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Various types of convergent alternating series are studied and analysed.
Certain important and interesting properties enjoyed by these classes of
alternating series, pertaining to the range of the parameter a(0 < o < 1), are
discussed. A few illustrations are given, wherever necessary. Further, the
generalized a-convexity conditions, to be satisfied by the terms of a series which
is [ times a-convex, are discussed, along with the estimates of the remainders
and the term to be added to any partial sum Sy at any /th stage of correction.

1. Introduction
In a recent work [1], Gal Ezer and Zwas described a correction procedure to
sum a given alternating series of the type
(-1)"a, a, >0 (1.1)
=0

n

in which a,41 < a,, Vn and a,—0 as n—oc0. Such a correction procedure is
applied to a chosen partial sum of the series (1.1) to obtain its sum more accurately.
The correction procedure is carried out by introducing ‘convexity conditions’,
which are satisfied by certain classes of alternating series. Briefly speaking, the
convexity condition of [1] demands that the terms of the series (1.1), should satisfy
the condition

Ayl — 2an+2 +an+3 > 0 Vn (12)

in which case the sum of the series can be estimated quite efficiently by adding the
term

11" apn (1.3)

to any chosen partial sum Sy, where we define
Skzao—a1+a2+...+(—l)kak (1.4

The procedure for obtaining such corrected partial sums and corrected remainders
can be utilized repeatedly, whenever additional covexity conditions hold for the
terms of the series. This concept of convexity condition, which accelerates the
summation procedure, has been generalized [2] to what are called ‘generalized o-
convexity conditions’. We say that the series is once a-convex if the terms of the
series satisfy the following two conditions:
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(1 -a)a,1 —ap2 +aa,3>0
and Vn (1.5)
aQyy) — Ayy3 + (1 - a>an+4 > O)

In such a case the sum can be corrected by adding the term
(1) aayy (1.6)

to the partial sum Sy. Further corrections can be obtained, if the terms of the series
satisfy the generalized a-convexity conditions of the type (1.5) [2].

It may so happen that some classes of series violate the condition (1.2) and may
possess different as for n-even and n-odd separately. That is, a series may not be

‘d-convex’ in the sense of [1]. For example, series of the form:

St = i(—l)"(‘&;—jy) (1.7)

n=0
with
(@) ab>0 (i) a>b (i) c¢>1 () cla—b)> (a+Db) (1.8)

violate the condition given in (1.2), whenever the relation

2
2< (ﬂ) (1.9)
b c—1
holds good. Such series can be effectively summed by imposing the generalized
a-convexity conditions. In fact, by imposition of the generalized a-convexity
conditions, we obtain the exact sum of the series at one stroke!! [2]. Therefore, by
introducing the concept of generalized convexity conditions, we can sum a larger
class of convergent alternating Leibnitz series.

In this paper, we prove some interesting properties enjoyed by the a-convex
and partially a-convex series. We define a partially a-convex series to be a series
of the form (1.7), satisfying the conditions (1.8) and (1.9). In other words, such
series are not J-convex. More precisely, they are not a-convex for any
a(0 < a < 1), and they enjoy some interesting properties involving the range of
a. In section 2, we state and prove the various properties of a-convex and partially
a-convex series. Special examples are considered for clarity purposes. In section 3,
we state the generalized a-convex conditions to be satisfied by the terms of an /
times a-convex series, considering the fact that if the conditions (1.5) are satisfied
by a series then the series is said to be once a-convex. We also establish estimates
for the remainder term at any (/ — 1)th stage and the term that we add at any /th
stage of correction.

2. Important properties of the a-convex series
In this section, we state and prove some results, concerning the range of «, for
a-convex alternating series and for partially a-convex alternating series. We also
examine a few examples to support our theoretical results.

