Provided by ePrints@Bangalore University

OO UL WN -

Metadata, citation and similar papers at core.ac.uk

CFT: Co-operative File Transfer Algorithm for
Multi Network Interface Sessions

Anees Fathima S, Sushma K, Maboobi, Vishwas Narayan, Abhishek Alfred Singh,
Kiran K, P Deepa Shenoy, Venugopal K R
Department of Computer Science and Engineering
University Visvesvaraya College of Engineering
Bangalore,India

Abstract—TFile transfer is one of the important operations on
the Internet. Generally files are transferred from one machine to
another machine through one interface. File transfer can occur
through multiple interface connections also. Protocols such as
SCTP, transfers data in multiple data stream within a single
connection and LFTP transfers file sourced from multiple servers
to a single host. Here, we present the concept of using multiple
network interfaces for transferring files from a single server.
This would ensure the utilization of combined bandwidth of
all the interfaces used, so that the rate of file transfer would
increase considerably compared to single bandwidth transfer.
In this work, we use two interfaces i.e, IEEE 802.3(Ethernet)
and IEEE 802.11(WiFi) to accomplish the above task. We use a
non pre-emptive context switching framework T'wisted where
threading is avoided for an effective resource utilization. The
required file is downloaded utilizing two interfaces instead of
one unlike normal file transfer. We analyze the improvement
in performance by observing the time taken to download a file
using two different interfaces (Ethernet and WiFi) and comparing
that with a single interface download (using either Ethernet or
WiFi) in real time scenario. We attempt to deal with the issue of
when and how to connect through two interfaces which combines
the bandwidths of both these interfaces, aiding in improving the
performance of file transfer when compared to file transfer using
single interface.

Index Terms—Client-Server model, Ethernet, LFTP, Network
Interface, SCTP, Twisted, WiFi

I. INTRODUCTION

Considering the amount of files that are downloaded over
the internet, there is a need to improve the file transfer
algorithm to save time. Generally, we transfer file through a
single interface. It is common for systems to have more than
one network interface present by default. We can utilize this
feature of systems to transfer large files with maximum speed.
Through a single interface, only one bandwidth is used, but
in multiple-interface connection we utilize the bandwidths of
all the interfaces present, to transmit the data.

In any machine, we can configure multiple wireless cards,
ethernet cards or any other network devices for communica-
tion. In a host, Ethernet interfaces are identified as eth0, ethl
and so on whereas wireless interfaces are identified as wlan0,
wlanl and so on for network connections.

Our work describes a co-operative Client, Server commu-
nication for file transfer. The main idea is to be able to

create single session over multiple interfaces much like SCTP
protocol. We provide a much higher level of independence
over the connections in terms of creation, management and
termination of these sessions. In our work, we attempt to
increase the time efficiency by transmitting files through two
interfaces, WiFi and Ethernet. We define a THRESHOLD
value, based on the file size, to decide upon whether to use
single interface or both these interfaces. The connection is set-
up using port numbers and IP addresses(Socket). Our work
makes use of IPv4 representation for identifying the Client
and the Server. If the requested file size is greater than the
THRESHOLD, then the Server signals the Client to connect
through another interface. Once the file is sent successfully,
the Server sends a disconnect request to the Client to release
all its connections with it.

A graph is plotted by testing the working of our algorithm in
real time, using WiFi and Ethernet. The comparison between
the time taken by these two interface connections with that
of the single interface connection to send a file, showed an
increase in time efficiency of our multiple-interface algorithm
when compared to that of single-interface one.

Section II deals with other works done earlier based on
the concept of more than one interface. In Section III, we
brief about the problem while giving a solution with respect
to creating multiple interface connections. Section IV gives the
view of design used in this work. In Section V, we discuss how
have we implemented the design using the concept of twisted
python, and also we explain the algorithm of the Server and
Client for both single and multiple connections. In section VI,
we present the performance analysis through graphs. Future
enhancement forms a part of conclusion in section VIIL.

