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Maximum Likelihood Estimation of Parameters
in a Mixture Model

SATISH BHAT,1 R. VIDYA,1

AND V. PANDIT PARAMESHWAR2

1Department of Statistics, Yuvaraja’s College, Mysore, India
2Department of Statistics, Bangalore University, Bangalore, India

The estimation of parameters of the log normal distribution based on complete and cen-
sored samples are considered in the literature. In this article, the problem of estimating
the parameters of log normal mixture model is considered. The Expectation Maximiza-
tion algorithm is used to obtain maximum likelihood estimators for the parameters, as
the likelihood equation does not yield closed form expression. The standard errors of
the estimates are obtained. The methodology developed here is then illustrated through
simulation studies. The confidence interval based on large-sample theory is obtained.

Keywords Bootstrapping and Confidence interval; EM algorithm Standard errors;
MLE.

Mathematics Subject Classification 62F10

1. Introduction

Let X be the survival time of a component under study. Suppose the component is function-
ing well even after say warranty period t (> 0), it can be termed as good. If xi ≤ t , then the
component can be called either good or of poor quality. Let ϕ be the proportion of poor-
quality components in a batch. The survival time of number of poor-quality components
produced in each batch is distributed over (0, t) with probability functionf1(xi). Suppose
that the survival time of number of good components in a batch is distributed over (0, ∞)
with probability function fθ (xi), θ may be real or vector. Thus, survival time of a component
selected at random from a lot has the following probability density functionf (xi), defined
as:

f (xi) =
{

ϕf1(xi) + (1 − ϕ)fθ (xi), xi ≤ t

(1 − ϕ)fθ (xi), xi > t
(1)

Equation (1) can be written as:

f (xi) = [ϕf1(xi) + (1 − ϕ)fθ (xi)]
1−αi [(1 − ϕ)fθ (xi)]

αi , (2)
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where

αi =
{

0, xi ≤ t

1, xi > t.
(3)

Suppose X−
= (X1, X2, ..., Xn) be a random sample from X. Then the likelihood func-

tion of the random sample is given by

L(θ, ϕ| x−) =
n∏

i=1

[ϕf1(xi) + (1 − ϕ)fθ (xi)]
1−αi [(1 − ϕ)fθ (xi)]

αi
. (4)

It is observed that, in various situations likelihood equation does not yield closed form
expression for maximum likelihood estimators (MLEs) of θ and ϕ. Therefore, in order to
maximize the likelihood function for a given x

−, one has to apply numerical procedures

like Newton–Raphson and Fisher’s scoring. But the above iterative procedures could fail
due to boundary problem and since the likelihood equation has flat surface, Yip (1988)
has observed that in case of power series distributions such as Poisson, binomial, etc., it is
difficult to find the MLEs by these numerical procedures. Thus, as justified by Cox (1958),
Yip (1988) has applied the conditional likelihood approach to estimate θ and ϕ. Moreover,
Yip (1988) has also computed the loss incurred in estimating θ and ϕ by the conditional
likelihood approach, treating ϕ as a nuisance parameter.

Here, we do not treat the mixture parameter ϕ as a nuisance parameter.
In this article, we consider the problem of estimating the parameters of the log normal

mixture model with pdf

f (xi) =
{

ϕf1(xi) + (1 − ϕ)fθ (xi), if xi ≤ t

(1 − ϕ)fθ (xi), if xi > t
, (5)

where

f1(xi) = 1

t
, 0 < xi < t (6)

and

fθ (xi) =
⎧⎨
⎩

1

σ
√

2π

1

xi

exp

{
− (log xi − μ)2

2σ 2

}
, xi > 0

0, otherwise,
(7)

where θ = (μ, σ ). Suppose that X = (X1, X2, ..., Xn)be an observed random sample from
log normal mixture model. Then the likelihood function of θand ϕ given the sample X−

is

given by

L(μ, σ, ϕ|x) =
n∏

i=1

[ϕ

t
+ (1 − ϕ)fθ (xi)

