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ABSTRACT 

It is known that the dynamical evolution of a system, from an initial tensor product state of system and environment, to 
any two later times, t1, t2 (t2 > t1), are both completely positive (CP) but in the intermediate times between t1 and t2 it 
need not be CP. This reveals the key to the Markov (if CP) and non Markov (if it is not CP) avataras of the intermediate 
dynamics. This is brought out here in terms of the quantum stochastic map A and the associated dynamical map 
B—without resorting to master equation approaches. We investigate these features with four examples which have en-
tirely different physical origins: 1) A two qubit Werner state map with time dependent noise parameter; 2) Phenome-
nological model of a recent optical experiment (Nature Physics, 7, 931 (2011)) on the open system evolution of photon 
polarization; 3) Hamiltonian dynamics of a qubit coupled to a bath of N qubits; 4) Two qubit unitary dynamics of Jor-
dan et al. (Phys. Rev. A 70, 052110 (2004) with initial product states of qubits. In all these models, it is shown that the 
positivity/negativity of the eigenvalues of intermediate time dynamical B map determines the Markov/non-Markov na-
ture of the dynamics. 
 
Keywords: Open System Dynamics; Non Markovianity; Not Completely Positive Maps 

1. Introduction 

Understanding the basic nature of dynamical evolution of 
a quantum system,which interacts with an inaccessible 
environment, attracts growing importance in recent years 
[1,2]. This offers the key to achieve control over quan- 
tum systems—towards their applications in the emerging 
field of quantum computation and communication [3]. 
While the overall system-environment state evolves uni- 
tarily, the dynamics governing the system is described by 
a completely positive (CP), trace preserving map [4-8]. 

Markov approximation holds when the future dynam- 
ics depends only on the present state—and not on the 
history of the system i.e. memory effects are negligible. 
The corresponding Markov dynamical map constitutes a 
trace preserving, CP, continuous one-parameter quantum 
semi-group [9,10]. Markov dynamics governing the evo- 
lution of the system density matrix is conventionally de- 
scribed by Lindblad-Gorini-Kossakowski-Sudarshan  

(LGKS) master equation [9,10] 
d

d
L

t

   where  is  L

the time-independent Lindbladian operator generating the 
underlying quantum Markov semigroup. Generalized 
Markov processes are formulated in terms of time-de- 

pendent Lindblad generators and the associated trace 
preserving CP dynamical map is a two-parameter divisi- 
ble map [11,12], which too corresponds to memory-less 
Markovian evolution. 

Not completely positive (NCP) maps do make their 
presence felt in the open-system dynamics obtained from 
the joint unitary evolution—if the system and environ-
ment are in an initially quantum correlated state [13-16]. 
In such cases, the open-system evolution turns out to be 
non-Markovian [17]. However, the source of such non- 
Markovianity could not be attributed entirely to either 
initial system-environment correlations or their dynami-
cal interaction or both. This issue gets refined if initial 
global state is in the tensor product form, in which case 
the sole cause of Markovianity/non-Markovianity could 
be attributed to dynamics alone. It is known that the time 
evolution of a subsystem from an initial tensor product 
form to two different later times, t1, t2 (t2 > t1), are both 
CP. However the dynamics in the intermediate time steps 
between t1 and t2 need not be CP. The quantum stochastic 
A and dynamical B maps—first introduced as a quantum 
extension of classical stochastic dynamics—by Sudar-
shan, Mathews, Rau and Jordan (SMRJ) [7,8] nearly five 
decades ago, offer an elegant approach to explore Mark-
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ovian/non-Markovian nature of open system evolution. 
The interplay of A and B maps at intermediate times, to 
bring out the Markov or non-Markov avataras of open 
system evolution, is established in this paper.  

To place these ideas succinctly, there are three basic 
aspects in open system quantum dynamics: 1) nature of 
dynamical interaction between the system and its envi- 
ronment, 2) role of initial correlations in system-envi- 
ronment state and 3) nature of dynamics at intermediate 
times. Last few years have witnessed intense efforts to- 
wards understanding these [11-32]. The third issue is the 
focus here to discern the Markov/non-Markov nature of 
dynamics in terms of intermediate time A and B maps.  

