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Discrete quaternion Fourier transform in signal processing 
systems 

H. Chandrashekhar 

M. Nagaraj 

Department of Mathematics 

Bangalore University 

Bangalor~-560 001 

India 

ABSTRACT 

We define nth root of unity in quaternion space and then we define discrete 
quaternion Fourier transform. We use first order quaternion filter for implementing 
fourth order real co·efficient filter. 

O. INTRODUCTION 

The concept of signals and systems arise in an extremely wide 
variety of fields, and the ideas and techniques associated with these 
con~epts play an important role in such diverse areas of science and 
technology as communications, aeronautics and astronautics, circuit 
design, acoustics, seismology, biomedical engineering, energy genera
tion and distribution systems, chemical process control and speech 
processing. Although the physical nature of the signals and systems 
that arise in these various disciplines may be drastically different, 
they all have two very basic features in common. The signals are func
tions of one or more independent variables and typically contain infor
mation about the behaviour or nature of some phenomenon, where as 
the systems respond to particular signals by producing other signals. 
Voltages and currents as a function of time in an electrical circuit are 
examples ot signals, and a circuit is itself an example of a system 
which in this case responds to applied voltages and currents. A com
puter programme for the automated diagnosis of electrocardiograms 
can be viewed as a system which has as its input a digitized electro
cardiogram and which produces estimates of parameters such as 
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96 	 H. CHANDRASHEKHAR AND M. NAGARAJ 

heart rate as outputs. A camera is a system that receives light from 
different sources and reflected from objects and produces a photo
graph. 

Fourier transforms are alternative representations for signals. 
These representations can be used to construct broad and useful 
classes of signals. The response of an LTI system to each basic signal 
should be simple enough in structure to provide us with a convenient 
representation for the response of the system to any signal con
structed as a linear combination of these basic signals. 

We shall extend discrete Fourier transforms using quaternion 
valued functions which may find application in analyzing the signals 
particularly received from space. Also they seem to be useful in imple
menting the fourth order digital filters with real coefficients. 

L 	 THE nth ROOTS OF UNITY LYING ON THE UNIT 3-SPHERE 

1.1 	 Introduction 

The discrete Fourier transform over the complex plane maps a 
complex function f defined on the integers mod n to another such func
tion Tf defined by 

·n-l 

(Tf)(/l):= I rokj fU) (L1.1) 
j~O 

where ro is the nth root of unity having the property: 

when ro * 1 

n when ro L 

These things lead us to develop discrete quaternion Fourier 
transform. We first define the nth roots of unity over the quaternion 
domain. 

It is well-known that usual powers of a quaternion q are not 

regular (see Deavours [1] and Sudbery [7]). M. Nagaraj and B. S. Suresh 
[5] 	have investigated these aspects by means of .polar co-ordinates. 

They have defined the formal powers qIL of a quaternion q and- ~ 

discovered an elegant expression for qIL analogous to zn in polar co
ordinates, where z is a complex number,-and have obtained an analogue 
of the De Moivre's theorem of the complex domain. We shall state 
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DISCRETE QUATERNION FOURIOR TRANSFORM 97 

here the definition and the theorem regarding the formal powers of a 
quaternion. 

Let 

q4 + q1i + q2j + q3k 

be a quaternion variable where [L is the pure unit quaternion part of 
q given by 

1\ 
U i sin ecos ~ +j sin esin ~ + k cos e. 

Definition 1.1.1. The nth formal power of q is defined by 

ql! q. q ... q --+ n times 

that is, qIL is the quaternion product of q with itself n times, where n 

is a positive integer, and define qO = 1. 

THEOREM (1.1.2). If the polar representation of a quaternion 

LS q4 P cos X. and r = p sm X. 

then the nth formal power of q is 

qIt p , cos II( nx. + 1\.)u SIn nx., n E z . (1.1.2) 

1.2 The Pure Unit Quaternion [Lab 

We shall require certain pure unit quaternions in order to define 
discrete quaternion Fourier transform (DQFT). 