]1−αi

[(1 − ϕ)fθ (xi)]
αi , (8)

The MLE procedure can be applied to estimate θ and ϕ simultaneously by solving
∂ log L

∂θ
= 0 and ∂ log L

∂ϕ
= 0. However, the likelihood equation does not yield closed form

expression and usual Newton–Raphson iterative method may fail due to boundary problems
(see McLeish and Small (1988) and Sprott (1980). Hence, an alternative procedure is to be
used to solve this problem namely, EM algorithm. EM algorithm is applied to a variety of
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statistical problems such as resolution of mixtures, multiway contingency tables, variance
components estimation, and factor analysis. It has also found applications in specialized
areas like genetics, medical imaging, and neural networks. For details, see McLachlan and
Krishnan (1997) and Krishnan (2004). However, one can refer Daniel and Yip (1993), and
McLachlan and Peel (2000) in postulating the complete-data framework for the application
of the EM algorithm.

The EM algorithm is a broadly applicable statistical technique for maximizing complex
likelihoods and handling the incomplete-data problems. It is a popular and a powerful nu-
merical iterative procedure of computing the MLEs. At each iteration step of the algorithm,
two steps are performed: (i) Expectation step (E-Step) and (ii) Maximization step (M-Step).
E-Step consisting of projecting an appropriate functional containing the augmented data
on the space of the original, incomplete data, and (ii) M-Step consisting of maximizing the
functional. The name EM algorithm was coined by Dempster et al. (1977) who synthesized
and earlier formulation in many particular cases and gave a general method of finding the
MLEs in a variety of problems in their fundamental paper.

Section 2 contains some background on estimation of parameters via the EM algorithm.
In section 3, the tables of comparison of estimators of μ are presented when sam-

ple mean, and the sample median as initial estimates forμ. Some observations based on
simulation study are made in section 4.

2. Estimation of Parameters via the EM Algorithm

Suppose X = (X1, X2, ..., Xn) be an observed random sample on X. Then, in the EM frame-
work the data X are being viewed as an incomplete because, their associated component
indicator variable Zi (say) is not available. That is, to apply EM algorithm first of all we
need to accommodate missing data. Thus, we define a random variable Zi as:

Zi =
{

1, if the ithcomponent is good
0, otherwise

(9)

Then, we have P(Zi = 1) = 1 - ϕ = 1 – P(Zi = 0), i = 1,2, . . . ,n. Note that,
if Xi > t , then Zi = 1; and if Xi ≤ t , then Zi = 0 or 1. In other words, for Xi ≤ t we
have no information onZi . Hence {Zi : Xi ≤ t} can be treated as the missing data. Thus
((X1, Z1), (X2, Z2). . . . (Xn,Zn)), becomes the complete sample by augmenting the ob-
served data X = (X1, X2, ..., Xn) with Z = (Z1, Z2, ..., Zn). The likelihood function of the
complete data is then given by

Lc(μ, σ, ϕ|x, z) =
n∏

i=1

f (xi, zi) =
n∏

i=1

f (zi)f (xi |zi)

=
n∏

i=1

{
[fθ (xi)]

zi
}1−αi [fθ (xi)]

αi (1 − ϕ)zi ϕ1−zi , (10)

where αi is as defined in Eq. (3).
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Thus, using the Eqs. (3) and (9), the Eq. (10) reduces to

log Lc (μ, σ, ϕ|,) = ng

[
log (1 − ϕ) − log σ

] + nl log ϕ − ∑
i:xi>t

log xi − 1
2σ 2

∑
i:xi>t

(log xi − μ)2

− ∑
i:xi≤t

Zi log ϕ + ∑
i:xi≤t

Zi log (1 − ϕ) − ∑
i:xi≤t

Zi log σ − ∑
i:xi≤t

Zi log xi

− 1
2σ 2

∑
i:xi≤t

Zi (log xi − μ)2,

(11)
where ng and nl are the number of observations which are, respectively, greater than or
equal to t and less than t.