II. RELATED WORK

Many researchers have already discussed about how they
use multiple interfaces like WiFi, WiMAX, IP Multimedia
Subsystem(IMS)-based network, Universal Mobile Telecom-
munications System(UMTS) network etc [1], [2], [3], [4],
[5] for sophisticated file transfer. In the work by K.Kiran
et al, the file/data has been split and sent through WiFi and
WiMAX interfaces considering a split co-efficient for splitting.
These works act as a backbone, by giving us the statistics
of improved performance using two radios. But in our work

978-1-4673-6540-6/15/$31.00 (©2015 IEEE

https://core.ac.uk/display/72805828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

involving multiple interfaces, the Client decides creation of
new connections with the Server depending upon number of
interfaces that Client can provide for establishing connections.
K.R.Venugopal et al have demonstrated how cost can be
reduced by wavelength converters in WDM wavelength routed
all-optical networks[6], but in our work, we were able to
reduce the time of file transfer through bandwidth division.

SCTP(Stream Control Transmission Protocol) sends data
in multiple data streams simultaneously within a connection.
We use this idea to send the data but through different
interfaces[7]. LFTP(command-Line File Transfer Program),
also has an option to have segmented file transfer(where the
file is sourced from multiple servers to a single destination),
allowing more than one connection for the same file, which
results in maximum download speed for a file[8]. Ethernet
is faster when compared to other wireless networks. This
analysis is done in [9], [10]. A work on comparison of wired
and wireless LANs[11], says ethernet is very sensitive to the
number of users and the load offered. Hence we can avoid
the overload on any interface alone, by transfering data along
multiple interfaces.

[12] presents the design and implementation of all-IP het-
erogeneous network where the services provided are pub-
lic and private wireless broadband access, based on fixed
WiMAX, WiFi and High Speed Packet Access(HSPA) .In [13],
[14], the authors have discussed about routing algorithms and
their challenges.

III. PROBLEM STATEMENT

In our work, we are trying to show the improvement in
the performance of our multi-interface protocol algorithm by
transferring files through two separate interface connections,
WiFi and Ethernet. We have used the same protocol for
checking the speed of file transfer over single interface.
Twisted provides us the framework(platform) for creating this
protocol for file transfer and helps in accomplishing different
connections asynchronously.

IV. DESIGN

We have used simple Client-Server model wherein the
Server on one side keeps listening to a particular port and
IP forming a socket. Whenever the Client sends a connection
request to that socket bound to the Server, connection is
established between the two processes. The key features that
we focus on to carry our work are as follows:

o The connection is established by the Server sharing an
unique id with the Client for future identification of the
Client instance.

o This Client instance stores and exercises this particular
id for future communication with its respective Server
handler.

o Request for a file, sent from a Client instance is brilliantly
handled by the Server host by checking for the seeked
file size. If this file size is large, i.e greater than the
THRESHOLD(compared to the pre-defined file size) then
Server sends an interrupt to the Client machine to fork
at another IP making another connection with it.

o Depending on the number of interfaces present for estab-
lishing connection, the Client gets interrupted from the
Server machine, so that file could be split and sent in
every possible interface to the Client.

Concurrent to this process, the Server divides the requested
file(if found) into significant number of blocks(maximum data
that can be sent through each of the interfaces) and sends
it simultaneously through all the established connections.
Alongside the Client acknowledges the Server for each block
received from each connection, making room for the further
blocks to be sent. This continues until the connection is healthy
or until the entire file is sent. This is depicted by the flow
diagram in Fig. 1.

[IP, PORT] i [IP, PORT] i
CONNECT LISTEN :
ESTABLISH ABLISH
CONNECTION ; CONNECTION
SEND FILE (FILENAE)

TRANSFER REQ CHECK SIZE | >THRESHOLD

HANDLER 2 RANDEERT : HANDLER1

£ : BLOCK1
RECIEVE BLOCK|™ lockz. | SEND BLOCK [*— !

