
Hybrid Spot Instance based Resource Provisioning

Strategy in Dynamic Cloud Environment

Naidila Sadashiv Dilip Kumar S M R S Goudar
Redknee

Bangalore, India 560 045

Email: rsgoudarl@gmail.com

Dept. of Computer Sci. and Engg. Dept. of Computer Sci. and Engg.

Acharya Institute of Technology

Bangalore, India 560 107

Email: sadashiv@acharya.ac.in

University Visvesvarya College of Engg.

Bangalore, India 560 001

Email: dilipkumarsm@gmail.com

Abstract-Utilization of resources to the maximum extent in
large scale distributed cloud environment is a major challenge
due to the nature of cloud. Spot Instances in the Amazon Elastic
Compute Cloud (EC2) are provisioned based on highest bid with
no guarantee of task completion but incurs the overhead of
longer task execution time and price. The paper demonstrates
the last partial hour and cost overhead that can be avoided
by the proposed strategy of Hybrid Spot Instance. It aims to
provide reliable service to the ongoing task so as to complete the
execution without abruptly interrupting the long running tasks
by redefining the bid price. The strategy also considers that on
demand resource services can be acquired when spot price crosses
on-demand price and thereby availing high reliability. This will
overcome the overhead involved during checkpointing, restarting
and workload migration as in the existing system, leading to
efficient resources usage for both the providers and users. Service
providers revenue is carefully optimized by eliminating the free
issue of last partial hour which is a taxing factor for the provider.
Simulation carried out based on real time price of various
instances considering heterogenous applications shows that the
number of out-of-bid scenarios can be reduced largely which
leads to the increased number of task completion. Checkpointing
is also minimized maximally due to which the overhead associated
with it is reduced. This resource provisioning strategy aims to
provide preference to existing customers and the task which are
nearing the execution completion.

Index Terms-Cloud Computing; Resource Provisioning; Spot
Instances; Bidding; Checkpointing; Reliability;

I. INTRODUCTION

Cloud computing is an emerging paradigm that has rev
olutionized the consumption model of resources. With this
paradigm, customers are able to access resources and services
on the fly based on a pay-as-you-go model. Resources can
also be booked in advance in order to be assured of the
availability of desired resources. This is similar to market
oriented system where maximizing the profit is the objective.
Due to the dynamic nature of cloud computing where in the
demand and supply of resource is difficult to predict, many of
the resource are left idle. In order to utilize the idle resources
efficiently, Spot Instance (SI) is introduced by Amazon [1].

Amazon is the pioneer in the introduction of the Spot
Instance. The aim of SI is to generate revenue from the under
utilized resources and there by consider the economy aware
applications. Users who seek the service make a bid based
on the current SI price that is publicly available for different

978-1-4799-5958-7/14/$31.00 ©2014 IEEE

type of instances. These instances are launched using the
highest bid strategy. If the new bidding price is more than
the current spot price, then the current user's Spot Instances
will be terminated in no time and is termed as out-of-bid.
Hence the pricing of these resources are volatile and depends
on the supply and demand in the market. In such a dynamic
pricing environment which is prone to out-of-bid situation
shall involve fault tolerant techniques. Most commonly used
fault tolerant techniques are migration, job duplication and
checkpointing-based approach. They involve in saving the state
of an application or a process during execution and restoring
the saved state, for which a large storage capacity and time
is required [6], [14], [15], [17]. Fault tolerance is achieved
by these approaches but at a very high cost which should
be shared by the providers as well as users [3], [16]. Users
are attracted to the minimum cost of the resource but end up
paying more, and sometimes it exceeds the on-demand price.
Varying types of applications like economy aware applications,
compute intensive, as well in data analytic scenarios, such as
execution of MapReduce tasks [9], [14] and HTC are now
aiming to reap the benefits of SI. Hence providers should
provide more flexibility such that users are given a chance
for their task completion rather than abrupt task termination
[11], [19]. Users owe these resources at nominal price but not
for free of cost.

