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Forced flow of an electrically conducting Newtonian fluid due to
an exponentially stretching sheet is studied numerically. Free
stream velocity is present and so is suction at the sheet. The gov-
erning coupled, nonlinear, partial differential equations of flow
and heat transfer are converted into coupled, nonlinear, ordinary
differential equations by similarity transformation and are solved
numerically using shooting method, and curve fitting on the data
is done by differential transform method together with Pad�e
approximation. Prescribed exponential order surface temperature
(PEST) and prescribed exponential order surface heat flux are
considered for investigation of heat transfer related quantities.
The influence of Chandrasekhar number, suction/injection param-
eter, and freestream parameter on heat transport is presented and
discussed. Coefficient of friction and heat transport is also eval-
uated in the study. The results are of interest in extrusions and
such other processes. [DOI: 10.1115/1.4033460]
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1 Introduction

The flow past a stretching sheet has several important engineer-
ing applications, viz., polymer processing unit of a chemical engi-
neering plant, metal working process in metallurgy, hot rolling,
wire drawing, glass fiber, and drawing of plastic films. Sakiadis
[1–3] initiated the theoretical study of these applications by con-
sidering the boundary layer flow over a continuous solid surface
moving with constant speed. Crane [4] studied the steady two-
dimensional boundary layer flow caused by the stretching sheet.
Thereafter, various aspects of the above boundary layer problem
on continuous moving surface were considered by many research-
ers (for example, Grubka and Bobba [5], Chen and Char [6], Sid-
dheshwar and Mahabaleshwar [7], and references therein).

Many metallurgical processes involve the cooling of continuous
strips or filaments by drawing them through a quiescent fluid.
During this process of drawing, the strips are sometimes stretched.
The properties of the final product depend on the rate of cooling.

Sanjayanand and Khan [8] analyzed the effects of various physi-
cal parameters such as local viscoelastic parameter, Prandtl num-
ber, local Reynolds number, local Eckert number, and Schmidt
number on momentum, heat, and mass transfers in a viscoelastic
boundary layer fluid flow over an exponentially stretching continu-
ous sheet. The effect of radiation on the boundary layer flow and
heat transfer of a viscous fluid over an exponentially stretching
sheet is studied by Sajid and Hayat [9]. The homotopy method is
employed to determine the convergent series expansions of veloc-
ity and temperature. Khan et al. [10] presented a combination of
variational iterative method and Pad�e approximants to investigate
the two-dimensional exponential stretching sheet problem. Similar-
ity transformation is used to convert the nonlinear partial differen-
tial equations corresponding to the momentum and heat equations
into nonlinear ordinary differential equations. Numerical solutions
of these equations are obtained by shooting method. Mukhopad-
hyay [11,12] analyzed the magnetohydrodynamic (MHD) bound-
ary layer flow and heat transfer toward an exponentially stretching
sheet embedded in a thermally stratified medium in the presence of
a magnetic field and subject to suction. A steady two-dimensional
boundary layer flow of a viscous incompressible radiating fluid
over an exponentially stretching sheet, in the presence of transverse
magnetic field, is studied by Reddy and Reddy [13]. Recently,
many researchers (e.g., Jat and Gopi Chand [14] and Wong et al.
[15]) studied the steady two-dimensional laminar flow of a viscous
incompressible fluid over an exponentially stretching/shrinking
permeable sheet with viscous dissipation and radioactive heat flux.

Sparse literature is available on stretching sheet problems,
stretching exponentially, in a fluid that is flowing with uniform ve-
locity (called generally as uniform freestream) (see Refs. [16–18]
and references therein). Bhattacharya and Vajravelu [19] investi-
gated the stagnation-point flow and heat transfer over an exponen-
tially shrinking sheet.