ACK1

ACK2

CLIENT SERVER

MESSAGE

HANDLER 2

SEND RECIEVE

CLIENT SERVER

Fig. 1: Block Diagram for Double Interface Connection.

V. IMPLEMENTATION

Twistedpython is an important framework on which our
work is implemented. It can handle thousands of connection
requests in a single thread by its event-driven networking
ability. Creating multiple threads for every incoming request,
generates an overhead of protecting shared resources being al-
located concurrently to each of the multi-thread. But Twisted
avoids this overhead by asynchronously handling events in a
single thread.

Here, we have made use of protocol and reactor modules
from the internet module of twisted. The Protocol class
of protocol module in turn bestows methods for establishing
connections, for sophisticated data transfer and for losing
connection between Server and Client. ClientFactory class
of protocol module has methods for the Client to lose con-
nection and to know in case there is a connection failure.
Factory class of protocol module has a method called
buildProtocol which helps in creating an instance of any
subclass of Protocol class[15], [16].

ALGORITHM-I and II illustrate file transfer in a Multiple
interface mode. Here, availability of an alternate interface
and the size of the requested file decides establishment of

another connection through that interface. Only on receiving
acknowledgement for each block of data transmitted, further
transfers are determined.

ALGORITHM I: Client Module for Multiple
connections

Send a connectionRequest for a Server’s socket;
IF accept Request received (uniqueld received)
request for a file is sent;
ENDIF
IF request for a new connection received
IF another interface available
connection is made with the same
uniqueld,
ENDIF
ENDIF
receive(dataBlock);
send(acknowledgement Block);
After the file being received, disconnect;

ALGORITHM II: Server Module for Multiple
connections

Listen to a specific port for making connection;
IF connection request received
For newConnection, an uniqueld is
generated and sent to the respective peer;
On receiving a request for a file, the request is
validated and checked for the file existence;
Then filesize is checked;
IF filesize >THRESHOLD
request another interface connection;
send(dataBlock);
ELSE
send(dataBlock);
ENDIF
IF receive(acknowledgement Block);
send(dataBlock);
ELSE
wait;
ENDIF
After the file being sent, disconnect;
ENDIF

ALGORITHM-III and 1V illustrate file transfer in a single
interface mode. Irrespective of the number of interfaces present
and the requested file size, the same connection is employed
for both sending and acknowledging data.

At the Server, the listenTCP() method of reactor class,
blocks the Server by making it listen to a particular port until
a new connection is made as briefed in the ALGORITHM
-II and ALGORITHM-IV. On establishing new connection,

build Protocol method instantiates the Server to handle that
connection on a particular port and IP(on a particular socket).
The method connectTC P() of the reactor class in the Client,
sends a connection request to a particular IP and port. In the
Client, buildProtocol method in-turn instantiates the Client
to handle this new connection with the Server.

ALGORITHM III: Client Module for single
connection

Send a connectionRequest for a Server’s socket;

IF accept Request received (uniqueld received)
request for a file is sent;

ENDIF

receive(dataBlock);

send(acknowledgement Block);

After the file being received, disconnect;

ALGORITHM 1V: Server Module for single
connection

Listens to a specific port for making connection.
IF connection request received
For newConnection, an uniqueld is
generated and sent to the respective peer;
On receiving a request for a file, the request is
validated and checked for the file existence;
send(dataBlock);
IF receive(acknowledgement Block);
send(dataBlock);,
ELSE
wait;
ENDIF
After the file being sent, disconnect;
ENDIF

When the file size of the requested file is greater than
the THRESHOLD, Client would be signaled by the Server
to make new connection through another interface. Here, we
have considered the THRESHOLD value as 6MB, considering
the bandwidth of 54Mbps for Wireless 802.11a/g in normal
routers. Whenever the Client tries new connection with the
Server through another interface(IP address), to facilitate faster
download, one of the Client handler calls the connectTC P()
method. By then another Client instance gets created to
handle this new connection with the Server. At the Server
side, listenTC'P() method detects this new connection and
registers a callback with the build Protocol method which in
turn is responsible for instantiating new Server instance bound
to a socket, to handle another connection with the Server. File
transfer is carried out with these two separate channels wherein
the bandwidth of both the channels are utilized. The state of
the protocol is stored in the Factory class of protocol module.