2.1. The E-step

By E-step, one can handle the problem of presence of the missing data zi. It takes the
conditional expectation of the complete-data log likelihood, log Lc(θ, ϕ) given the observed
data xi , using current fit for θ and ϕ. That is, suppose θ0 and ϕ0 are respectively the initial
estimates of θ and ϕ, then E-step requires the computation of the conditional expectation
of log Lc(θ, ϕ) for the given xi , i.e.,

Q(θ : θ0; ϕ : ϕ0) = E{log Lc(θ, ϕ|θ0, ϕ0, xi)} (12)

Since the complete-data log likelihood is linear in zi, the E-step simply requires the
computation of the current conditional expectation of Zi given the observed data xi . That is,
E(Zi |θ0, ϕ0, Xi ≤ t); where θ0 and ϕ0 are respectively the initial estimates of θ = (μ, σ )
and ϕ. Then by using Eqs. (9) and (12), we have

E(Zi |μ0, σ0, ϕ0, Xi ≤ t) = 1 × P (Zi = 1|μ0, σ0, ϕ0, Xi ≤ t)

+0 × P (Zi = 0|μ0, σ0, ϕ0, Xi ≤ t).

= P (Zi = 1|μ0, σ0, ϕ0, Xi ≤ t) (13)

Applying Bayes theorem, we have

P (Zi = 1|μ0, σ0, ϕ0, xi) = P (Zi = 1) × P (Ai |Zi = 1)

P (Zi = 0) × P (Ai |Zi = 0) + P (Zi = 0) × P (Ai |Zi = 0)
,

(14)

where Ai = (Xi = xi |μ0, σ0, ϕ0).
Hence,

P [Zi = 1|μ0, σ0, ϕ0, xi] =
(1 − ϕ0) 1

σ0
√

2π

1

xi

exp

{
− (log xi − μ0)2

2σ 2
0

}

ϕ0

t
+ (1 − ϕ0)

1

σ0

√
2π

1

xi

exp

{
− (log xi − μ0)2

2σ 2
0

}

= wi(say), f or i : xi ≤ t. (15)

Using (15), Eq. (11) can be expressed as the conditional expectation of the complete-
data log likelihood, i.e.,

E[log Lc(μ, σ, ϕ|x, z)] = ng[log(1 − ϕ) − log σ ] + nl log ϕ −
∑
i:xi>t

log xi
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− 1

2σ 2

∑
i:xi>t

(log xi − μ)2 −
∑
i:xi≤t

wi log ϕ +
∑
i:xi≤t

wi log(1 − ϕ)

−
∑
i:xi≤t

wi log σ −
∑
i:xi≤t

wi log xi − 1

2σ 2

∑
i:xi≤t

wi(log xi − μ)2,

(16)

2.2 The M-step

Here we simply maximizing the Eq. (12) for θ and ϕ. It requires the global maxima of
E{log Lc(μ, σ, ϕ|μ0, σ0, ϕ0, x, z)} on the (r + 1)th iteration with respect to θ and ϕ. The E-
and M-steps are replicated until the difference:

L(θ (r+1)) − L(θ (r))

is less than a prefixed threshold value h which, is usually taken to be 10−4 or 10−5 (one can
refer Wu (1983) for convergence of EM algorithm). Dempster et al. (1977) showed that
for the incomplete-data likelihood functionL(θ ); L(θ (r+1)) ≥ L(θ (r)),for r = 0, 1, 2. . . .
Hence, convergence must be obtained with the sequence of likelihood values which are
bounded above. Dempster et al. (1977) also showed that if Q(θ : θ0; ϕ : ϕ0)is continuous
weakly in both θ and ϕ then L∗ will be a local maxima of L(θ ) if and only if the sequence
is not trapped at some saddle point. And suppose {θn}∞n−1 and {ϕn}∞n−1are respectively the
sequences of estimates of θ and ϕ in the successive iterations and if they converge, then
their limits are the MLEs of θ and ϕ (for the proof see Dempster et al. (1977)).