Let q q4 + ~r 

with q4 =P cos X. and r =p sm X. 

be a quaternion variable. Also we have 

[L = i sin ecos ~ +j sin esin ~ + /l cos e. 
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98 H. CHANDRASHEKHAR AND M. NAGARAJ 

Since the pure unit quaternion £l depends on 8 and $, it is not 
constant. Therefore, for fixed values of 8 and $ we define the pure unit 
quaternion. 

Definition 1.2.1. Let 8a and $b be fixed values of 8 varying from 
o to rc and $ varying from 0 to 2rc respectively. Then the pure unit 
quaternion denoted by £lab is defined by 

£lab = i sin 80 cos $/) + j sin 80 sin $b + II cos ea' 

We shall now see the condition for the product of two pure unit 

quaternious £lab and £led to be another pure unit quaternion. 

1.2.2 	 The condition for the product £lab and £led to be another pure 
unit qlwternion 

Consider 
A 

Uab i sin 8a cos $b + j sin 80 sin $b + Il cos ea (1.2.1) 
and 

(1.2.2) 

To obtain, the product £lab' £led as another pure unit quaternion 
£let' we equate the real part of the product to zero which gives the de
sired condition. 

That is, Re(£lab £led) = 0 implies 

(1.2.3) 

Case i): Suppose ~b $d' (1.2.4) 

The equation (1.2.3) becomes 

(1.2.5) 

Therefore, 

rc 
2 	

(1.2.6) 

Case ii): Suppose $b - ~d 
1t
2 (1.2.7) 

The equation (1.2.3) becomes 

(1.2.8) 

D
ow

nl
oa

de
d 

by
 [

H
er

io
t-

W
at

t U
ni

ve
rs

ity
] 

at
 0

8:
35

 0
7 

M
ar

ch
 2

01
5 



99 DISCRETE QUATERNION FOURIOR TRANSFORM 

which implies 

1t 
(1.2.9)

2 

Therefore, the conditions are either 

1t 
$b $d and Oa - Oc =2" 

or 

$b- $d 
1t 

2 
and Oa 

1t 

2 
or e =~. 

c 2 

Example 1.2.3. Let 

1t 1t 
2 and $b $d 4 

Then 

~ab = i sin 1t cos ~ + j sin 1t sin: + l~ cos 1t 

-h 

/\ •• 1t 1t •. n.n k 1t 
ucd = ~ sm 2 cos "4 + } sm 2 sm"4 + cos 2" 

1. 1. 
=-L+-}

{2 {2 

/, 1. 1.)
'l -~+-}r\..f2 .f2 

1. 1.
=--}+ L

{2 {2 

1. 1. 
L -}

{2 

which is the pure unit quaternion. 

1.3. The Primitive nih Root of Unity 

We know that, an~ complex number z with Z'l 1 for some posi
tive integer n is the nt 1 root of unity in complex plane. The nth roots 
of unity are the numbers 
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100 H. CHANDRASHEKHAR AND M. NAGARAJ 

l(21m \1 . . (21m Jcos -- + l sm 

n J n 


for It 0, L 2, ... , n - 1. There are n, nth roots of unity, and they are 
equally spaced around the unit circle in the complex. plane. A 
primitive nth root of unity is an nth root of unity which is not a root 
of unity of a lower order than n. In other words, the primitive nth root 
of unity is a power zk with zk '" 1 where k and n are coprime and 
0< k < n. All complex numbers of absolute value 1, that is, those on 
the unit circle, constitute a commutative group under multiplication. 
When n> 0 is an integer, all z such that zl! = 1, the nth roots of unity, 
constitute a subgroup of order n. Generators of this group are the 
primitive nth roots of unity. 

Now we study the existence of nth roots of unity on the unit 3
sphere. 

We define the nth root of unity on the unit 3-sphere as follows. 