In case of single connection file transfer, only one instance
of the Server and Client are created. This single channel is
solely responsible for transferring and acknowledging the data
blocks sent.

VI. PERFORMANCE ANALYSIS

The implementation is done in real time, by making the
Server and Client connection using Ethernet(Wired LAN) and
WiFi(Wireless LAN) interfaces for double connection code.
Ethernet being fastest interface, it is used for establishing
Server-Client connection for implementing single connection.
The values recorded for running these two codes are separately
tabulated for two trials Run-1 and Run-2 in tables I and II
respectively.

TABLE I: Double Connection File Transfer

File size(MB) Run-1 Real time (s) Run-2 Real time(s)
9 14.7 16
25 39.9 46.16
50 82.4 83.87
75 119.2 127.9
100 162.1 177.8
226 361 396.6

TABLE 1I: Single Connection File Transfer

File size(MB) Run-1 Real time(s) Run-2 Real time(s)
9 17.9 17.2
25 49.05 49.5
50 98.7 92
75 147.1 148
100 197 195.8
226 442 475.4

=@~ double_connection

time (sec)

—+—single_conrection

fie size (MB)

Fig. 2: File size v/s Time of File Transfer for Run-1.

User time is the CPU burst time for the user process whereas
the system time is the time that the process spends inside the

500 — —
=& double_connection

450 === single_connection

time in seconds

9 25 50 75 100 226

file size in MB

Fig. 3: File size v/s Time of File Transfer for Run-2.

kernel (for calling system functions within kernel). Real time
is the actual time taken for completing the entire process which
is the time between when the process was invoked and when
the process was terminated. Real time includes both user time
and system time.

From Fig. 2 and Fig. 3, it is observed that the real time
taken by our algorithm for transferring files is always greater
with two interfaces(double connections) when compared to
single connection file transfer irrespective of the file size being
sent. We could also observe that our algorithm for double
connection has maintained a constant rate of 0.619 Mbps and
that of single connection has maintained a rate of 0.507Mbps
for transfering files of various sizes when the bandwidth
of Ethernet was 100Mbps and that of WiFi had a range
between 1Mbps-50Mbps. We could observe that performance
increased by 18% for double connection file transfer over
single connection one.

VII. CONCLUSION

In this work, we have discussed an algorithm for transferring
files using combined bandwidth of multiple interfaces while
showing how this would work upon when implemented on
commonly used interfaces like Ethernet and WiFi together.
This showed us a positive response by taking relatively less
time when compared to that of the algorithm implemented
using single connection (using Ethernet alone).

Likewise, we can also try to implement this multiple-
interface algorithm using more than two interfaces or inter-
faces otherthan WiFi and Ethernet to find out which of these
scenarios best suit for the implementation.

SCTP supports multihoming which means that a connected
end point can have alternate IP address so that the data can
route around if there is a network failure. So, even in our
work if there is a problem in sending the data through one
interface, we can send the data through other interface, thus
utilising the bandwidth available[17]. Handling dfferent types
of Servers like Mail Server, Application Server, Real-Time
Communication Server and various others is a challenging task
which need to be accomplished.

As a future work, we can also make use of bandwidths of
different Ethernet cables to determine the highest bandwidth
that can be achieved using these interface cables. By tracking
the amount of data transferred through WiFi and Ethernet, we
could decide upon dividing the chunk of data that has to be
sent through each of these interfaces. The file download and
upload could be prioritized as shown in the work [18], wherein
we can try to use appropriate proportion of the available
bandwidth without reducing the transmission rate.