In the present work, we study the boundary layer flow behavior
and heat transfer of a Newtonian fluid past an exponentially
stretching sheet in the presence of an external magnetic field, suc-
tion (injection), and a freestream. Cooling of perforated films is an
important problem as we know, and hence, the rate of cooling is
an important issue in these problems. Horizontal freestream (bath)
and transverse suction/injection as mechanisms for faster cooling
can be of prime importance in such problems. Using boundary
layer approximation and a similarity transformation in exponential
form, the governing mathematical equations are transformed into
coupled, nonlinear ordinary differential equations, which are then
solved numerically by shooting method.

2 Mathematical Formulation

We consider a steady, two-dimensional boundary layer flow
due to a stretching sheet of an incompressible, weakly electrically
conducting Newtonian fluid. The liquid is at rest and the motion is
effected by pulling the sheet at both ends with equal force parallel
to the sheet and with speed u, which varies exponentially with the
distance from the slit (see Fig. 1). The boundary layer equations
governing the flow and heat transfer, assuming the viscous dissi-
pation to be negligible, are
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The last term in Eq. (2) arises from the Lorentz force in the case
of a weakly electrically conducting liquid. We employ the follow-
ing boundary conditions on velocity:

u ¼ uw xð Þ ¼ U0es x
L; v ¼ vw at y ¼ 0

u! U1et x
L as y!1

)
(4)

We consider general nonisothermal and variable heat flux bound-
ary conditions to solve Eq. (3). We take up the thermal boundary
conditions and the energy equation in Sec. 4. In Sec. 3 we con-
sider the solution of the momentum equation (2) subject to the
boundary conditions (4).

3 Local Similarity Transformation of the Momentum

Equation

We now make Eqs. (1), (2), and (4) dimensionless using the
following definition:
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and also introduce the stream function wðX;YÞ as follows:

U ¼ @w
@Y

; V ¼ � @w
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(6)

to get the following equations:
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where Q ¼ ðl2
mrH2LÞ=ðqU0Þ is the Chandrasekhar number and

ke ¼ U1=U0 (freestream parameter).
We now outline the procedure of obtaining a local similarity so-

lution for the exponential stretching sheet problem by using the
transformation

wðX; gÞ ¼ AeemXf ðgÞ and g ¼ BeenXY (9)

where Ae;Be;m; and n are to be determined. We note that a simi-
larity transformation is not possible to use in this problem.

Using the transformation (9) in Eqs. (7) and (8), we get the
following boundary valve problem:
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Equations (10) and (11) dictate the choice Ae ¼ Be ¼ m ¼ n ¼ 1
and s ¼ t ¼ 2. With this choice, Eqs. (10) and (11) reduce to

f 000 þ ff 00 � 2ðf 0Þ2 � Qxf 0 þ ðQxke þ 2k2
eÞ ¼ 0 (12)

f ð0Þ ¼ �Vwx; f
0ð0Þ ¼ 1 at g ¼ 0

f 0ð1Þ ¼ ke as g!1

)
(13)

where Qx ¼ Q=e2X (local Chandrasekhar number) and Vwx

¼ Vw=eX (local suction/injection parameter).

4 The Energy Equation

Using Eqs. (5) and (6) in Eq. (3), we get the following nondi-
mensionalized heat equation:
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where

h ¼ T � T1
Tw � T1

(15)

In order to solve Eq. (14), we consider the following nonisother-
mal and variable heat flux boundary conditions for exponential
stretching sheet problem.

4.1 PEST. The boundary conditions in this case are

T ¼ Tw ¼ T1 þ Tw � T1ð Þe
x
Lð Þ at y ¼ 0

T ! T1 as y!1

)
(16)

In terms of dimensionless temperature h, we can write

h ¼ eX at Y ¼ 0

h ¼ 0 as Y !1

�
(17)

Equations (14) and (17) read as

H00e þ Prf H0e � Prf 0He þ EPESTPrðf 00Þ2 ¼ 0 (18)

He ¼ 1 at g ¼ 0

He ¼ 0 as g!1

�
(19)

where HeðgÞ ¼ e�Xh and EPEST ¼ ð�U0Ree3XÞ=½CpLðTw � T1Þ�
is the local Eckert number of PEST case.