Definition 1.3.1. Let q be any quaternion number with qll = 1 for 

some positive integer n. Then q is called the nth root of unity and is 
expressed in the form 

2k1t 21m1\ • 
q = cos -- + uab sm (1.3.1) 
- n n 

1\ 

for k 0, 1, 2, ... , n - 1, where uab is the pure unit quaternion for fixed 
values of Oa and (h. 

For each pair of°and ~ we have n, nth roots of unity. We suppose, 
there are l values of °and In values of ~ : 

o:s:; e1 , °2 , ... , 0l < 1t ) 
(1.3.2) 

0:S:;~1'~2' ''''~/II.<21t 

From the equations (1.3.1) and (1.3.2) there are lmn nth roots of 
unity. The primitive nth root of unity over the quaternion domain 
is a power qk with l'" 1 and 0 < k < n, where k and n are coprime. 

We denote the nth root of unity on unit 3-sphere by ((jab' 

That is, 

21m 21m1\ • 

((j ab =cos -- + Uab SIn (1.3.3)
n n 

for k=0,1,2, ... ,n 1. 
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101 DISCRETE QUATERNION FOURIOR TRANSFORl\1 

We shall extend the following property: 

when (0 #- 1 

== n when (0 1 

(where (0 is the nth root of unity in complex plane) to nth root of unity 
in quaternion space. 

THEOREM 1.3.2. Let (Oab be the nih root of unity lying on unit 3
sphere. Then 

when (Oab #- 1 
(1.3.4)

when (Oab == 1 

for each pair of fixed e and ~b'a 

PROOF. The proof of this theorem is trivial. 0 

We shall define an analogue of the Euler's relation of the complex 
domain. 

Definition 1.3.3. The Euler's relation for the quaternion domain 
is defined by 

A 1\ 

ell.u/,'1. == cos X+ Uab sin X (1.3.5) 

where ~ab is pure unit quaternion for fixed values of e and ~. 
A A 

Remarl? 1.3.4. The multiplication of ellu !>'!. and ellul/V is commutative 
since 

A A 

eUalJ'V . eU,(lI;X. 

Remarh 1.3.5. Using equation (1.3.5), we can express the nth roots 
of unity over quaternion domain as exponentials in the form 

(1.3.6) 

for l~ 0, 1, 2, ... , n - 1. 
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102 H. CHANDRASHEKHAR AND M. NAGARAJ 

2. 	 DISCRETE QUATERNION FOURIER TRANSFORM 

Let F be a quaternion valued function. Now we shall define the 
discrete quaternion Fourier transform (DQFT). 

Definition 2.1. The discrete Fourier transform maps a quaternion 
function l[ defined on the integers mod n to another such function 
Tl[ defined by 

n-I 

(T1j)(k) = L (wabl
1l!(l) 	 (2.1) 

1=0 

where ffiab is the primitive nth root of unity defined as in the equation 
(1.3.3) 	and having the property expressed by the equation (1.3.4) 

We shall extend the following property to discrete quaternion 
Fourier transform: 

Let (T'f)(l?-) = (Tf)(-/?-), the maps TT' and T'Tare both n times the 
identity. In otheJ: words, T- 1 = T'ln. (see L. Garrung, T. Tambour [14]) 

THEOREM 2.2. Let F be quaternion function. Let (T'l[)(k) = 

(Tl[)(-k). Then 

(T'Tl[)(k) =n l[(ll) 

= (TT'l[)(k). 	 (2.2) 

PROOF. We have 

/1.-1 

(T'Tf)(k) = L ffi~Z[ (Tl[)(l) 

1=0 


n-l 11.-1 

=L ffi~~l I ffi~b l[(P) 
1=0 p=O 

11.-1 n-l 

= ~ ~ ffil(P-k) F(P)L. L. ab _ 
/ 

n-l n-l 

=I 	L (W~I/l)[ l[Cp) 
{J=O 1=0 

/I.-I n-l 

= I 	(1)1 l[(J:l) + L L (ffi~kll[Cp) (2.3) 
l=O p",k [=0 

p=k 
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103 DISCRETE QUATERNION FOURIOR TRANSFORM 

(from equation (1.3.4». 