The contents are organized as follows: In Section 2 
some basic concepts [7,8] on A and B maps are given. 
The emergence of CP/NCP maps, at intermediate times, 
under open system dynamics is discussed in Section 3. 
Section 4 is devoted to a powerful link (brought out by 
Jamiolkowski isomorphism) between the B map and the 
dynamical state. Some illustrative examples of dynamical 
B map to investigate the CP/NCP nature of dynamics at 
intermediate times are discussed in Section 5. The exam-
ples are chosen from different origins: one based entirely 
from the general considerations of Jamiolkowski iso-
morphism; second one on the recent all-optical open sys-
tem experiment to drive Markovian to non-Markovian 
transitions; the other two examples are based on open 
system Hamiltonian dynamics. In all these four examples, 
no master equation is employed in the deduction of 
Markov to non-Markov transitions—but the CP/NCP 
nature of the intermediate dynamical map (via the sign of 
the eigenvalue of the B map) has been invoked. Section 6 
has some concluding remarks. 

2. Preliminary Ideas on Dynamical A and B 
Maps 

The stochastic A and dynamical B maps [7,8] transform 
the initial system density matrix  to final density 
matrix  via, 

 0S t
 S t

     
1 2 1 2 1 2 1 2

1 2

0 0;
,S Sb b b b a a a a

a a

t A t t t              (1) 

     
1 2 1 1 2 2 1 2

1 2

0 0;
,S Sb b b a b a a a

a a

t B t t t              (2) 

1 2 1 2, , , 1,2, ,da a b b   

where the realigned matrix B is defined by, 

1 1 2 2 1 2 1 2;b a b a b b a aB A ;             (3) 

The requirement that the evolved density matrix 
 has unit trace and is Hermitian, positive semi- 

definite places the following conditions on A and B [7,8]: 
 S t

Trace Preservation: 

1 1 1 2 1 2 1 1 1 2 1 2
1 1

; ;;b b a a a a b a b a a a
b b

A B     

Hermiticity: 

1 2 1 2 2 1 2 1 1 1 2 2 2 2 1 1

* *
; ; ;;b b a a b b a a b a b a b a b aA A B B  ;      (4) 

Positivity: 

1 2 1 2 1 2 1 2
1 2 1 2

* *
;

, , ,

0b b b b a a a a
a a b b

x x A y y   

1 1 1 1 2 2 2 2
1 2 1 2

* *
;

, , ,

0b a b a b a b a
a a b b

x y B x y   

It may be readily identified that the dynamical B map 
is positive, Hermitian d2 × d2 matrix with trace 
d—corresponding to CP evolution. We would also like to 
point out here that the composition of two stochastic 
A-maps, A1 * A2 transforming  

     1 2
0 1S S

A At t    2S t  

is merely a matrix multiplication, whereas it is not so in 
its B-form. 

3. CP/NCP Nature of Intermediate Time A 
and B Maps 

Let us consider unitary evolution of global system envi- 
ronment state    0t  0S E  from an initial time t0 to 
a final time t2—passing through an intermediate instant t1 
(i.e. t0 < t1 < t2). The A-map associated with t0 to t1 and 
that between t0 to t2 are identified as follows: 

t

       

     

†
0 0 0 0

0 0

   Tr , ,

, , 1, 2

E j S E j

j S S j

U t t t t U t t

A t t t t j

 

  .

  

  
   (5) 

The stochastic map  0,jA t t  is completely positive 
(correspondingly the dynamical matrix  0,jB t t  is 
positive). In order to identify the intermediate stochastic 
map  2 1,A t t , we make use of the composition law of 
unitary evolution  2 0t U t  2 1 1, ,U t t U t 0, t : 

          
     

†
2 1 1 0 0 0 1 0

†
2 1 2 0 0

Tr , , ,

        , ,

E S E

S

U t t U t t t t U t t

U t t A t t t

 



 

 

 (6) 

However, this does not lead naturally to 
     2 0 2 1 1 0, , ,A t t A t t A t t  for the A-map. Invoking 

Markovian approximation (memoryless reservoir condi-
tion1) 

1The dynamical evolution of the system density matrix ρs(t0)→ρs(t) is 
not a local unitary operation, when memoryless reservoir approxima-
tion’ holds—but it is governed by an irreversible, stochastic A(t, t0) 
map. 
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            0 11 10 0 1 0
†, ,S E S EU t t t t U t t t t      

the LHS of Equation (6) may be expressed as, 

       
   