Our main objective is to efficiently utilize the idle resources
by avoiding the overhead during checkpointing and out-of
bid time. In this paper we propose a Hybrid Spot Instance
(HSI) resource provisioning strategy that gives a chance to
the existing users to continue with resource usage at out-of
bid time by redefining the running task's bid. We also present
the overhead that the service provider faces which will be
addressed by using the HSI. User's task will be migrated to
on-demand scheme when SI price meets the on-demand price.

The rest of this paper is organized as follows. In Section
II we discuss some of the recent related works and highlight
their limitations and drawbacks. In Section III we present the
Hybrid Spot Instance algorithm. In Section IV we show the
simulation results with discussion and in Section V we present
the concluding remarks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72805774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

In this section, we discuss some of the research works re
lated to resource allocation, performance and cost benefits with
more focus on SI bidding for different types of applications
in Cloud Environment.
Andrzejak et al. [2] have proposed a decision model based
on probabilistic approach to help users to make a bid for the
resources such that required budget or a deadline is meet. The
work in [5] proposes an elastic spot instances where instead
of abruptly terminating the SIs, the provider scales down their

capacity proportionally to the increase in the price. The authors

in [13] have proposed a bidding strategies for Spot Instances to
minimize the cost and volatility of resource provisioning with
the help of a constrained Markov decision. To address the
problem of dynamically fluctuating resource demands, many
resource allocation policies have been proposed [4], [7], [8],
[10], [18], [20] wherein cloud resources may be offered as
distinct types of virtual machines. The challenge faced in this
environment is the allocation of data center resources to each
spot market and thus gain profit.
These approaches discusses about predicting the optimal bid
price for task completion and maximizing the profit. The
limitations in these cases is finding the relationship between
past and future failures or availability for setting up the optimal
price. Also, profit maximization under some assumptions are
considered with less or no focus on user reliability and the
price for resource consumption. Users need to make bid
such that they get resources for task completion and for
this some hints on bidding value will be valuable. In [12]
a job is modeled as a deadline constraint fixed computation
oriented for which a dynamic bidding policy is proposed
that minimizes the average cost of job completion. This
dynamic bidding algorithm is compared with average bid and
random bid policies. Analytical and closed-form results are
obtained through a Markov spot price evolution. The authors
in [17] have compared several static checkpointing schemes
in terms of both price and task completion time and proposed
a dynamic checkpointing strategies based on hour-boundary
checkpointing, rising edge-driven checkpointing, checkpoint
ing with adaptive decision and checkpointing combinations.
Partial improvement based on the delayed termination is done
which reduce the monetary cost, while improving reliability.

Another bidding based approach is a multifaceted resource
provisioning approach which estimates the future spot prices.
Fault tolerance techniques namely migration, job duplication
and their comparison with checkpointing in terms of deadline
violations are discussed in [14]. Even though the cost as
suggested may be lowered, it can be reduced much drastically

by minimizing or avoiding the checkpointing.
In view of the above related works, some have considered
profit maximization, timely completion of task, fault tolerance
or providing reliable system but not as a cohesive model. This
has motivated to propose a Hybrid Spot Instance approach to
address these along with providing preference to the existing
SI user. Last partial hour which is not charged to the user, is

• u, .. nl-1l1 50.1770

• u, .. ut-IC $01500

• us .. ut·ld $01788

Fig. 1. Spot Instance Price for m3.2xlarge

Courtesy: Amazon EC2 [1]

a burden for provider and is eliminated by the proposed HSI.

III. SPOT INSTANCE IN AMAZON EC2

A. Spot Instance

Amazon provides instances in 8 different regions for
Linux/Unix, Windows and SUSE Linux enterprise server [1].
The instances are categorized as general purpose, compute
optimized, memory optimized and micro instances. Unused
resources under Amazon are shelled out based on highest
bidding. Spot instance price is dynamic in nature which is
affected based on the supply and demand in the market.
Spot prices for the range of instance in different regions
under different product is freely made as shown in Fig. 1.
for LinuxlUnix product of instance type m3.2xlarge. The
following are the characteristics of Amazon EC2 SI:

• User is allowed to consume the SI resource when user
bid price is more than spot price.

