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Abstract:   

The aim of the work was to investigate the effect of copper coated basalt short fiber reinforced Al alloy 

composites and was compared with uncoated basalt short fiber Al metal matrix composites (MMCs). Five 

different wt. % of basalt short fiber reinforced Al MMCs were prepared by squeeze casting technique 2.5, 

5, 7.5 and 10% basalt short fiber MMCs. Both type of MMCs (coated and uncoated basalt fiber reinforced 

Al MMCs) were tested for elastic modulus, ultimate tensile strength and ductility along with 

microstructural change as per ASTM standard. The result shows the coating of Cu on basalt short fiber 

increases the Young‟s modulus, due to the homogenous distribution of basalt short fiber and the alignment 

of these fibers parallel to the axis with minimum segregation in the alloys, the ultimate tensile strength also 

increased due to their matrix strengthening and reduction in the alloy grain size, but the ductility 

significantly decreases due to the voids. The microstructure and fracture surfaces of both MMCs were 

examined using optical and SEM micrographs respectively.  The lack of observed fiber pull-out on fracture 

and improved mechanical properties resulted due to the good wetting of the fibers by the liquid alloy.  

 

Keywords: Metal matrix composite (MMCs), Basalt fibers, Short fiber composites, Electroless coating, 

squeeze casting technique.  
 

 

1.  INTRODUCTION 

 

Metal matrix composites (MMCs) properties are strongly depending on the interfacial 

phenomena between the metal matrix and fiber surfaces [1]. The interface plays a most 

vital role in the overall performance of a composite material. The wettability of 

reinforcement by liquid metal is the key factor to achieve high interface bonding strength.  

There are several methods to improve the interfacial bonding including the modification 

of the matrix composition [2], coating of the reinforcement [3] and control of process 

parameters [4]. Among these methods, modification of fiber surface or metal coating on 

fiber to improve the wetability between matrix and reinforcement is prominent [5].  

Although many technologies available for metal coating on the fiber surface but 

electroless copper coating is high preferable in research community [6] due to simple, 

low-cost and an easy to use process. And also it has been successfully applied to prevent 

undesired interfacial reactions and promote the wettability through increasing the overall 

surface energy of the reinforcement [7-8]. 

 

Wettability is one of the major criteria during the fabrication of fiber reinforced MMCs   

due to the repulsion of the negative electron of the reinforcement present in the fiber by 

negative oxygen anion monolayer present at the aluminium surface [9]. However, the 

reaction between the fiber and matrix takes place above 500°C [10]. It has also been 

reported [11] that the reaction is possible even below this temperature. Thus, by applying 

a suitable coating on the fiber and/or modifying the matrix composition to avoid 

repulsion of the negative electron.  Some researcher the copper coating on the glass fibers 
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facilitated their wetting with the molten aluminium [12]. During coating, the gas film is 

chemically displaced by metal film which easily interacts with the molten metal during 

composite processing. CuAl2 phase formation during Cu-coated fibers dispersion, being 

endothermic in nature lowers the fluidity around the interface. Some undissolved copper 

remained at the interface protects the fibre from coming in contact with molten 

aluminium and prevents the formation of A14C3. The magnesium in melt improves 

wettability because of the lower surface tension of magnesium [13]. In the present study, 

an attempt has been made to investigate the effect of copper coating on basalt fiber 

reinforced aluminium alloy composites properties prepared by squeeze casting for 

microstructure and mechanical properties. 
 

 

2. Experimental work 

2.1 Materials and methods 

The Al and basalt short fiber used as the MMCs in the present study are obtained from 

commercial ingots with correct chemical composition as shown in Table 1, the presence 

of these elements have been confirmed by SEM / EDS spectra. The aluminium alloy 

7075 was selected as matrix and basalt fibers (mineralogical research company) in the 

form of form of continuous basalt fibers (CBF) were used as reinforcements for making 

the composites. In the present investigation the deposition of copper coating on short 

basalt fibers by an electroless route has been optimized.  