Since E{log Lc(μ, σ, ϕ|μ0, σ0, ϕ0, x, z} is differentiable with respect to μ, σ and ϕ,
the values ofμ, σ , and ϕ for which E{log Lc(μ, σ, ϕ|μ0, σ0, ϕ0, x, z} is maximum and can
be determined by the method of calculus. Thus, from the Eq. (16) we have

dE{log Lc(μ, σ, ϕ|μ0, σ0, ϕ0, x, z}
dμ

= 1

σ 2

∑
i:xi>t

(log xi − μ)

+ 1

σ 2

∑
i:xi≤t

wi(log xi − μ) = 0, (17)

dE{log Lc(μ, σ, ϕ|μ0, σ0, ϕ0, x, z}
dσ

= −ng

σ
+ 1

σ 3

∑
i:xi>t

(log xi − μ)2 − 1

σ

∑
i:xi≤t

wi

+ 1

σ 3

∑
i:xi≤t

wi(log xi − μ)2 = 0, (18)

and

dE{log Lc(μ, σ, ϕ|μ0, σ0, ϕ0, x, z}
dϕ

= − ng

1 − ϕ
+ nl

ϕ
−

∑
i:xi≤t

wi

ϕ

−
∑
i:xi≤t

wi

(1 − ϕ)
= 0. (19)
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Table 1
Estimates of μ, σ , and ϕ for t = 2.5, μ = 5.10, ϕ = 0.05, and σ = 0.20

Estimates

Sample Size Initial Estimates No. of Iterations μ ϕ σ

50 Mean 03 5.28320 0.06000 0.22190
Median 03 5.28322 0.06000 0.19858

100 Mean 03 5.25410 0.05000 0.21587
Median 03 5.25407 0.05000 0.19682

250 Mean 03 5.10460 0.04800 0.21036
Median 03 5.10457 0.04800 0.19397

500 Mean 03 5.10090 0.04530 0.21000
Median 03 5.10088 0.04530 0.19266

On simplifying the above simultaneous equations, we get

∧
μ =

∑
i:xi>t

log xi + ∑
i:xi≤t

wi log xi

ng + ∑
i:xi≤t

wi

(20)

∧
σ =

√√√√√√
∑

i:xi>t

(log xi − μ)2 + ∑
i:xi≤t

wi(log xi − μ)2

ng + ∑
i:xi≤t

wi

(21)

∧
ϕ =

nl − ∑
i:xi≤t

wi

n
, (22)

where n = ng + nl

Steps of the EM algorithm for computing the MLEs of μ, σ and ϕ:

Table 2
Estimates of μ, σ , and ϕ for t = 150.2 μ = 5.10, ϕ = 0.05, and σ = 0.20

Estimates

Sample Size Initial Estimates No. of Iterations μ ϕ σ

50 Mean 03 5.28321 0.06273 0.26940
Median 52 5.28339 0.06351 0.25263

100 Mean 05 5.18361 0.05978 0.23089
Median 56 5.18348 0.05931 0.22959

250 Mean 06 5.08555 0.04714 0.21034
Median 55 5.08554 0.04714 0.21023

500 Mean 23 5.07429 0.03887 0.21033
Median 67 5.07421 0.03858 0.21007
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Table 3
Standard Errors of μ, σ , and ϕ for t = 2.5, μ = 5.10, ϕ = 0.05, and σ = 0.20