Property 1. A convergent alternating series of the form (1.1) is once a-convex if
and only if it is (1 — «)-convex, for 0 < a < 1.
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Proof. We consider the series in (1.1), assuming that the terms of the
series satisfy the o convexity conditions as stated in the relation (1.5). That is,
we assume that the series is once a-convex, for some 0 </ < o <m < 1. Thus, by
interchanging the two relations, in (1.5), we obtain for any g3 € [/,m], that

ﬁan+2 — a3 + (1 - ﬁ)anH > 0
and Vn (2.1)
(1 = p)ay11 — ayyo + Bay3 >0

Replacing # by (n — 1) in the first inequality and by # 41 in the second inequality,
we obtain

Ban1 — ana + (1 = B)ays > 0]

and Vn (2.2)
(1 = Bays2 — ayyz + Bayis > 0;
which may be re-written as

(1 -1 -p)ap1 —ap2 +(1 = p)anz >0
and Vn (2.3)

(1 =Banz —ap3 +(1 = (1 = f))ay4 >0
This shows that (1 — ) €[l,m]. The converse of the result can be proved on

similar lines.

Example 1. We consider the series
— - n 5— (_1)71
- Fen(55Y)

It can be verified that the series is once a-convex for a € [} ,4]. It is also clear that
Property 1 holds for the above example.

Property 2. Let the series of the form (1.7), along with the conditions as in
(1.8), be once a-convex. Suppose that « € [p,q], for the case when # is odd, then
a €[1 —q,1 —p] for the case when # is even.

Proof. 1t is proved in [2] that the series S~ of (1.7), along with the conditions
(1.8), is once a-convex, whenever

_ca—cb—a—->b clca—cb—a—Db)

P D@t S ST @ Da=p ¢ 24)
for n-odd and

_ca+cb—a+b c(ca+cb—a+b)

@ D@-b - T @ D@t (25)

for n-even. Using the above definitions of p and g, it is straightforward to see that
r=1—gand s=1 —p. A similar result holds for the series ST, of (1.7).



694 Hamsapriye

Example 2. We consider the series

oS

and for n even

Property 3. For a partially convex series as stated by the relations (1.7), along
with the conditions (1.8) and (1.9), the following statement is true:

If for n-odd, a € [p,q] and for n-even « € [r,s], then [p,q] N[r,s] = &.

Proof. A partially convex series violates the condition (1.2). In other words, the
series is not 3-convex. From property 2, we have for the case when 7 is odd that
a € [p, q] and when 7 is even « € [1 —g, 1 —p| =[r,s]. Since the series is not 1-
convex, + & [p,q]. Suppose that p < g <1 5 then (1—-p)>(1- ) . In other
words, 7&[1—¢g,1—-p]. On the contrary, suppose that 2 < p < q, then
1>1-p)>(1-q), or 1¢[1-¢q,1—p]. Clearly, in both cases we see that

[p.alNr,s| = .

Example 3. We consider the example

R

n=1

For the case when 7 is odd, we obtain {5 < a < £ and for the case when 7 is even
we obtain H < o < 4. Tt is clear that the two intervals are disjoint. That is there is
no common range for a.

Property 4. Let the series given by the relation (1.7), along with the conditions
(1.8) be once a-convex. That is, for « € [m,n] the terms of the series satisfy the
conditions (1.5).

Then we have m +n = 1.

Proof. From the relations (2.4) and (2.5) we have p < o < g for the case when n
odd and r < a < s for the case when n even. From Property 2, we have r =1 —gq
and s = 1 — p. Again from property 1, we have that a series is once a-convex if and
only if it is once (1 — a)-convex, andso 0 < p<landi<g<1. Nowifp<1—gq
then ¢ <1 —p, and the common range for « is [1 — ¢,q]. On the other hand, if
p>1—gthen qg>1—p, and the common range for o is [p,1 — p]. In either cases
the sum of the numbers representing the two end-points is unity.

Example 4. We consider the series as stated in example 1. The series is once
a-convex for o € [},4] and 1 42
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Property 5. The series of the form

e +(-1)" .
st =S (=1 )2 witha—b=1 26
Z:( ) ( (a +b>n+1) with a ( )
is not a-convex, for any a € (0,1).