4.2 Prescribed Exponential Order Heat Flux (PEHF). In
this case, the boundary conditions assumed on T are

�k
@T

@y
¼ T1e

3x
2Lð Þ at y ¼ 0

T ! T1 as y!1

9=
; (20)

Fig. 1 Schematic of the stretching sheet
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Following the procedure of Sec. 1 on Eq. (14), we get

U0e þ Prf U0e �
Pr

2
f 0Ue þ EPEHFPr f 00

� �2 ¼ 0 (21)

U0e ¼ �1 at g ¼ 0

Ue ¼ 0 as g!1

)
(22)

where

Ue gð Þ ¼ be
�X
2 h; b ¼ k Tw � T1ð Þ

ffiffiffiffiffiffi
Re
p

T1L

and EPEHF ¼ f2�U0Ree½ð7XÞ=2�bg=½CpLðTw � T1Þ� is the local
Eckert number of PEHF case. The PEST and PEHF boundary con-
ditions are essentially nonisothermal and variable heat flux bound-
ary conditions, respectively. In view of the fact that “1” in this
problem is around 6, the x=L values are not very large. This essen-
tially means that varying the sheet temperature or the imposed
flux does not have the large variations. Such boundary conditions
support a local similarity solution. Due to the adoption of such
conditions and the inherently nonlinear equations, the problem
cannot have an analytical solution.

The two boundary-value problems arising in the problem are
solved using shooting method. Curve fitting for the obtained data
is done using differential transform method-Pad�e method [20]. In
general, for most parameters’ values, {3,7} are a good Pad�e
approximant for temperature. The accuracy chosen for the solu-
tion in the problem is 10�6.

The local skin-friction coefficient Cf is given by

Cf ¼
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q uwð Þ2
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@u

@y
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y¼0

9>>>=
>>>;

(23)

Solving Eq. (23), we get

Cf ¼
1

eX
ffiffiffiffiffiffi
Re
p f 00 0ð Þ (24)

The rate of heat transfer in terms of the Nusselt number, Nux, at
the wall is given by

Nux ¼
xqw

k Tw � T1ð Þ (25)

where qw ¼ �kð@T=@yÞy¼0:

Equation (25) can now be rewritten as
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5 Results and Discussion

The boundary-value problems involving semi-infinite intervals
arising in the exponentially stretching sheet problems (ESSPs) are
solved for a convergent solution by using a combination of the
shooting and differential transform methods. Table 1 shows the
concurrence of our results with that of Mustafa et al. [21] in the
absence of freestream. The results on the skin friction and local
Nusselt number are presented through Tables 2 and 3. We have
separate notation for temperatures in the stretching sheet problem.
The terms He and Ue represent the scaled temperatures for the
PEST and PEHF cases, respectively, of ESSP. At this point, we
note that the effect of magnetic field is to diminish the magnitude

of boundary layer velocity, and the freestream helps in the cooling
of the stretching sheet. Thus, the desired rate of cooling of the
sheet can be achieved by a proper combination of the strength of
the magnetic field and the freestream velocity. This might possi-
bly help scientists in having a desired property in the stretching
film and is thus a useful piece of information in an extrusion
process.

From Table 2, it is clear that the following results are true:

(1) Effect of suction/injection parameter is to decrease the
skin-friction coefficient.

(2) The skin-friction coefficient decreases with increase in ke.
(3) The skin-friction coefficient is directly proportional to Q.