Similarly (TT'f)(k):::: n f(l-z). 

Denoting Tf by Q, the Fourier transform and its inverse are 
given by the following formulae 

n-1 


Q(l) :::: L «())a~lk f(k) 

k;O 


and (2.4) 
11.-1 


1k
f(k) = L «())abr Q(l)/n 
1;0 

We shall prove some properties of the discrete quaternion Fourier 
transforms in Section 3 below. 

3. PROPERTIES OF DQFT 

The Fourier transform converts a convolution into multiplication 
of the transforms. 
. Let f and If be two quaternion functions. The convolution sum is 

. defined as 

n-1 

(f * If)(l~):::: L I[(k -I) If(l)· (3.1) 
1=0 

We shall prove that the Fourier transform of F * H is the product of 
Fourier transforms. ~ 

THEOREM 3.1. The Fourier transform of the convolution f * If is 
the product of Fourier transforms of f and If, that is 

T(f * If) :::: (T.f) (Tlf)· 

PROOF. From equation (3.1), we have 

/1,-1 

(f * If)(h) L f(k I) If(Z). 
[:0 

Using the definition (2.1) the Fourier transform of f * If is 

n-l 

T(f* If)(P) = L())~i(f* If)(k) 

k=O 
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104 H. CHANDRASHEKHAR AND M. NAGARAJ 

It-I n-I 

== I w~~ I J!(h - l) !J(l). 
k=O 1=0 

It-I n-I 

I I ro~i w~i-pl f(ll - I) !J(l) 
k=O 1=0 

n-I n-I 

" " roP(k-i) wPi F(k -l) H(l) (3.2)L.. L.. ab ab _ _ 

k=O 1=0 

Summing independently over k - land 1, the right hand side of 
equation (3.2) becomes 

(Tf)T(!J). 

Therefore 

T(f * !J) == (Tf)(T!J). 0 (3.3) 

The next theorem proves the linear property of Fourier trans
form. 

THEOREM 3.2. If F and H are two quaternion 'Valued functions 
and c and d are real l~umber;; then 

(i) T[c, f] cTf 

(ii) T[cf+d!J] cTf+dT!J. 

PROOF. (i) From the equation (2.1) 

n-I 

{T(cD}(k) =I (Wab)kl C f(Z) 
1=0 

It-I 

= c I (Wab)kl J!(l) 
1=0 

c(Tf)(h). 

Therefore, T(cIj) = c(TIj). (3A) 

(ii) Again from the equation (2.1) 

n-I 


{T(cf + d!J}}(k) =I (wall (cf + d!J)(l) 

1=0 

D
ow

nl
oa

de
d 

by
 [

H
er

io
t-

W
at

t U
ni

ve
rs

ity
] 

at
 0

8:
35

 0
7 

M
ar

ch
 2

01
5 



105 DISCRETE QUATERNION FOURIOR TRANSFORM 

/1.-1 n-l 

/I.-I 11.-1 

:::: C I (IDal
l 
f(l) + d I (IDal' !J(l) 

1=0 !=o 
(from the equation (3.4» 

=c(Tf)(l~) + d(TIf)(l?). (3.5) 

Therefore, T[c.f + dlJ] :::: cT.f + dTIf. D 

We shall prove another property of Fourier transform, that is the 
time-invariance of Fourier transform. Here we consider the 
quaternion valued function F(n) as input and its Fourier transform 
(T.f)(n) as output, at discret~ time n. 

THEOREM 3.3. The Fourier transform TF of a quaternion valued 
function .f is time invariant. 