Proof. By imposing the conditions (1.5) on the terms of the series S—, we
obtain a = 0 for n odd and o = 1 for n even. For the series ST we obtain a = 1 for
n odd and a = 0 for n even. This contradicts the fact that o € (0,1).

Example 5. We consider the example of the series
i ( + (- 1)”5)
2 1171

Using the conditions (1.5), we obtain o = 1 when #n is odd and a = 0 when 7 is
even.

Remarks

(1) The range of « decreases with imposition of the a-convexity conditions, at
each stage.

(2) An alternating series may lose the convexity property after a finite number
of stages.

In support of the remarks, we give a few more examples.

(L5

n=0

Example 6.

is once a-convex for o = 1. We have observed that by imposing the condition (1.5),
a €[}, 3], when nis odd and o € [10 4], when 7 is even. Using the a-convexity
condition for the second time, that is [2]:

(1 —a) a1 — (1 —a+aD)a + (2a — 0¥ — a1l — a)ayu > 0}
an
Alan— (1 —a+ad)as +(1—aP)as —a(l —a)ays >0

2.7)

on the terms of the above series, we see that for # odd, o € [0.6061072,0.75] and for
the case where n 1s even, a € [0.25,0.3938928].

It is clear from the above example, that a series which is once a-convex, need
not be a-convex for a second time. In other words, the range of « decreases as and
when the a-convexity conditions are imposed further. The above example shows
that the series is %—convex once, but is not for the second time.

Example 7. We consider the example

Z 32n

n=0
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The above series is

once o convex for « €[0.030303,0.969696]
twice a convex for « €[0.161468,0.838532]
thrice o convex for « €[0.263576,0.736423]
fourth time « convex for « €[0.327513,0.672486)

This is an example of an a-convex alternating series which is four times 2rd-
convex. It is also clear that the range of o decreases at each stage.

Property 6. Let a series of the form (1.1) be given. Let the series be once a-
convex, say, for o € [p,q]. Then, it is easy to prove that the range of a, for the
series ¢y 2 (—1)"a,, for some ¢ > 0 is again [p,q].

3. Generalized a-convexity conditions at the /th stage
We suppose that the alternating series

(-1)"a,,a, > 0 (3.1)
=0

n

is a-convex, for some « € (0,1), infinitely many times. In this section, we discuss
the a-convexity condition at any /th stage. The major advantage of a series being
a-convex once, twice, thrice and so on, is that the sum of the series can be obtained
more accurately, by adding certain correction terms to the partial sum Sy of the
series, mentioned earlier. We recall here that, if a series is once a-convex, we add a
term (—1)kJrl aapiq to Sp [2] and obtain a corrected sum defined as

Sk = Sk +a(=1)apy (3.2)

and the remainder estimate is
(3

(Rl < (1 = a)(ag — ap42) (3.3)

Suppose the series is twice a-convex, then the corrected sum in the second stage is

(2]

« o

Sk =Sk +a(l —a)(=1)"ary —ara) (3.4)
and the remainder estimate is
IRe| < (1 - a)’arn — (1 = @)apyz +a(l — a)ars (3.5)
In the third stage of the correction procedure, we have the corrected sum:

a a

Sy =S + (D" a((1 = a)?ap1 — (1 — &)apa +a(l — a)agss) (3.6)

and the remainder estimate is
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IRel <(1 = a)’ars1 — (1 — @)(1 — @ + 0D arss + (1 — @) 2a — o?)arss
—a(l —a)’apy (3.7)

and so on. The main motive of this section is to discuss the term that we add at any
[th stage, the remainder estimate and the a-convexity conditions to be satisfied by
the terms of the series, at that stage. Now the convexity conditions at the first and
second stages are as given by the relations (1.5) and (2.7) respectively. The a-
convexity conditions to be satisfied by the terms of the series, if it is a-convexity
for the third time, are given below:

(1- a)3an+1 — (1 -2a+2a%)a,+ + (Ba —4a® +20%) a3
—2&(1 — a)an+4 +a2(1 — a)a,,+5 Z 0
and (3.8)

Bayy — (1 =2a+2a%)aps + (1 —a)(1 +2a?)a,44

“20(1 — a)ayss +a(l — a) a6 >0

We have observed that the remainder estimate at the (/ —1)th stage is (1 —«)
times the first of the a-convexity conditions at the (/ — 2)th stage, replacing = by k.
Further, the first of the two convexity conditions at (/ — 2)th stage can be obtained
by dividing the expression that we add to Sy at the /th stage, by the factors
(—1)k+1a(1 — «) and then replacing k& by n, appending a > 0’ symbol. The second
of the convexity condition is obtainable from the first after replacing a by (1 — «),
and changing n to (n +-1). Thus, if we can determine the expression to be added at
the (/ +1)th stage, we can immediately derive the convexity conditions at the
({ = 1)th stage and remainder estimate at the /th stage.

Before we take up the general case, we first analyse the case for o = 1. Assuming
that the given series is 1-convex infinitely many times, we can correct the partial
sum Sp, by adding the terms, given below, at various stages:

Firststage  (=1)*"lapy ]
Second stage  (—1)*™ L (apsq — apso)

Third stage (_1>k+1 % (ar+1 — 2ap42 +ars3)

It is easy to write down the term that we add at any (/ +1)th stage. Correspond-
ingly, we can write down the convexity conditions satisfied by the terms of the
series at that (/ —1)th stage and the remainder estimate at the /th stage. It is
interesting to note that, if the given series is 1-convex infinitely many times and if
we carry out the correction procedures of [1] infinitely many times, then we would
add the entire remainder term R, to the chosen partial sum Sp. Thus, finally, we
would obtain the exact sum of the series. This can be verified by adding all the
terms corresponding to the relations (3.9). With this principle in mind, we have
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verified that in the case of generalized a-convex series (0 < o < 1), the terms that
we add are:

First stage (-1)

Second stage (—1)k+la(1 — a)lap+ — apso]

Third stage  (~1)*"a(1 - @)[(1 — @)ary1 — arsa +aarss]
Fourth stage  (—1)*"a(1 — )[(1 — )?ar1 — (1 — o + ) ars

+Q2a — a®)ap; — a(l — a)ay4]
Fifthstage  (=1)*"a(1 — a)[(1 = a)’arss — (1 —2a +20)a,.,
+Ba —4a® +2a°)ap; — 2a(1 — a)apg + (1 — a)ag.s]
Sixthstage  (=1)*"a(1 — a)[(1 — @) *ary — (1 = 3a +40? — 20° +a*)ars
+a(4 —9a +8a* —2a3)apis — a(l —a)(3 —2a +2a?)ar4

+a?(1 - 0)(3 = a)agss — a*(1 - ) ap]
(3.10)

provided the series is a-convex, as many times as required. Assuming that the
series is a-convex infinitely many times, we see that the sum of all the terms that
we add to Sy, (i.e. the terms as in the relation (3.10)), yields the entire Ry, as is also
observed in the particular case when « = 4. For a proof see the appendix.

3.1. The term we add at any Ith stage of correction
A general formula for the term we add at any /th stage, ({ € N) is observed to
be:

(= D*af(1 - (1= a)) " Hae
—a(l=a){(1-0) (1= (1-a) "} qarn
+?1-a){1—a) (1= (1 —a) ™}, yapis — ...
(=)ol - )P {1 - a) (1 - (1 - a)) T} a4 (3.11)

where the symbols (§) represents the integer less than or equal to £ and [4]

represents the integer greater than or equal to 4. Also the notation {}, stands for
the /th polynomial expression, in «, in the expansion of the term present in the
braces. For instance, if we have to obtain {(1 —a)~'(1 = (1 — a))™}5, then

