs.
This paper is organized as follows. Section 2 explains the
AUTOSAR technical concept. Section 3 deals with load

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.55

103

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.55

103

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.55

103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72805908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

balancing. Section 4 explains the implementation. Paper is
concluded in section 5.

II. AUTOSAR TECHNICAL CONCEPT

The main challenge of the automotive industry is to come up
with methods and tools to facilitate the integration of different
ECUs supplied by various Tier1 suppliers into the vehicle’s
global electronic architecture to reduce the complexity and
cost of the vehicles. Automotive OEMs(Original Equipment
Manufacturer) are facing difficulties in integrating subsystems
which are designed and implemented by multiple Tier-1
vendors. In the last ten years several industry wide projects
have been undertaken in that direction and significant results
have already been achieved. The next step is to build an
accepted open software architecture, as well as the associated
development processes and tools, which should allow for easy
integration of different functions and ECUs provided by car
makers and third party suppliers. This is ongoing work in the
context of AUTOSAR.[4]. AUTOSAR aims at facilitating the
re-use of soft- and hardware components between different
vehicle platforms, OEMs and suppliers. To achieve this,
AUTOSAR defines a methodology that supports a distributed,
function-driven development process and standardizes the
software-architecture for each ECU in such a system.[8].

A. Impact of AUTOSAR on E/E Architecture

There is a tradeoff between standardization and optimization.
Introducing this standardized concept is likely to lead to
software and runtime overhead. This overhead may make it
necessary to increase microcontroller resources, such as RAM,
ROM and CPU performance which would lead to an increase
in system cost. One solution to the problem could be to alter
the vehicle E/E architecture, by moving away from the current
one-ECU-one-function concept to a more centralized concept
where several functions are bundled into one ECU.Changing
this style of E/E architecture with fewer ECUs but more
functionality would save a lot of overhead cost such as,
Housing, PCBs, voltage regulator, transceivers etc.
Introducing AUTOSAR software will ease integration work
significantly. In that sense the success of the AUTOSAR
standardization could be a decisive factor for further growth in
vehicle software functionality [13]. With the increasing
distribution of functions over several ECUs in a car, the
importance of end-to-end timing (and deadlines) is also
increasing. Industrial standardization efforts such as
AUTOSAR have already defined models for capturing such
“timing chains” composed of communicating “software
components”, illustrated in Figure 1.[6]

Figure 1: AUTOSAR View on “ Timing Chains”

The primary goal of AUTOSAR is not to solve timing
problems in particular. AUTOSAR rather defines a software
infrastructure for application and basic software, illustrated in
Fig. 2 (16).

Figure 2: Standardized AUTOSAR Software

III. WHAT IS LOAD BALANCING
Load-balancing, by definition, is dividing the amount of work
that a computer has to do between one or more additional
computers so that more work gets done in the same amount of
time and, in general, all processing get done faster [9]. It is the
assignment of work to processors and is critical in parallel
simulations. It maximizes application performance by keeping
processor idle time and interprocessor communication as low
as possible. The problem of load balancing is much more
difficult in large distributed systems. Algorithms have to
minimize both load imbalance and communication overhead
of the application. Additionally they should be efficient
themselves and scalable.[14]. In applications with constant
workloads, static load balancing can be used as a pre-
processor to the computation. Other applications, such as
adaptive finite element methods, have workloads that are
unpredictable or change during the computation; such
applications require dynamic load balancing that adjusts the
decomposition as the computation proceeds. Numerous
strategies for static and dynamic load balancing have been
developed in embedded systems, including recursive bisection
(RB) methods, space-filling curve based (SFC) partitioning
and graph partitioning. In the migration strategy, each
processor works out a schedule for the exact amount of load
that it should send to (or receive from) its neighboring
processors. Once this schedule is worked out, each processor
decides which particular node it should send to or receive from
its neighboring processors.[12]. The migration of load then
takes place. The scheduling algorithms are mostly iterative
and hence there is a startup cost which is usually very high
compared with the subsequent cost of transmitting a word.