†
2 1 1 1 2 1

2 1 1

 Tr , ,

,

E S E

S

U t t t t U t t

A t t t

 



  


   (7) 

Further, substituting  in Equation (5) and ex-
pressing 1S S  in Equation (6) the 
intermediate A map 

1j 
 0 1,t t
 2 1,

   1
0t A t  

A t t  is identified: 

     1
2 1 2 0 1 0, , , .A t t A t t A t t         (8) 

In other words, when the environment is passive 
(Markovian dynamics), the intermediate A-map has the 
divisible composition as in Equation (8). In such cases 
 2 1, A t t  is ensured to be CP—otherwise it is NCP, and 

hence non-Markovian. Correspondingly, the intermediate 
B-map  is positive if the dynamics is Mark-
ovian; negative eigenvalues of imply non- 
Markovianity. 

 2 1,B t t 


2

 2 1,B t t

4. The B Map and the Jamiolkowski  
Isomorphism 

The Jamiolkowski isomorphism [6] provides an insight 
that the B-map is directly related to a  system- 
ancilla bipartite density matrix. More specifically, the 
action of the map 

2d d

dIA A  on the maximally entangled 
system-ancilla state 

d 1

ME

0

1
,

d i

i i




   

results in the density matrix ab  which may be identi-
fied to be related to the dynamical B-map i.e., 

d 1I
ab ME MEA A

d
       B       (9) 

gives an explicit matrix representation for the B-map. 
(Here dIA  is the identity A-map, which leaves the an-
cilla undisturbed). In detail, we have 

 
1 1 2 2

1 1 2 21 1 2 2 1 1 2 2
1 2 1 2

1 1 2 2 1 2 1 2 1 1 2 2

1 2 1 2

1 2 1 2 1 1 2 2

;

d

;;
, , ,

, , ; , ,

, , ,

; ;

1

d

1 1

d d

ab a b a b

I
ME ME a b a ba b a b a b a b

a a b b

a a a a b b b b a b a b

a a b b

b b a a b a b a

A A

A

A B



 

   

      
   

       
   

       



 




 

(10) 

or, 

 
1 1 2 21 1 2 2

;;

1

dba b a b ab a b a
B   

(Here we have used 

1 1 2 2 1 2 1 2
1 1 2 2 1 1 2 2

d
, , ;;

I
a a a a b b b ba b a b a b a b

A A A      
      

and 

1 1 2 2

1 1 2 22

d

1 1 2 2, ; ,
, 1

, ,

1
, , ,

d

1
                                  

d

ME ME a b a b
i j

a b a b

a b i i j j a b 

 

    


   

    




 

in the second line of Equation (10)). 
In other words, Jamiolkowski isomorphism maps 

every completely positive dynamical map B acting on d 
dimensional space to a positive definite 2d d2  bipar- 
tite density matrix ab  (See Equation (10))—whose 
partial trace (over the first subsystem—as seen from the 
trace preservation property on dynamical map B (as in 
Equation (4)) is a maximally disordered state. One such 
set of bipartite d d  density matrices belong to the 
class that are invariant under  [33]—which con-
stitute the well-known Werner density matrices. One 
may now identify several toy models of dynamical B 
maps—including the two qubit Werner state example 
motivated by the above remark—to investigate the nature 
of intermediate time dynamics. 

U U

In view of the connection established between dy- 
namical map B with the resultant bipartite density matrix 
we identify the following: when we consider the evolu- 
tion of a system—which is initially uncorrelated with its 
environment—from t0 to two different later times , , 
( 2 ) the corresponding dynamical maps 

1t 2t

1t t  1 0t,B t  
and  2 0, tB t

t

 are both CP—and would correspond to 
physical bipartite density matrices under Jamiolkowski 
isomorphism. On the other hand, at an intermediate time 

1  the system and environment may get correlated (i.e. 
when Markov approximation      

t
1 1SE S E  

does not hold). Consequently, further evolution from 1  
to 2  is not ensured to be CP [13-16] and hence the 
corresponding intermediate time dynamical map 

2tt t  

t
 2 1t,B t  

does not correspond to a legitimate bipartite density ma-
trix under Jamiolkowski isomorphism. Non-positive ei- 
genvalues of intermediate time dynamical map  2 1t,B t  
capture intermediate system-environment correlations, 
revealing in turn, non-Markovianity of the underlying 
open system dynamics. 