PROOF. Let .fl(n) be any input and let (Tfl)(n) be its output. 

n-l 

That is, (Tfl)(n) == I (IDabtP .fl(P)· (3.6) 
p=o 

Now consider a second input obtained by shifting .fl(n) : 

.fz(n) :::: .fl(n - no)' (3.7) 

The output corresponding to this input is 

(T.f2)(n):::: (T.fl)(n no) 

11.-1 

== I (IDabt-nulP .fl(P)· (3.8) 
p=o 

Similarly from equation (3.6) 

n-l 

(T.fl)(n - no) I (IDabin-Ji(~p l!1(P)· (3.9) 
jJ=0 

Comparing equations (3.8) and (3.9), we see that 

(T.f2)(n) == (T.fl)(n no)' 

Therefore, the Fourier transform of a quaternion valued function 
F is time invariant. D 
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106 H. CHANDRASHEKHAR AND M. NAGARAJ 

4. APPLICATION TO SIGNAL PROCESSING SYSTEMS 

A system can be viewed as any process that results in the trans
formation of signals. Thus, a system has an input signal and an output 
signal which is related to the input through the system transformation. 
For example, an automobile can also be viewed as a system in which 
the input is the depression of the accelerator pedal and the output is 
the motion of the vechicle. 

A discrete-time system, that is, one that transforms discrete
time inputs into discrete-time outputs, will be represented symboli
cally as 

x[n] -'» y[n]. (4.1) 

A system is time-invariant if a time shift in the input signal 
causes the same time shift in the output signal. Specifically, 

if x[n] -'» y[n] 

then x[n - no] -'» yen no]. 

A system is linear if 

(4.2) 

where a and b are any complex constants. 
The systems possessing these two properties are known as linear, 

time-invariant (LTI) systems. These systems play a particularly 
important role in system analysis and design, in part due to the fact 
that many systems encountered in nature can be successfully modeled 
as linear and time-invariant. (Ref. Oppenheim, Willsky with Young 
[6], De Fatta, Lucas and Hodgkiss [2]) 

4.1 Filtering 

A digital filter is a 9.iscrete-time system that is designed to pass 
the spectral content of the input signal in a specified band of frequencies, 
that is, the filter transfer function forms a spectral window through 
which only the desired portion of the input spectrum is allowed to 
pass. For linear time-invariant systems, the spectrum of the output is 
that of the input multiplied by the frequency response of the system. 
An example in which linear time-invariant filtering is encountered is 
in audio systems. In such systems, a filter is typically included to permit 
the listener to modify the relative amounts of low-frequency energy 
and high·frequency energy. The filter corresponds to a linear time
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DISCRETE QUATERNION FOURIOR TRANSFORM 	 107 

invariant system whose frequency response is changed by manipulat
ing the tone controls. 

The behaviour of the discrete-time (linear time-invariant) system 
is described by the Nth order linear difference equation with constant 
coefficients: 

N N 

L bky(n k) = L akx(n - k). 	 (4.3) 

Rewriting equation (4.3) to express the present output in terms 
of present and past inputs with bo 1 yields: 

N N 

yen) = L akx(n - h) - L bky(n k). 	 (4.4) 
k=O k=l 

The topic of filtering encompasses many issues, such as those in
volving de3ign and implementation. The basic concept stem directly 
from the notions and properties of the Fourier transform. 

4.2 	 Implementation of the Fourth order real coefficient digital filters 
using First order quaternion filters 

We claim that four fourth order real coefficient digital filters can 
be implemented by the first order quaternion filters with quaternion 
coefficients. 

From equation (4.4) the fourth order digital filter is 

4 4 

yen) L ak x(n - k) - L bk yen k). 	 (4.5) 
k=l 

We assume the integers k for the input x(n) and output yen) as 

k mod (N + 1) } 
and 	 (4.6) 

kmodN 

respectively. 

We shall consider the first order digital filter discussed in [3]. It is 

described by the following equation : 


Yen) = aY(n - 1) + c[X(n) - bX(n 1)] 	 (4.7) 

where X(n) and Yen) are quaternion input and output respectively and 
a, b, care quaternion constants. 
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108 H. CHANDRASHEKHAR AND M. NAGARAJ 

We define 


X(n) = x(n) + ix(n - 1) + jx(n 2) + hx(n 3) I 

(4.8)

yen) = yen) + iy(n 1) + jy(n - 2) + ky(n 3) /. 