Standard Errors(SE) from
Bootstrapping

Sample Initial 95% confidence
Size Estimates μ ϕ σ Interval for μ

50 Mean 0.11952 0.03555 0.08955 (4.75712, 5.55935)
Median 0.02869 0.03555 0.08356 (5.07171, 5.24476)

100 Mean 0.05526 0.01949 0.05544 (4.94423, 5.29001)
Median 0.01945 0.01949 0.05299 (5.05227, 5.17885)

250 Mean 0.01923 0.01314 0.02453 (5.03624, 5.14428)
Median 0.01129 0.01314 0.02279 (5.05783, 5.12270)

500 Mean 0.01172 0.01195 0.01547 (5.08374, 5.13958)
Median 0.00932 0.01195 0.01341 (5.09078, 5.13253)

a. Choose the initial estimates μ0, σ0 and ϕ0

b. Compute wi (Ref. Eq. (15))
c. Using the realization (x1, x2, ..., xn)of the observed sample, compute

μ1 =

∑
i:xi>t

log xi + ∑
i:xi≤t

wi log xi

ng + ∑
i:xi≤t

wi

σ1 =

√√√√√√
∑

i:xi>t

(log xi − μ)2 + ∑
i:xi≤t

wi(log xi − μ)2

ng + ∑
i:xi≤t

wi

Table 4
Standard Errors of μ, σ , and ϕ for t = 150.2, μ = 5.10, ϕ = 0.05, and σ = 0.20

Standard Errors(SE) from
Bootstrapping

Sample Initial 95% confidence
Size Estimates μ ϕ σ Interval for μ

50 Mean 0.34890 0.05593 0.16783 (4.15237, 6.00875)
Median 0.03557 0.10475 0.72986 (4.98357, 5.17755)

100 Mean 0.14720 0.04447 0.14420 (4.64913, 5.46422)
Median 0.02187 0.09939 0.66567 (5.00154, 5.11181)

250 Mean 0.12322 0.03514 0.12762 (4.92599, 5.19865)
Median 0.01679 0.06228 0.62181 (4.99182, 5.13276)

500 Mean 0.01566 0.02984 0.10459 (5.03304, 5.13608)
Median 0.01158 0.04495 0.56436 (5.05575, 5.11329)
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and

ϕ1 =
nl − ∑

i:xi≤t

wi

n
.

d. Repeat the steps (b) and (c) by fixing μ0 = μ1, σ0 = σ1 and ϕ0 = ϕ1, until the
likelihood function converges.

3. Comparative Study

In this section, a simulation study is conducted by generating random sample of sizes
n = 50, 100, 250, and 500 from the log normal mixture model with 1000 replications each,
and the MLEs are computed for the parameters μ, σ , and ϕ using EM algorithm which
is described in the section 2. The initial estimates, number of iterations required and the
estimates of the parameters for different sample sizes are presented in Tables 1 and 2 below.
Tables 3 and 4 give the standard error for the estimators and also, the 95% confidence
interval for μ, which are obtained through bootstrapping.

4. Discussion

Generally, EM algorithm converges more slowly in computing the conditional maximum
likelihood estimate of μ, σ , and ϕ even though, it is preferable because (i) it maximizes the
likelihood function simultaneously with respect to parameters and (ii) when the high level
programming languages like C++ and softwares like MATLAB, R are used, the number
of iterations is practically immaterial. But, here we observe that if the cut-off point “t” is
too small as compared to the sample mean, the EM algorithm converges faster, whereas if
“t” is around the sample mean, the convergence is at a slower rate. Moreover, when median
is an initial estimator of μ, it is observed that the EM algorithm converges more slowly as
compared to mean as an initial estimator of μ. Also, we observe that the estimates of μ, σ ,
and ϕ are nearer to the given values when median is an initial estimator of μ as compared to
mean as an initial estimator. The standard errors (SEs) are obtained through Bootstrapping.
Here we find that, when median is an initial estimator of μ the standard error (SE) of the
estimator of μ is minimum and also, the length of the 95% confidence interval for μ is
shorter.
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