{(1-a) 1 -1-a) s ={1+a+a®+..)1+2(1 =) +3(1 —a)* +...)};
= {1+[a+2(1 - a)] +[a? +2a(1 — a)
+3(1—a) ] +.. .}
=[? +2a(1 —a) +3(1 — )]
=3 —4a +2a? (3.12)

Thus, in the fifth stage of the correction procedure (i.e. [ = 5). The coefficient of
ay43, in the term we add to Sy, is

21— a){(1-a) "1~ (1-a) *}s =a(l ~a)Ba —4a® +207)  (3.13)
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Now based on the previous arguments, we give below the convexity conditions at
the (/ — 2)th stage and the remainder estimate at the (/ — 1)th stage.

3.2. The convexity conditions at any (I —2)th stage

7 el —(1-a) e

—a(l—a){1-a) (1 -1 —a) ™}
+a2(1—a) {1 -a) (1~ (1 =)} papss ...
+(=1)alf(1 - )P {1 )" P(1 — (1 —a)) T} a2 0

: (3.14)

= [(1—a) {1 =) Hanr

—a(l —a){a7l(
+a(l —a)a™(

1- a) _1}1_1an+3
1- a) _2}[_2an+4 B
+(_1>/—1(1 _ a)[%}a(%) {a—@(l - a>_[%]}1an+/+1] >0

for all n € N.

3.3. The Remainder estimate at any (I — 1)th stage

«

Rl < {1=(1—a) Yar — (1 —a){l =) (1 = (1 =)} gar

+al —a){1—a) (1= (1 - )} sams — ...

L

+ (1) (1 =) {1 - 0) P (1 = (1= ) Fany (3.15)

The expression (3.11) can be written in a more compact form as

l
St =2 ()1 - )P {101 - (1 - a) e (316)

m=1
and we state that

o8]

> S =Ry (3.17)
=1
We have obtained the results (3.11), (3.14) and (3.15) by studying the emergence of
the patterns and we have not attempted to supply proofs.

4. Conclusions
We have analysed the properties of convergent alternating series of various
types, such as a-convex series and partially a-convex series. The interesting
properties enjoyed by these series pertaining to the parameter o(0 < o < 1) are
described. Certain examples are also worked out, in support of the various
properties. Further, the generalized «-convexity conditions at any (/ —2)th
stage, the remainder estimate at any (/ — 1)th stage and the expression that we
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add at any /th stage, for correcting the partial sum Sj are discussed and closed
analytic expressions are given. We have also proved that if the correction pro-
cedure is carried out indefinitely, then indeed the remainder term Ry, gets added to
the kth partial sum Sp.
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Appendix

Result

>t -

=1

Proof. The term that we add at the /th stage is (equation (3.16)):

5t = 3 (1 sl (1 - o) (1 - 0) (1~ (1 - ),

m=1

= () apafl - (1 -a) ™},

+(-1)"apa(l —a){1-a) (1= (1 -a) "},

+ (D)0’ —a) {1 -a) "1 -1 =) 2}, , +. ..
(1= (1-a)®)

After [ stages we add the expression Zﬁ-:l Sf to the kth partial sum Sy. Therefore,
as [— o0 we add the infinite series 37, SF. Thus,

gl\

+ (=) o (1 - )P {1 - )"

28? = (-1 aaps; 2{(1 ~(1-a)),
+(~1)a(l - a>ak+2[§;{(1 —a) (- (1 -a)
+ (=) Ba2( akHZ{l—a 1-1-a) 2}, +...

= (D agp(1 = (1 —a) !
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+(-1D)**a(l - a)apa(l —a) (1 - (1 —a)™"
+ (=)l —a)aps(1—a) A =1 —a) 2 +...
= ()" + (D) Pap iy + (-1 Bap 5. .
=R,

Hence the result.
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