 

Table 1 Chemical composition of Al alloy (Weight percentage) & short basalt fiber 

Element  Si Fe Cu Mn Mg Cr Zn Ti Al 

% 0.4 0.5 1.6 0.3 2.5 0.15 5.5 0.2 Bal 

 

Element  SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO 

% 69.51 14.18 3.92 2.41 5.62 2.74 1.01 0.55 0.04 

 

2.2 Pre-procedure 

The continuous basalt fibers of average diameter 6 µm were chopped down to short fibers 

of about 1 to 2 mm length. The complete process of coating starts with the treatment of 

fibers in a muffle furnace for 10 min. at 500 °C
 
to eliminate the pyrolytic coatings around 

as received fibers. The electroless process used to deposit the copper coatings on the 

basalt fiber relies on a sequence of sensitizing, activation and metallization, with 

important cleaning, rinsing, washing and drying stages also being included.  
 

2.3 Electroless coating  

The electroless process used to deposit the copper coatings onto the basalt fiber relies on 

a sequence of sensitizing, activation and metallization, with important cleaning, rinsing, 

washing and drying stages also being included. The conditions used are detailed in Table 
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2. Subsequently they were coated with copper using the electroless process, as described 

elsewhere [14-15]. A two-Step Process Chemical Concentration Temperature (°C) Time 

(min) 
 

2.4 Experimental procedure  

The short basalt fiber was cleaned in distilled water and dried at 90C. The sizing and 

finishing treatment from the surface of the fibers, prior to coating were removed by 

heating them to about 970 K for 10 min in air.  Fibers have elastic modulus of 90 GPa, 

and a yield stress of 4500 MPa. The coating procedure consist of three well defined 

stages namely sensitization, activation and metallization. The heat cleaned fibers are first 

treated with glacial acetic acid to activate the surface, and then again activated using 

stannous chloride (SnCl2) and they were sensitized for different times (5, 10 & 15 min.) 

under continuous stirring. Fibers are then filtered and cleaned with distilled water. In 

order to have catalytic surfaces, the sensitized fibers were exposed to an aqueous solution 

containing palladium chloride (PdCl2) and HCl under ultrasonic agitation. This process, 

called activation, produces the formation of Pd sites on the fiber surface which allow the 

subsequent metallization with copper. The complete process of metallization starts with 

the treatment of fibers in an open oven for 10 min. at 500
◦
C to eliminate the pyrolytic 

coatings around as received fibers. 

Table 2: Chemical compositions 

Stage and conditions Concentration of chemicals 

Sensitisation 

5min, 10min & 15 min at room 

temperature 

Activation 

5min, 10min & 15 min at room 

temperature 

Metallization 

Multiple conditions tested 

40⁰C and 50⁰C 

pH 12 and pH 13 

2 min -  20 min 

 

12 g/l SnCl2 -  2 H2O 

40 ml/ HCl 

 

0.2g/l PdCl2    

 2.5 m/l HCl      

 

10g/l CuSO4  - 5 H2O 

45g/l EDTA 

20 g/l NaCOOH 

16 ml/l HCHO 36% 

NaOH for adjusting Ph 

 

Metallization is produced by immersion of activated fibers into a solution containing 

CuSO4-5H2O as metal ion sources also held under agitation. Different metallization 

conditions have been tested, pH (12 &13), time (2- 20 min) and temperature (40 & 50⁰C), 

and continuous and crystalline coatings with homogeneous thickness have been obtained. 