5. Examples 

In this section we present specific examples chosen to 
illustrate the features of intermediate dynamical maps: 1) 
A toy model map inspired by Jamiolkowski isomorphism 
(which associates any bipartite density matrix consisting 
of a maximally disordered subsystem with a dynamical B 
map). This is not based on any Hamiltonian underpinning. 
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2) Recent optical experiment by Liu et al., [34] on open  
system evolution of photon polarization to bring out 
non-Markovianity features is reinterpreted in terms of 
NCP nature of the intermediate dynamical map. 3) In-
termediate dynamical map in the Hamiltonian evolution 
of a two-level system coupled to N two-level systems 
[32]. 4) Open system dynamics arising from a two qubit 
unitary evolution [13]. 

5.1. A Toy Model Dynamical Map 

The two qubit Werner density matrix is a natural choice 
for a prototype of dynamical B-map—arising from gen- 
eral considerations of the Jamiolkowski isomorphism: 

 
       

2 2

1
,0

2 2

p t p t
B t I I  

      

1

  (11) 

with a time dependent noise parameter , and  0 ( )p t 
  1

0,0 1,1
2

     is the Bell state. For a dy- 

namical map, time dependence in  occurs due to 
the underlying Hamiltonian evolution. This state is espe- 
cially important in that it exhibits both separable and 
entangled states, as its characteristic parameter 

 p t

 p t  is 
varied. Its use here as a valid B-map is novel in identify- 
ing transitions between Markovianity and non-Mark- 
ovianity in the dynamics as captured from their interme- 
diate time behaviour.  

On evaluating the corresponding A-map  ,0A t  (ex-
pressed in the standard   basis) 
i.e., 

0,0 , 0,1 ,| 1,0 , 1,1

 

 

   

   

 

1
0 0 0

2
1

0
2 4,0

1
0

4 2
1

0 0 0
2

p t

p t p t

A t
p t p t

p t



0

0



 
 

 
 
 
 
 
 
 
 

,0 .




 

one can obtain the intermediate dynamical map  
 The intermediate time B- 

map  is given by 
     1

2 1 2 1, ,0A t t A t A t
 2 1,B t t

   
 

 
 

   2 2
2 1 2 2

1 1

21
, 1

2

p t p t
B t t I I

p t p t
  

       
 

 

Its eigenvalues are 

 
 

2
1 2 3

1

1
1

2

p t

p t
  

 
     

 
 

and 

 
 

2
4

1

31
1

2

p t

p t


 
   

 
 

A choice    2cos Mp t at  for any 1M   leads to 
NCPness of the intermediate map—as the eigenvalues 

1,2,3   of  2 1,B t t  may assume negative values 
—and hence non-Markovian dynamics ensues. We have 
plotted the negative eigenvalue   of 2 1  as a 
function of 

 ,B t t

2 1t t   and for typical values of 
1,3,5M   in Figure 1. This reveals transitions from 

Markovianity to non-Markovianity and back in this 
model. 

Another choice   tp t e   corresponds to a CP in- 
termediate map—resulting entirely in a Markovian proc-  
ess. In this case, we also find that    2 1 2 1,A t t A t t   
and this forms a Markov semigroup. However, if 
  ,tp t e

  1  , the intermediate map is still CP 
(and hence Markovian), though    2 1 2 1,A t t A t t   
and therefore, it does not constitute a one-parameter 
semigroup.  

Furthermore, we wish to illustrate through this toy 
model that concurrence of 

   1
,0

dab t B t   

(given by   3 1C p t  2 ) can never increase as a 
result of Markovian evolution. This is because ensuing 
dynamics is a local CP map on the system. Any tempo- 
rary regain of system-ancilla entanglement during the 
course of evolution is clearly attributed to the back-flow 
from environment to the system—which is a signature of 
non-Markovian process. This feature is displayed in 
Figure 2 by plotting the concurrence of  ab t  for dif-
ferent choices of  p t .  