104104104

Consider the load balancing across ECUs. In static load
balancing, the load on each ECU is known in advance. Hence
the work is equally distributed across ECUs and no extra cost
is required for balancing the load [6]. This can be explained
using graph theory, where in, vertices represent individual
ECU load and the edges represent the amount of load to be
transferred from one ECU to another [9].Dynamic Load
Balancing across ECUs can improve the utilization of CPUs
and the efficiency of parallel computations through migrating
workload across CPUs at runtime. Workload migration can be
carried out through transferring processes across nearest
neighbor ECUs. Iterative strategies have become prominent in
recent years because of the increasing popularity of point-to-
point interconnection networks. [11]. There are many reasons
to institute load balancing across ECUs.
The two most popular are:
1.Response time- With two or more ECUs sharing the load,
each of them will be running less of a load than a single ECU
alone, there by keeping the response time low.
2. Redundancy-If a load is balanced across 3 ECUs and one of
them dies completely, then the other two can keep running and
a vehicle will not even notice any downtime.
 Any load-balancing solution worth its salt will immediately
stop trying to send traffic to the down ECU.
Usually, the load-balancing mechanism aim is to move the
running tasks across the CPUs in order to insure that no CPU
is idle while some tasks are waiting to be scheduled on other
CPUs.

A. Need for Load Balancing
Distributed systems such as automotives can suffer from poor
performance due to a bottleneck at overloaded ECUs. To
address this performance bottleneck, an adaptive load
balancing is used to distribute the load from densely loaded
ECUs to scarcely loaded ECUs. Not much research has been
done on keeping the load balanced across ECUs. To achieve
good performance, it is essential to maintain a balanced work
load among all the ECUs. Sometimes the load can be balanced
statically. However, in many cases, the load on each ECU
cannot be predicted a priory. Dispatching tasks from densely
loaded ECUs to scarcely loaded ones to improve the overall
performance of the vehicle is both logical and feasible.[3] A
schedule of the work load that should be moved between any
two ECUs , such that each ECU will have the same load on
completion is a challenging task. One way to balance the load
is to dispatch the job immediately upon arrival. The best load
balancing status occurs when all ECUs are at the point of full
utilization, without saturation. Each ECU’s work load is
proportional to its capacity. Allocating more jobs to a fully
utilized ECUs might cause imbalance without improving the
overall throughput. Since the data movement between ECUs
incurs communication cost, the schedule should give balanced
load with minimal data movement. Restricting the data
movement to the neighboring ECUs might reduce
communication cost. According to dimension Exchange
Algorithm, the ECUs can be grouped in pairs and an ECU pair
(a, b) with load la and lb will exchange load, after which each
will have the load (la+ lb)/2.

IV. IMPLEMENTATION
 Much of the load balancing problems can be described using
terminology from graph theory. [15]. A graph G has two key
components. The vertex set N and the edge set E. Let N be the
number of ECUs. Let the ECU graph be represented by a
graph(V,E), where V=(1, 2 ,3,…,N) is the set of nodes each
representing an ECU and E is the set of edges connecting the
nodes. Two nodes i and j form an edge if they share a load.
Associated with each ECU i is a scalar li representing the load
on the ECU. The average load per ECU is

Lavg=

The amount of load to be transferred from node i to node j is
given by δij. The load balancing schedule should make the
load on each processor equal to the average load Lavg. The
conjugate Gradient Algorithm is used to calculate the average
load on each ECU. Consider the graph of five ECUs as shown
in figure 1.The numbers in bracket indicate the load on each
ECU. Let the average degree of the graph be 2. Each ECU
has a work load li associated with it.

Figure3. Graph of five ECUs with average degree=2.4.

The Laplacian matrix of the graph is given by

 2 0 -1 -1 0 λ1 18.2

 0 2 -1 -1 0 λ2 11.2

 -1 -1 3 0 -1 λ3 -17.8

 -1 -1 0 3 -1 λ4 -11.8

 0 0 -1 -1 2 λ5 0.2

λ1=9+λ5. λ2=5.5+λ5
λ3=-1.1+λ5 λ4=0.9+λ5 λ5=λ5

Σι=1 (1)
 Ν

Ν
λι

 1(75) 2(68)

 5(57)

 4(45) 3(39)

105105105

The amount of load to be transferred from one ECU to another
is given by
δ14=λ1-λ4, δ13=λ1-λ3, δ24=λ2-λ4, δ23=λ2-λ3,
δ31=λ3-λ1, δ32=λ3 -λ2, δ35=λ3-λ5, δ42=λ4-λ2,
δ45=λ4-λ5, δ45=λ4-λ5, δ54= - δ45

The fig.3 shows the load on each ECU before and after load
balancing. The average degree of the graph is 2.4. The load
balancing algorithm converges after four iterations.

1 1.5 2 2.5 3 3.5 4 4.5 5
30

40

50

60

70

80

90

Number of ECUs

L
o

ad
 o

n
 e

ac
h

 E
C

U

Actual load

1st iteration
2nd iteration

3rd iteration

 Figure 3:Average load vs number of ECUs
 (Average degree of the graph=2.4)

It is found from the simulation result that, as the average
degree of the graph increases, the number of iterations
required to converge also increases. When the average degree
of each node is two, the number of iterations required to
converge is three.