The reactive volume used assures that the concentration of the diluted copper can be 

considered constant during the deposition. The coatings obtained at different 

metallization temperature, times and pH values were studied by SEM and the thickness of 

the copper layer was determined in transversal cross section.  
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2.5 Preparation of composites by squeeze casting technique  

In squeeze casting liquid metal is injected into the interstices of short fibre usually called 

as a preform. In this process liquid metal is pressurized while they solidify and hence 

near net shapes can be produced with sound and dense quality. The apparatus was 

designed to make a cylindrical billet of 100 mm diameter and 40 mm thick. A die of 100 

mm diameter was manufactured and was installed on the 150 ton hydraulic press. It 

consists of a simple die and punch set with an ejector rod to facilitate removal of the 

solidified composite. The die is heated by a band heater to the required temperature. The 

casting operation consists of preheating the die, with the preform inside it, typically to 

300–400 ⁰C, and melting a weighed charge of the alloy to be cast, heating it to a 

temperature typically 150–250 ⁰C above its liquidus temperature. The molten metal is 

then poured into the die and then the punch is driven into the cavity to compress the 

charge. The pressure applied is varied from 20 to 30 MPa. The constant ramspeed of 

10mm/swas used. The pressure is maintained during solidification period and then after a 

further cooling period of 5–10min the ram is withdrawn and the composite extracted. The 

process was repeated without the preform in it to get the squeeze cast metal. The 

composites were solutionised at 530 ⁰C for 2 h, quenched and the specimens were 

artificially aged at 180C for 12hrs followed by furnace cooling.   

 

2.6. Characterization of composites 
All mechanical tests were conducted in accordance with ASTM standard. Tensile tests 

were conducted at room temperature using a Shimuzu universal testing machine (of 10 

tons capacity) equipped with a pair of extensometers in accordance with ASTM E8-82.  

The tensile specimens of diameter 8.9 mm and gauge length 76 mm were machined from 

the cast composites with the gauge length of the specimen parallel to the longitudinal axis 

of the castings. The modulus measurements were carried out on the specimens in tension, 

using „loading unloading method‟ with a crosshead velocity of 5 mm/min. Young‟s 

modulus values were calculated from the slope of the ruler fit straight lines joining the 

two ends of the loading-unloading curves. Four different specimens were tested and 

average values of the UTS and ductility were measured.     

Microstructure specimens of the Al/basalt fiber MMC were prepared as per ASTM E3 

standards and the structure was examined under conventional optical microscopy to 

understand the variation in microstructure and fiber distribution. To increase the visibility 

of the embedded fibers in the matrix, the composites were etched deeply with Palmerton 

etching reagent (Chromic oxide-200g, Sodium sulfate-15g, water-1000ml) polishing with 

9 and 1 lm diamond paste. The choice of a sample for microscopic study is very 

important for analyzing composites. Scanning Electron Microscopy (SEM) was 

performed on the fractured surface to understand the failure mechanisms. The fractured 

surfaces of the squeeze infiltrated AMC and the squeeze cast metal were examined under 

scanning electron microscope (SEM to determine fiber/matrix bonding). 
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3. RESULTS AND DISCUSSION   

3.1 Characterization of the copper coating 

Fig. 1 shows the photographs of un-coated and coated basalt fibers. It can be seen that, 

almost all (more than 90%) chopped fiber are coated uniformly and the copper coating is 

continuous over the fibers. Fig. 1 shows the surface characteristics of uncoated fibers ( 

Fig.1a.), of copper coated ones (Fig. 1 b-f) under different metallization conditions, and 

Fig. 1d shows the transversal section of copper coated fibres as observed  with light 

microscopy. As it can  seen in the images, the thickness and morphology of the copper 

layers is highly dependant on the metallization conditions, mainly sentisization time, 

activation time, metallization time, temperature and pH. Bath temperature must be kept 

below 45⁰C because higher temperatures unstabilize the metallization solution. At this or 

higher temperatures dentritic growth of the coating (Fig.1b) is promoted. Using lower 

bath temperatures under the same pH conditions (pH 13) homogeneous thickness can be 

achieved on the coatings. To obtain any copper deposition, the pH of the metallization 

solution must be higher than 12. For pH 12 or higher the deposition rate increases as the 

pH increases so shorter deposition times are needed to get the same thickness. For pH 12, 

the minimum time needed to get continuous copper coating is 3 min. After this first stage, 

the thin copper coating grows homogeneously in thickness without evidence of dentritic 

growth (Fig. 1c and d)   

 

 
          Fig. 1 – Photographs of (a) un-coated basalt fibers and (b) coated basalt fibers. 