The constants a, b, C are given by 


a ao + ia1 + ja2 + kas ] 


b = bo+ .ib 1 +!b2 + kbg • (4.9) 


C= Co + ~cl + jC2 + kCg 


From equations (4.8) and (4.9) the equation (4.7) can be simplified 
as follows: 

yen) =(ao + ia1 + ja2 + lw,s){y(n - 1) + iy(n - 2) + jy(n 3) 

+ ken 4)} 

+ (co + iC l + jcz + kCg) [x(n) + ix(n - 1) + jx(n 2) + hen - 3) 

- (bo+ ib 1 + jbz + kbg){x(n 1) + ix(n - 2) + jx(n 3) 

+ l~x(n 4)}]. (4.10) 

The product 

cb = (co + iC I + jC2 + llc3)(bo+ kb l + jb2 + kbs) 

where 

-do = cabo - c1bl - czbz cgbS 


-d1 =cOb l + clbo+ c2bg - cSb2 

(4.11) 

-d2 cob2 + c2bo+ C3 bl - Clbg 


-dg cObg + cgbO + C1bz cZb l 


Now the equation (4.10) is 

Yen) = (ao yen - 1) - a l yen 2) - a2 yen 3) - ag yen - 4) 

+ i{ao yen - 2) + a l yen - 1) + az yen - 4) - ag yen - 3)} 

+ j {aoyen 3) + a2 yen 1) + as yen - 2) - al yen - 4)} + 
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109 DISCRETE QUATERNION FOURIOR TRANSFORM 

+ k{ao y(n 4) + as y(n - 1) + a 1y(n - 3) - a2 yen - 2)} 

+ Co x(n) - Cl x(n - 1) - c2 x(n - 2) - Cs x(n 3) 

+ i{co x(n - 1) + Cl x(n) + C2 x(n - 3) - C3 x(n 2)} 

+ j{co x(n 2) + C2 x(n) + Cs x(n - 1) - c1 x(n - 3)} 

+ k{co x(n 3) + Cs x(n) + c1 x(n - 2) - C2 x(n - 1)} 

+ do x(n - 1) - d 1 x(n - 2) - d2 x(n - 3) - ds x(n 4) 

+ i{dox(n - 2) + d 1 x(n - 1) + d 2 x(n - 4) - d s x(n 3)} 

+ j{do x(n - 3) + d 2 x(n - 1) + ds x(n - 2) d 1 x(n 4)} 

+ k{dox(n 4) + d s x(n - 1) + d1 x(n - 3) d z x(n 2)} 

aoyen 1) a 1 yen - 2) - a2 yen - 3) - as yen 4) 

+ Co x(n) + (do C1) x(n - 1) - (d 1 + C2) x(n - 2) 

- (d2 + cs) x(n - 3) - d s x(n 4) 

+ i{a1 y(n - 1) + ao yen - 2) - as yen - 3) + a2 yen 4) 

+ C1 x(n) + (co + d 1) x(n - 1) + (do - cs) x(n 2) 

+ (cz - d s) x(n 3) + dz x(n 4)} 

+ j{az yen 1) + a3 yen - 2) + ao yen 3) a 1y(n 4) 

+ Cz x(n) + (cs + dz) .l:(n - 1) + (co + ds) x(n 2) 

+ (do - Cl) x(n - 3) - d 1 x(n - 4)} 

+ /,,{a3 yen 1) - a2 y(n - 2) + a1yen 3) + ao yen 4) 

+ Cs x(n) + (d3 - cz) x(n - 1) + (C1 - d2) x(n 2) 

(4.12) 

Equating the corresponding components of both sides of equation 
(4.12), 

yen) ao yen - 1) - a1 yen - 2) - a2 yen - 3) as yen 4) + Co x(n) 