• Amazon EC2 charges on hourly basis for resource con
sumption.

• When the spot instance price is more than the current
users bid then the tasks are abruptly terminated.

• Last partial hour is not charged for the customer if user
is out-of-bid.

• Last partial hour is charged as full hour if user terminates
the SI.

• No guaranty of the Quality of Service.

B. Why Checkpointing?

Spot prices are dynamic in nature due to which out-of
bid scenario becomes very common. Out-of-bid occurs when
user bid price is less that the bid made for the spot price.
Fig. 2.a. shows the scenario when out-of-bid occurs. Amazon
does not charge for the last partial hour rather it is given for
free to the out-of-bid user. The number of last partial hour,
its associated cost and the number of tasks that are abruptly
terminated during the time an application execution faces an
out-of-bid situation is shown in Fig. 4 through 5 considering
two different instance type. Algorithm 1 explains the working
of spot instances and Algorithm 2 explains how the last partial
hour and its cost is computed. During this scenario, the task
under execution gets terminated and its current state will be

_____________ User's bi<L _______________________ _

Available duration

Price for spot instance

60 120 180 Time(minutes)

.. �
Pay per hour- - - - Pay per hour- - - Pay per hour- - - - Failure , , , Task : (O�I-Of-bid)
Task execution : Task execution : Task execution :executioll: without . . "

payment

:180 Time(minutes)

(a) When a user's spot instance is out-of-bid

Pay per hour- - - � Pay per hour - - - �

, '
Task execution Taskexecutioll

Pay per hour- - - -

... Task :

Task execution � execution :
uninterrupted service

: 180 Time(minutes)

(b) Uninterrupted service using hybrid spot instance

Fig. 2. Task execution with and without using HSI

lost. To avoid this, checkpointing is done to save the state and
will be used later. Different kinds of checkpointing are been
carried out at feasible time to avoid the loss. By taking up these
checkpointing strategies, fault tolerance can be obtained to a
larger extent which involves time, cost and storage overhead
to both the providers and users. Tasks that have executed for a
long time and which are about to be completed will be affected
very much even if checkpointing is used. If checkpointing is
performed just before out-of-bid, then it will be useful but it
is difficult to predict the time of failure.

Algorithm 1: Spot Instance

Data: active-spot-instance, max-bid, user-bid-price,
stretch-bid-price, stretch-bid-flag,
stretch-till-on-demand, on-demand-price,
hybrid-si-f1ag, spot-price

Result: cost, task-completed, time-consumed, Out-of-Bid
I while user-task and active-spot-instance do
2 if user-bid-price ;::: spot-price then
3 task-remaining-time-;
4 time-consumed++ ;
5 if time-consumed %60==0 then
6 L cost+= user-bid-price ;

7 if task-remaining-time==O then
8 L task-completed++ ;

9 Out-of-Bid=l ;
10 terminate-siO //Terminate the task on the instance;
11 Partial Hour OverheadO ;

12 terminate-siO /lTerminate the task on the instance ;

C. Hybrid Spot Instance based Resource Provisioning

We propose HSI based resource provisioning and fault
tolerant approach to increase the reliability of existing Spot
Instance users by allowing them to continue at the time of out
of-bid scenario as shown in Fig. 2.b. When the user requests
for the Spot Instance, based on the price history they need
to specify if service continuation is required when out-of-bid

Algorithm 2: Partial Hour Overhead

Data: spot-price, task-remaining-time

Result: partial-hour-cost, partial-hour
I while Out-oj-Bid AND active-spot-instance do
2 l if task-remaining-time i- 0 then
3 l partial-hour+=time-consumed % 60 ;
4 partial-hour-cost+=((time-consumed % 60)

spot-price) -;- 60 ;

situation occurs by stretching the user bid till checkpointing

is done or redefine the bid value till it reaches on-demand
price. Similar to this is dynamic bidding that is used in ebay
to prevent rebidding for products.