 

                      

                        
Fig. 1 (c) SEM Micrographs of coated basalt fibers             Fig. 1 (d) SEM Micrographs of coated basalt fibers                       
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Fig. 1 (e) SEM Micrographs of coated basalt fibers           Fig. 1 (f) SEM Micrographs of coated basalt fibers 

 

3.3. Microstructural studies of composites 

Effort was made to observe distribution of fibres in the cast composites produced. After 

casting, ingots were cut into four pieces along the longitudinal direction and the porosity 

and distribution of fibres were observed. The surface of the composite castings were 

machined first to remove the surface layer of the metal and the microscopic examination 

of this surface generally gives the over all trend in the distribution of the reinforcements. 

To study wettability and reaction processes that takes place in the matrix/fiber interface 

regions. Typical microsections of the composite fabricated with uncoated basalt fibers 

dispersed in Al matrix showed fiber matrix interactions. Reaction products were observed 

almost at the entire interface. Uncoated fibers are pushed away by the solidification front 

and appear concentrated in the outer zones of the specimens and locally, in the 

interdendritical spaces as shown in Fig. 3(a)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Microstructure of the Al/10 % basalt short fiber MMCs 

uncoated (a) and coated (b) conditions.  
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Microstructures of aluminium composites containing 2.5, 5, 7.5 and 10 wt % copper-

coated short basalt fiber are shown in Fig. 4. It is seen that basalt fibers are embedded in 

the aluminium matrix in the form of flattened bundle. In the composites, the matrix metal 

has thoroughly penetrated into the bundle of fibers and is well bonded to every single 

fiber. The optical micrographs of composites containing 2.5, 5, 7.5 and 10 wt % short 

basalt fiber show that the fibers are more or less uniformly distributed and also observed 

that some pores are present in the composites. As the fiber content increases, the 

uniformity of distribution of the fibers in the composite increases up to 7.5 % fiber 

content and beyond this uniformity of distribution of fibers decreases because of the 

agglomeration of fibers in the composites. The uniformity of fiber distribution in the 

composite containingT10 wt% basalt fiber is slightly decreased and voids and inclusions 

are present in the composite. 

 

 
 
Fig. 4 – Optical micrographs of copper-coated basalt fiber reinforced composites. (a) 2.5 wt%, (b) 5 

wt%, (c) 7.5 wt% and (d) 10 wt% fiber reinforcements. 
 

3.4. Mechanical properties 

3.4.1 Elastic modulus  
The measured mean values of elastic moduli were plotted as a function of weight 

percentage of basalt short fiber as shown in the fig.5 (a). The sharp increase in Young‟s 

modulus has been observed, in young‟s modulus of Cu coated basalt short fiber when 

compared with uncoated Al\basalt short fiber MMCs, this is probably due to the 

homogenous distribution of copper coated basalt short fiber and the alignment of these 

coated fiber parallel to the axis with minimum segregation in the alloys. McDanels [16] is 

of the opinion that the elastic modulus increases with increase in reinforcement content.  

However, elastic modulus has been found to be independent of the type of reinforcement.  
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As short basalt short fiber content was increased from 2.5 to 10 % by wt., an 

improvement in Young‟s modulus of 13.26% has been observed.   