V. CONCLUSION
The present work is taken up by the authors to have a formal
look at Load balancing in Multi ECU Configuration, on the
basis of CPU utilization. The load balancing approach reduces
the complexity of the automotive system by equally
distributing the load across different ECUs. This mechanism
in automotives eases the ECU integration by reducing the total
number of ECUs. Reduction in number of ECUs provides
huge opportunity towards saving cost, reducing complexity
and possibility of adding new features using existing
computing resources available across ECUs in the vehicle.
Advances in the hardware technology like advent of multi-
core processors makes it possible to provide enough
computing resources on a single ECU to integrate multiple
functionalities.

REFERENCES
 [1] Christian Wewetzer, Klaus Lamberg and Rainer Otterbach, “Creating Test
Patterns for Model-based Development of Automotive Software”, SAE
International 2006.
 [2]. Paolo Giusto , Jean-Yves Brunel, Alberto Ferrari, Eliane Fourgeau,
Luciano Lavagno, Alberto Sangiovanni-Vincentelli, “Automotive Virtual
Integration Platforms: Why’s, What’s, and How’s”, IEEE International
Conference on Computer Design: VLSI in Computers and Processors
(ICCD’02).
[3]. Karen D. Devine 1, Erik G. Boman, Robert T. Heaphy, Bruce A.
Hendrickson, “New Challenges in Dynamic Load Balancing”, Preprint
submitted to Elsevier Science.
[4]. Nicolas Navet, Francoise Simonot-Lion, “ Automotive Embedded
Systems Handbook”, CRC Press.
[5]. Rajeshwari Hegde, K S Gurumurthy, “ Model Based Approach for the
Integration of ECUs”, ICCSE, World Congress on Engineering 2008, U.K.
[6]. Daehyun Kum, Gwang-Min Park, Seonghun Lee, Wooyoung Jung,
“AUTOSAR Migration from Existing Automotive Software”, International
Conference on Control, Automation and Systems 2008, Korea.
[7]. Meinhard Erben, Wolf Günther,Tobias Sedlmeier, “The Impact of
Automotive Standardization to Liability Risks Arising from Defective
Software, Especially under European Law”, SAE International Journal of
Passenger Cars- Electronic and Electrical Systems April 2009 vol. 1 no. 1 38-
44.
[8]. Helmut Fennel, Stefan Bunzel, Harald Heinecke, Jürgen Bielefeld, Simon
Fürst, Klaus-Peter Schnelle, Walter Grote, Nico Maldener, Thomas Weber,
Florian Wohlgemuth, Jens Ruh, Lennart Lundh, Tomas Sandén, Peter
Heitkämper, Robert Rimkus, Jean Leflour, Alain Gilberg, Ulrich Virnich,
Stefan Voget, Kenji Nishikawa, Kazuhiro Kajio, Klaus Lange, Thomas
Scharnhorst, Bernd Kunkel, “Achievements and Exploitation of the
AUTOSAR Development Partnership”, CTEA 2006.
[9].http://webhosting.devshed.com/c/a/Web-Hosting-Articles/What-is-
Load-balancing-and-Do-I-Need-It/
[10] Can Static Load Balancing Algorithms Be Appropriate in a Dynamic
Setting?
http://www.dl.ac.uk/TCSC/Staff/Hu_Y_F/MEETING/TALKS/hendrickson.ps
.gz.
[11]. Cheng-Zhong XU amd Francis C.M. Lau, “Iterative Dynamic load
balancing in multicomputers”, Journal of Operation Research Society, Vol.
45, No. 7, July 1994, pp,786-796.
[12]. Y. F. Hu, R. J. Blake and D. R. Emerson, An Optimal Migration
Algorithm for Dynamic Load Balancing, Concurrency-Practice and
Experience, Journal Article, 1998.
[13]. AUTOSAR, www.eu.necel.com.
[14]. Ralf Diekmann, Burkhard Monien, Robert Preis, “ Load Balancing
Strategies for Distributed Memory Machines”, In:F Karsch, H.Satz(ed.):
Multi-Scale Phenomena and their Simulation, World Scientific, 1997 (to
appear).
[15]. Y F Hu, R J Blake, “An optimal dynamic load balancing
Algorithm”, citeseer.ist.psu.edu/121199.html, 1995.
[16]. www.autosar.org

106106106