Table 1 Comparison of values of 2f
00 ð0Þ with those of Mustafa

et al. [21] when ke50

Ref. [21] Present value

1.281810 1.281835

Table 2 Values of 2f
00 ð0Þ for different parameters

Parameters �f
00 ð0Þ

Vwx Qx ¼ 0 and ke ¼ 0:2
�1 1.655993
0 1.195144
1 0.867681

ke Qx ¼ 0 and Vwx ¼ 0
0.1 1.253608
0.2 1.195144
0.4 1.005649

Qx ke ¼ 0:2 and Vwx ¼ 1
0 0.867681
1 1.098032
2 1.297733

Table 3 Values of 2H
0

eð0Þ and Ueð0Þ for different parameters

Parameters �H
0

eð0ÞðPESTÞ Ueð0ÞðPEHFÞ

EPEST=EPEHF Pr ¼ 1; ke ¼ 0:1;
Vwx ¼ 1 and Qx ¼ 0

0.5 0.348653 3.084491
1 0.178513 3.419940
1.5 0.008379 3.755404

Pr EPEST=EPEHF ¼ 0:5; ke ¼ 0:1;
Vwx ¼ 1 and Qx ¼ 1

0.5 0.284127 4.526484
1 0.348653 3.75839
1.5 0.376686 3.509042

ke EPEST=EPEHF ¼ 0:5;Pr ¼ 2;
Vwx ¼ 1 and Qx ¼ 1

0.1 0.389775 3.400175
0.4 0.584437 2.567514
1 0.898777 1.665495

Vwx EPEST=EPEHF ¼ 0:5;Pr ¼ 2;
ke ¼ 0:1 and Qx ¼ 1

–1 2.037869 0.688278
0 0.910172 1.338882
1 0.389775 3.400175

Qx EPEST=EPEHF ¼ 0:5;Pr ¼ 2;
ke ¼ 0:1 Vwx ¼ 1

0 0.535806 2.802307
1 0.389775 3.400175
2 0.264183 3.964549
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The following results are extracted from Table 3:

(1) It is observed that �½H0eð0Þ� decreases as EPEST increases,
and Ueð0Þ has the opposite behavior to that of �½H0eð0Þ�.

(2) In regard to the influence of Pr, we observe that �½H0eð0Þ�
increases with increase in Pr, and Ueð0Þ decreases with
increase in Pr.

(3) The effect of ke on the temperature profiles is similar to
that of Pr.

(4) Increase in suction/injection parameter decreases �½H0eð0Þ�
and increases Ueð0Þ.

(5) �½H0eð0Þ� decreases with increase in Q, and Ueð0Þ increases
with increase in Q.

6 Conclusion

(1) PEHF is better suited for faster cooling of the stretching
sheet than the PEST boundary condition. This is because
the boundary layer temperature is higher in PEST case
compared to PEHF case.

(2) The dissipation effect on local Nusselt number is less pro-
nounced compared to that of other parameters.

(3) Freestream takes away heat, and hence, we observe that
cooling is faster in the presence of freestream.

(4) A combination of the magnitude of the freestream velocity
and the strength of the applied magnetic field cools the
extrusion at a required rate, and thus can be used to impart
a desired property to the extrudate.

Nomenclature

C ¼ specific heat
Cf ¼ skin-friction coefficient
H ¼ uniform applied magnetic field
L ¼ reference length

Nux ¼ Nusselt number
p ¼ pressure

Pr ¼ Prandtl number
Re ¼ local Reynolds number

T ¼ temperature
u ¼ dimensional horizontal velocity component
U ¼ nondimensional horizontal velocity component
v ¼ dimensional vertical velocity component
V ¼ nondimensional vertical velocity component
x ¼ dimensional horizontal Cartesian coordinate
X ¼ dimensionless horizontal Cartesian coordinate
y ¼ dimensional vertical Cartesian coordinate
Y ¼ dimensionless vertical Cartesian coordinate

Greek Symbols

a ¼ thermal diffusivity
g ¼ similarity variable
h ¼ dimensionless temperature of PEST
H ¼ scaled temperature of PEHF
l ¼ dynamic viscosity

lm ¼ magnetic permeability
� ¼ kinematic coefficient of viscosity
q ¼ density
r ¼ electrical conductivity
s ¼ shear stress

/ ¼ dimensionless temperature of PEHF in exponential stretch-
ing sheet problem

U ¼ scaled temperature of PEHF
w ¼ stream function

Subscripts

e ¼ value corresponding to exponential stretching
p ¼ value at constant pressure
w ¼ value at wall
0 ¼ reference value
0 ¼ differentiation with respect to g
1¼ value at infinity
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