 

3.4.2 Tensile properties 

Fig.5 (b) shows the effect of Cu coated basalt short fiber on UTS in Al MMCs, It can be 

seen that as the Cu coated basalt short fiber content is increased, the UTS of the alloy 

material also increases when compared with uncoated Al/basalt short fiber MMCs.  There 

is a marked increase in the UTS of the alloy from 15.5 to 28.7% as the Cu coated basalt 

short fiber content is increased from 2.5 to 10 wt.%.  The increase in UTS is attributed to 

the presence of hard basalt short fiber, which imparts strength to the matrix alloy, thereby 

providing enhanced tensile strength. Vogelsangs‟ et al. [17] believes that the 

improvement in UTS may be due to the matrix strengthening.  The reasons assigned are 

reduction in the alloy grain size and generation of a high dislocation density in the matrix, 

which is a result of the difference in thermal expansion between the metal matrix and the 

basalt short fiber reinforcement. 

 
3.4.3 Ductility 

Fig. 5 (c) shows the effect uncoated and Cu coated basalt short fiber content on the 

ductility (% of elongation) of the MMCs.   It can be seen from the graph that the ductility 

of the alloy decreases with the increase in Cu coated basalt short fiber content from 2.5 to 

10 wt. % (the ductility decrease by about 35.9%) when compared uncoated Al\basalt 

short fiber MMCs.  This decrease in ductility in the MMCs is the commonly encountered 

disadvantage in MMCs when compared with the base alloys.  Mummery et.al [18] is of 

the opinion that this behaviour is probably due to the voids, which nucleate during the 

plastic strains of the reinforcement or by reinforcement interface. 

  

3.4.4 Optical and scanning electron microstructure analysis 

The general features of the microstructure, e.g. fiber distribution, wt. % of reinforcement, 

and orientation, were studied using an optical microscope and fractured surfaces were 

studied using a scanning electron microscope. Typical fractured surfaces of Al/basalt 

short fiber composite, obtained from tensile tests, are shown Figure 6 (a).  According to 

Withers [19], the experimental observation also suggests that short fibers rarely fracture.  

Only very few fibers can be seen as fractured and there is also an evidence of ductile 

failure in the matrix.  The failure is few fibers split longitudinally and transversally as 

shown in the Figure 6 (b).  The failure of fibers in the composite may be attributed to the 

increase in stress on the specimen.  As the load on the fiber increases, it induces strain in 

the fibers, and the most heavily loaded fiber fractures.  Some fiber “pull-out” has occurs 

in the samples, but the failure appears to be at the matrix end and not at the interfacial 

regions, as indicated by the conical cavities with rippled surface.  Apparently more “pull-

out” occurred in the matrix composite as expected due to the lower strength of the matrix.  

In some places where the fiber end was exposed to SEM, it appears that the matrix 

sheared away from the fiber. 
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Fig. 5 Effect of Cu coating on basalt short fiber reinforced 

Al MMCs a. Young’s modulus, b) UTS and c) Ductility  

Figure 6 (b) Fractographs of the tensile 
specimen unreinforced shows uneven 
distribution of the large dimples 

 

Figure 6 (a) Fractrographs of the tensile 

specimen shows (a) fractured short Basalt 

fibers and (b) fiber puIlout from the 

specimen 
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4. Conclusions 

The following conclusions are made from the study: 

1. A fairly uniform and continuous coating of copper on short basalt fibers can be    

prepared successfully by electroless technique. Around 95% of the fiber had a 

continuous coating with a fine crystallite-type deposition of copper was found 

over continuously coated copper 

2.  The low wettability of high modulus basalt fibers by molten aluminium has a 

marked effect on the subsequent final solidification of the composite, determining 

not only heterogeneous distribution of the short basalt fibers in the aluminium 

matrix but also favouring the microsegregation of alloying elements (i.e. 

magnesium) in the matrix/fiber interfaces. 

3. The copper-coated fibers, up to 7.5 wt%, are uniformly distributed in the matrix 

with little agglomeration. 

4. The tensile strength increases with increase in Cu coated reinforcement content, 

an increase in UTS from 15.5 to 28.7% was observed. 

5. The Young‟s modulus and UTS of the composite material increases with increase 

in fiber wt %, an improvement in Young‟s modulus of 13.26% has been observed. 

6. The ductility of the MMC decreases gradually with increase in fiber wt %.   
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