+ (do - Cl) x(n - 1) - (d1 + C2) x(n - 2) - (d2 + cs) x(n 3) 

ds x(n - 4) 
4 4 

2: ak x(n - h) - 2: bkyen - I,,). (4.13) 
It:1 
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110 H. CHANDRASHEKHAR AND M. NAGARAJ 

The relations for the coefficients ak and bk are given by 

(4.14) 

yen 1)= al y(n 1) + ao y(n 2) - a3 yen 3) + a2 yen 4) 

+ c1 x(n) + (co + d 1) x(n 	 1) + (do - cs) x(n 2) 

(4.15) 

Using the expression (4.6) we can write the equation (4.15) as 

yen 1) = ao yen 2) a3 yen - 3) + a2 yen 4) + al yen - 5) 

+ (co + d 1) x(n - 1) + (do'- c3) x(n - 2) 

+ (c2 d3) x(n - 3) + d2 x(n - 4) + C1 x(n - 5) 

4 4 

= L aJ: x(n - 1 - k) L bi: yen - 1 k). (4.16) 
k=1 

The relations for the coefficients ak and bi: are as follows: 

a~ Co + d 1 b~ = - ao 

a~ dO - C3 	 b2== a3 

(4.17) 
a2 =Cz -d3 	 b'3 = - a2 


b/l
a3 ==dz 	 4 - al 

a'4 == Cl 

yen - 2) =a2 yen - 1) + a3 yen - 2) + ao yen - 3) - al yen - 4) 

+ C2 x(n) + (Cg + d2) x(n 	 1) + (co - da) x(n - 2) 

(4.18) 

Again using the expression (4.6), the equation (4.18) becomes 

D
ow

nl
oa

de
d 

by
 [

H
er

io
t-

W
at

t U
ni

ve
rs

ity
] 

at
 0

8:
35

 0
7 

M
ar

ch
 2

01
5 



111 DISCRETE QUATE;RNION FOURIOR TRANSFORM 

yen - 2) = ao yen - 3) - a l yen - 4) + a2 yen - 5) + a3 yen - 6) 

+ C2 x(n 5) + (c3 + dz) x(n - 6) 

4 4 

=L Uk x(n - 2 - k) - L uk yen 2 - k). (4.19) 
k=1 

The relations for the coefficients Uk and Uk are given by 

uo=co+d3 


ltl = do - Cl 


(4.20) 

U3 C2 

U4 = c3 + d2 


yen - 3) = a3 yen - 1) - a2 yen - 2) + al yen - 3) + ao yen - 4) 


+ C3 x(n) - (d3 c2) x(n - 1) + (c i - d2) x(n 2) 

+ (co + d 1) x(n - 3) + do x(n - 4). 	 (4.21) 

From 	the expression (4.6), the equation (4.21) is given by 

yen - 3) = aoyen - 4) + a3 yen - 5) a2 yen - 6) + a l yen - 7) 

+ (co + d l ) x(n - 3) + do x(n - 4) + C3 x(n - 5) 

+ (d3 - c2) x(n - 6) + (el d2) x(n - 7) 

4 4 

= L ltk x(n - 3 k) L uky(n - 3 - k). (4.22) 
k=1 

The relations for the coefficients Uk and uk are given by 

Un = Co + dl u~ = - ao 

u~ =do U2 a3 

(4.23)lt2 C3 	 Us a2 

lt3
I d3 C2 u~ =- a1 Ju~ = Cl -	 d 2 
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112 	 H. CHANDRASHEKHAR AND M. NAGARAJ 

The equations (4.14), (4.17), (4.20) and (4.23) give the coefficients 
for the filters of the outputs yen), yen 1), yen - 2) and yen 3). 

We can implement the fourth order filters with real coefficients 
for the above outputs using the first order quaternion filter with 
quaternion coefficients. 

4.3 	 RemaT7~ 

With the usual convention due to non-commutativity of the 
quaternion multiplication, all the multiplication in this paper are 
from left to right and not fro111 right to left. 
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