[1]

[2]

[4]

[5]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

REFERENCES

K. Kiran, A. A. Singh, P. D. Shenoy, K. Venugopal, and L. M. Patnaik,
“Analysis of traffic splitting over a multi-hop network with hybrid wimax
and wifi nodes,” in Parallel Distributed and Grid Computing (PDGC),
2012 2nd IEEE International Conference on. 1EEE, 2012, pp. 609-613.
K. Kiran, A. A. Singh, S. Yadunandan, P. D. Shenoy, K. Venugopal, and
L. M. Patnaik, “Throughput enhancement by traffic splitting over an ad-
hoc network with hybrid radio devices,” in TENCON Spring Conference,
2013 IEEE. IEEE, 2013, pp. 371-375.

K. Kiran, T. Shivapriya, A. A. Singh, P. D. Shenoy, K. Venugopal, and
L. M. Patnaik, “Traffic splitting in a mobile ad-hoc multi-radio network,”
in India Conference (INDICON), 2013 Annual IEEE. 1EEE, 2013, pp.
1-4.

N. Psimogiannos, A. Sgora, and D. D. Vergados, “An ims-based network
architecture for wimax-umts and wimax-wlan interworking,” Computer
Communications, vol. 34, no. 9, pp. 1077-1099, 2011.

L. Ma and L. Rui, “An end-to-end qos frame in multimedia provision for
tight-coupled interworking of ims and wimax,” in Networking, Sensing
and Control, 2008. ICNSC 2008. IEEE International Conference on.
IEEE, 2008, pp. 1153-1157.

K. R. Venugopal, E. E. Rajan, and P. S. Kumar, “Performance analysis
of wavelength converters in wdm wavelength routed optical networks,”
in High Performance Computing, 1998. HIPC’98. 5th International
Conference On. 1EEE, 1998, pp. 239-246.

P. Stalvig, “Introduction to the stream control transmission protocol
(sctp),” Oct2007, 2007.

C. Lameter et al., “Iftpsophisticated ftp program,” Internet Doc-
ument: LFTP Manpage, http://www. dca. fee. unicamp. br/cgi-
bin/man2ntml/n/net/manl/Iftp, vol. 1, p. 1, 2001.

R. Bansal, V. Gupta, and R. Malhotra, “Performance analysis of wired
and wireless lan using soft computing techniques-a review,” Global
Journal of Computer Science and Technology, vol. 10, no. 8, 2010.

G. Gent, C. Downing, and J. Dalton, “Comparative performance of
wireless and powerline lans for streaming media,” Website at www.
citeseerx. ist. psu. edu, 2003.

I. Gupta and P. Kaur, “Comparative throughput of wifi & ethernet lans
using opnet modeler,” International Journal of Computer Applications,
vol. 8, no. 6, pp. 8-11, 2010.

P. Grgnsund, A. Jacobsen, T. O. Breivik, V. Hassel, G. Millstein, and
T. Haslestad, “Heterogeneous all-ip wireless broadband with wimax, wifi
and hspa,” in Personal, Indoor and Mobile Radio Communications, 2009
IEEE 20th International Symposium on. 1EEE, 2009, pp. 1128-1132.
S. Manjula, C. Abhilash, K. Shaila, K. Venugopal, and L. Patnaik,
“Performance of aodv routing protocol using group and entity mobility
models in wireless sensor networks,” in Proceedings of the International
MultiConference of Engineers and Computer Scientists, vol. 2, 2008.
U. Prathap, D. P. Shenoy, K. Venugopal, and L. Patnaik, “Wireless sensor
networks applications and routing protocols: survey and research chal-
lenges,” in Cloud and Services Computing (ISCOS), 2012 International
Symposium on. 1EEE, 2012, pp. 49-56.

“Twisted documentation,” July 02, 2015. [Online]. Available: https:
/Imedia.readthedocs.org/pdf/twisted/latest/twisted.pdf

A. Fettig, Twisted network programming essentials. ” O’Reilly Media,
Inc.”, 2005.

Available at http://searchnetworking.techtarget.com/definition/SCTP.
“Aspera mobile - an open platform for rapid content acquisition and
delivery.”