2
3

4
5
6

7
8
9

10
11

12
13
14
15

16
17
18

19

Algorithm 3: Hybrid Spot Instance

Data: active-spot-instance, user-bid-price,
stretch-bid-price, stretch-bid-f1ag,
stretch-till-on-demand, on-demand-price,
hybrid-si-f1ag, spot-price, second-chance=l

Result: user-bid-price
if Out-oj-Bid AND active-spot-instance then

while hybrid-si-jiag AND active-spot-instance do
if old-user OR smaller-task OR second-chance

then
second-chance = 0 ;
if stretch-bid-jiag then

if user-bid-price :s; stretch-bid-price and

spot-price :s; stretch-bid-price then
l user-bid-price = spot-price;

Compute-PriceO ;
hybrid-si-f1ag = YES;

hybrid-si-f1ag = NO ;
terminate-siO ;

if stretch-till-on-demand then
if user-bid-price :s; on-demand-price then
l user-bid-price = spot-price;

Compute-PriceO ;

if user-bid-price ;::: on-demand-price then
l spot-price-cross-on-demand-price++ ;

break;

terminate-siO /lOne chance of avoiding
Out-of-Bid over;

20 terminate-siO /lTerminate the task on the instance ;

Hybrid Spot Instance is launched according to the request.
During the task execution if HSI user faces out-of-bid situation
then a minimum of one chance of updating the user bid
is allowed. Loyal customers and the tasks that are nearing
completion are given the preference to update their bid value
so that they are in-bid. This strategy will ensure that the task is

Algorithm 4: Compute-Price

Data: user-bid-price, spot-price, task-remaining-time
Result: cost, time-consumed, task-completed

I while user-task AND active-spot-instance do
2 task-remaining-time-;
3 time-consumed++ ;
4 if time-consumed % 60 == 0 then
5 L cost+= user-bid-price ;

6
7

if task-remaining-time == 0 then
L task-completed++;

not terminated immediately but checkpointing will be done to
save the state. This overcomes the overhead of performing

frequent checkpointing or no-checkpointing which leads to
loss of state. In case the user opts for redefining the user bid,
then for every out-of-bid user bid is updated with spot bid
which continues till the user bid reaches on-demand price as
given in Algorithm 3. This strategy achieves fault tolerance
and reliable services. Tasks will be completed without break
and within the expected time. If the redefined bid crosses the
regular on-demand price, then the user will be shifted to on
demand category of service which ensures better reliability

than the regular Spot Instances. Algorithm 4 discusses about
how the user is charged for the usage of hybrid based Spot
Instance. By using HSI, abrupt task termination is avoided and
also checkpointing can be minimized maximally. This strategy
will be useful specially if the task is in its completion stage, as
the waiting time and cost of getting the new instance may be
more than the updated spot price. The strategy discussed is for
Spot Instances from Amazon since their price history is freely
available. However it can be implemented for other service
providers in order to utilize their idle resources efficiently.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed Hybrid Spot
Instance based resource provisioning and fault tolerant strat
egy with the effect of its mechanism, using trace-driven
simulations. We have considered the real-time price history
of Amazon EC2 Instances [1] for the simulation as Spot
Instances. Simulation is carried out considering 100 heteroge
neous applications which vary in size and the time required for
completion is 100 - 500 minutes. The parameters considered
are number of tasks completed, time taken for completion,
price involved and number of out-of-bid situation avoided by
considering the HSI for UNIXILinux m1.small (EC 1), and
m2.2xlarge (EC 41) instances.

A. Last Partial Hour Overhead

Amazon charges for the Instances on hourly basis. When
out-of-bid occurs, the last partial hour is not charged to the
user but rather given for free. This is an overhead to the
provider. Fig. 3. shows the number of hours that is an overhead
to the provider at the particular spot bid while running 100
applications on instance of type m1.small (EC 1). The cost

40

35

30

25

20

15

10

o

Last Partial Hour ECl

0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34

Hours

Fig. 3. Number of partial hours for 100 applications on ECI

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

o

Last Partial Hour Cost ECl

0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34

Spot Bid Price

Fig. 4. Cost of last partial hour for 100 applications on EC 1

associated for those last partial hour is shown in Fig. 4. Fig.
5. shows the number of tasks that are out-of-bid and hence
get terminated abruptly.

B. Simulation Results

In the following, we show the impact of using the proposed
fault tolerance strategy on the performance of the task and
compare it with checkpointing based strategies namely : base

checkpointing, hourly checkpointing and no checkpointing. In
base checkpointing, just before out-of-bid the checkpointing is
performed. At the end of every hour checkpointing is carried
out in case of hourly checkpointing and it is totally absent
in case of no-checkpointing. Applications of both fixed size
and variable size are executed on different EC2 instances. The

Average Out of Bid Tasks ECl

35

30

25

j 20
"0
" 15

� � 10

o
0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34

Spot Bid Price

Fig. 5. Number of out-bid-count for 100 applications on ECI

parameters considered for the simulation are as below.
Number of Tasks Completed: HSI allows the tasks to
continue the execution after out-of-bid condition is reached
by redefining the user bid. As a result, the number of tasks
getting executed is more. If no checkpointing scheme is used,
the tasks are abruptly interrupted and have to restart for which
the user has to invest for resources which violates the reason
for using the SI. The Fig. 6 shows the comparison of HSI
results with checkpointing based on base strategy where in
the checkpointing is taken just before out-of-bid occurs, hourly
checkpointing and when no checkpointing strategy is used on

instance of type m 1. small (EC 1). Assumptions regarding the

resource availability immediately after the task is out-of-bid is
done in [17]. Contrary to this assumption is, if the resources
are available at out-of-bid time at the same bid price then the
task should not have been interrupted. However, the number
of tasks completed on instance of type m2.2xlarge (EC 42) is

shown in Fig. 7. The comparison shows that the number of
tasks completed is almost similar to other strategies.
Time Taken for Tasks Completion: The time taken for
execution of the 100 tasks under instance of type ml.small
(EC 1) and instance of type m2.2xlarge (EC 42) is shown in

Fig. 8. Execution time of each task is 500 minutes. We have
simulated for 200 and 500 tasks having different execution
time but not reproduced here due to space limitations. The
task is executed on more than 40 different categories of EC2
instances and have computed the time required for execution.
According to HSI existing tasks are given more preference
and hence are not interrupted rather user bid redefined. This
leads to task completion within the actual required time of
500 minutes as observed from Fig. 9. Using base, hourly and
no checkpoint strategies, the time taken for task completion
is more with large difference when compared hybrid strategy.
In HSI, resources are used without break which eliminates
the burden both on the provider and the user regarding
checkpointing and maintenance cost.
Cost for Tasks Completion: Cost for task execution on
instance of type ml.small (EC 1) is shown in Fig. 10. It is
observed that the cost of execution is less incase of HSI than
using other checkpointing strategy. This difference is due to
the fact that out-of-bid is followed by rebid process in case
of HSI. Depending on the demand for the resource, the new
instance will be assigned which will consume time and cost
to the existing user in case of non HSI strategies. In case of
hybrid strategy if out-of-bid is occurring often then in order
to be in race, the user bid will be updated according to the
spot bid. If the user bid reaches the on-demand price then
the current user is automatically shifted to on-demand service.
This is very important as some time the user pays more than
the on-demand price unknowingly and may not reap reliable
service. The cost of executing 100 tasks on instance of type
m2.2xlarge (EC 42) is shown in Fig. 11. It is observed from
the graph that the cost involved for no-checkpointing strategy
is more and increases with the spot price. The cost for base
and hourly strategy is also more when compared to HSI, due
to the reason that the task has to wait and enter into fresh bid

process.

Number of Exec .. ed Tasks (ECllnstance)

120

: /
60

'"

20

a.on 0.079 0.081 0.083 0.085 0.087 0.089 0.091 0.093 0.095
0.Q76 0.078 0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096

Spot Price

-we

-nockpl:

hourly

-hybrid

Fig. 6. Number of Tasks Completed for EC 1

Number of Exec .. ed Tasks (EC42 Instance)

120

100------------

80

60

'"

20

o

../'j' j' .. /'j' -f�.!' .!' ./ �� -f'":l' j' ./�� f'�./:l'
SpotPlrce

--
-nockpl

hourly

-hybrid

Fig. 7. Number of Tasks Completed for EC 42

V. CONCLUSION

Spot Instance has emerged from Amazon as a resource
provisioning model for delivering unused resources through
highest bid concept with no guaranty of QoS. SI users require
reliability and fault tolerance based on their bid price to
facilitate usage of idle resources. This paper address how to
improve reliability and throughput based on streach bid or
rebid during resource allocation.
This paper has proposed the Hybrid Spot Instance based
resource provisioning strategy for efficient utilization of idle
resources. Simulation results show that providers revenue can
be improved by overcoming the last partial hour overhead and
also by minimizing the checkpointing through HSI. It will at
tract wide range of applications for the usage of spot instances,
as reliable and fault tolerant services can be achieved.
We have considered Amazon price history for working and
evaluating the performance of HSI. QoS at an economic
price with efficient resource utilization is the foundation of

Task COmpletioollme (ECllnstance)

8000

0.077 0.079 0.081 0.083 0.085 0.087 0.089 0.091 0.093 0.095
0.Q76 0.078 0.08 0.082 0.064 0.086 0.068 0.09 0.092 0.094 0.096

Spot Price

Fig. 8. Task Execution Time for EC 1

-we

-nockpt

hourly

-hybrid

Task COmpletion lime (EC42 Instance)

9000
0000 ----------------------------
7000
6000
5000 --""'"

-nockpl:
4000

hourly :: ---.. ____ ====-__ -.... ____ ..j� -hybrid

'� ----------------

����#����#���##���
"Y 'Y "Y "Y "Y "Y 'Y "Y "Y "Y "Y V "Y "Y "Y "Y 'Y "Y

SpolPrice

Fig. 9. Task Execution Time for EC 42

Cost of Task Excecution (Eel instance)

25

.:� 0.5

a.on 0.079 0.061 0.063 0.085 0.067 0.089 0.091 0.093 0.095
0.076 0.078 0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096

SpolPrice

Fig. 10. Task Execution Cost for EC 1

-noc:kr-

","<Iy

-hybrtd

our work. Therefore, it will be intresting to see the effects
of HSIs approach on the different hosted services with real
time dynamic workload in the Cloud Environment. We will
investigate these problems in the future work.

V I. ACKNOWLEDGMENTS

This research work is partly supported by the SERB - DST
New Delhi, under grant reference number: NO SBIEMEQ-
25012013.

REFERENCES

[1] Amazon. http://aws.amazon.com!ec2/spot-instances. In EC2 Spot

Instance, May 2014.
[2] A. Andrzejak, D. Kondo, and Sangho Yi. Decision model for cloud

computing under sla constraints. In IEEE International Symposium
on Modeling, Analysis Simulation of Computer and Telecommunication

Systems, pages 257-266, Aug 2010.
[3] K. Chard and K. Bubendorfer. High performance resource aUocation

strategies for computational economies. IEEE Transactions on Parallel
and Distributed Systems, 24(1):72-84, Jan 2013.

[4] A. Danak and S. Mannor. Resource allocation with supply adjustment in
distributed computing systems. In IEEE 30th International Conference

on Distributed Computing Systems, pages 498-506, June 2010.

'"
'"
70

Cost ofTask Execution (EC42 Instance)

: --------------.,,--
40
30
20
w -----------------------------
o

..tj> .f' ..tY ",:/, j' .f j' ",:/, j' .j"..f J')'� .. /'
SpolPrice

--""'"
-nockpt

"'""y

-trJbrid

Fig. II. Task Execution Cost for EC 42

[5] W. Dawoud, I. Takouna, and C. Meine!. Increasing spot instances reli
ability using dynamic scalability. In IEEE 5th International Conference
on Cloud Computing, pages 959-961, June 2012.

[6] Haikun Liu, Hai Jin, Xiaofei Liao, Chen Yu, and Cheng-Zhong Xu. Live
virtual machine migration via asynchronous replication and state syn
chronization. IEEE Transactions on Parallel and Distributed Systems,
22(12):1986-1999, Dec 2011.

[7] V. Marbukh and K. Mills. Demand pricing resource allocation in market
based compute grids a model and initial results. In Seventh International

Conference on Networking, pages 752-757, April 2008.
[8] M. Mattess, C. Yecchiola, and R. Buyya. Managing peak loads by

leasing cloud infrastructure services from a spot market. In 12th
IEEE International Conference on High Performance Computing and

Communications, pages 180-188, Sept 2010.
[9] M. Spreitzer M. Steinder A. Tantawi N. Chohan, C. Castillo and

C. Krintz. See spot run using spot instances for mapreduce workftows.
In 2nd USENIX conference on Hot topics in cloud computing, pages
1-7, June 2010.

[10] R. Boutaba Q. Zhang, E. G. urses and J. Xiao. Dynamic resource
allocation for spot markets in clouds. In 11th USENIX conference on
Hot topics in management of internet, cloud, and enterprise networks
and services, pages 1-7, June 2011.

[11] N. Samaan. A novel economic sharing model in a federation of selfish
cloud providers. Parallel and Distributed Systems, IEEE Transactions
on, 25(1):12-21, Jan 2014.

[12] Yang Song, M. Zafer, and Kang-Won Lee. Optimal bidding in spot
instance market. In P roceedings IEEE INFO COM, pages 190-198,
March 2012.

[13] Shaojie Tang, Jing Yuan, and Xiang-Yang Li. Towards optimal bidding
strategy for amazon ec2 cloud spot instance. In IEEE 5th International

Conference on Cloud Computing, pages 91-98, June 2012.
[14] W. Yoorsluys and R. Buyya. Reliable provisioning of spot instances for

compute-intensive applications. In IEEE 26th International Conference
on Advanced Information Networking and Applications, pages 542-549,
March 2012.

[15] S. Garg W. Yoorsluys and R. Buyya. Provisioning spot market cloud
resources to create cost-effective virtual clusters. In 11th international

conference on Algorithms and architectures for parallel processing,
pages 395-408, Feb 20 II.

[16] Yi-Min Wang, Yen nun Huang, Kiem-Phong Yo, Pe-Yu Chung, and
C. Kintala. Checkpointing and its applications. In Twenty-Fifth

International Symposium on Fault-Tolerant Computing, pages 22-31,
June 1995.

[17] Sangho Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot
instances via checkpointing in the amazon elastic compute cloud. In
IEEE 3rd International Conference on Cloud Computing, pages 236-
243, July 2010.

[18] M. Zafer, Yang Song, and Kang-Won Lee. Optimal bids for spot vms
in a cloud for deadline constrained jobs. In IEEE 5th International
Conference on Cloud Computing, pages 75-82, June 2012.

[19] Jianfeng Zhan, Lei Wang, Xiaona Li, Wei song Shi, Chuliang Weng,
Wenyao Zhang, and Xiutao Zang. Cost-aware cooperative resource
provisioning for heterogeneous workloads in data centers. IEEE Trans
actions on Computers, 62(11):2155-2168, Nov 2013.

[20] Han Zhao, Miao Pan, Xinxin Liu, Xiaolin Li, and Yuguang Fang.
Optimal resource rental planning for elastic applications in cloud market.
In IEEE 26th International Parallel Distributed P rocessing Symposium,
pages 808-819, May 2012.