5.2. Optical Experiment 

Recently, Liu et al. [34] reported an optical experiment 
on the open quantum system constituted by the polariza- 
tion degree of freedom of photons (system) coupled to 
the frequency degree of freedom (environment). They 
reported transition between Markovian and non-Mark- 
ovian regimes. It may be pointed out that in this optical 
experiment non-Markovianity is characterized in terms 
of increase of the distinguishability of quantum states, 
which signifies reverse flow of information from envi- 
ronment back to the system [28]—and not in terms of 
deviation from divisibility [11,12]. In this paper we 
would analyze the non-Markovian nature of dynamics in 
terms of the negative eigenvalues of intermediate time 
dynamical map  2 1,B t t . 

The dynamical evolution of the horizontal and vertical 
polarization states ,H V  of the photon is captured by 
the following transformation: 
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Figure 1. A plot of the eigenvalue  of  versus ( , )2 1B t t

μ = t t2 1  for different values of M. The dynamics is non- 

Markovian when   assumes negative values and other- 
wise it is Markovian. 
 

 

Figure 2. Concurrence   3 1C = p t 2  of the system- 

ancilla state  
 

 2 2

  1

4ab ME ME

p t
ρ t = I I + p t ψ ψ , 

vs. scaled time at, for the following choices i) Markov proc-

ess:   atp t = e

  cos2M

 (solid line) and ii) non-Markov process: 

 1p t = at , M =  (dashed line) and  (dot- 

dashed line). Note that there is a death and re-birth of en-
tanglement (dash, dot-dashed lines) due to back-flow from 
environment. 

M = 5

 
H H H H  

V V V V  

 *H V t H V  

 V H t V H  

Here  denotes the decoherence function, mag-
nitude of which is modelled as, 

 t

 
 

 

   

22

22

1

2
2

1
22

1 1

1 2
1

·
        1 4 1 s

cos

in
2

nt

nt

nt
e

t A A
A

nt
e A A



 


 


 

 

  


    











  (14) 

where V Hn n n  

2

 is the difference between the re-
fractive indices of vertically and horizontally polarized 
light; 1      distance between two frequency  

peaks (for details see [34]), 1 1

1
,0 1.

1
A A

A
 


  

The corresponding A and B maps (in the 
 , , ,HH HV VH VV  basis) are readily identified to be, 

   
 

*

1 0 0 0

0 0
,0

0 0 0

0 0 0 1

t
A t

t




 
 
 
 
 
 

0
 

 

 

 

*1 0 0

0 0 0 0
,0

0 0 0 0

0 0 1

t

B t

t





 
 
   
  
 

 

We construct the intermediate time dynamical map 
 2 1,B t t from the corresponding  
     1

2 1 2 1, ,0A t A tA t t ,0  to obtain, 

 

 
 

 
 

*
2

*
1

2 1

2

1

1 0 0

0 0 0 0
, .

0 0 0 0

0 0 1

t

t

B t t

t

t







 
 
 
 
 
 
 
 
 
 

       (16) 

Eigenvalues of  2 1,B t t  are given by, 

 
 

2
1,4 2,3

1

1 ,
t

t





0.             (17) 

The eigenvalue 4  can assume negative values indi- 
cating Markovian/non-Markovian regimes. A plot of the 
negative eigenvalue as a function of 1A , for different 
ratios 2 1t t  (for the choice of parameters  

Hz, Hz, which are em- 
ployed in Ref. [34]) is given in Figure 3 where one can 
clearly see the Markovian (

131.6 10   121.8 10 

4 0



  ) and non-Markovian 
( 4 0  ) regimes.  

5.3. Hamiltonian Evolution of a Two Level  
System Coupled to a Bath of N Spins 

We now present a Hamiltonian model, which give rise to 
explicit structure of time dependence in the open system 
evolution. Interaction Hamiltonian considered here is 
[28,32]  

1

.
N

z k z

k

A
H

N
 



             (18) 
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Figure 3. A plot of the eigenvalue  of λ4  ,2 1B t t  versus 

 for different values of A1 μ = t t1

= 1.

2  and for the choice of 

parameters Hz, Hz.    13Δ = 1.6 10ω   12108σ
 

This is a simplified model of a hyperfine interaction of a 
spin—1/2 system with N spin—1/2 nuclear environ- 
ment in a quantum dot. Taking the initial system-envi- 

ronment state to be   20
2

N

S N

I
  , the dynamical A-map 

is obtained by evaluating  

     †2Tr ,0 0 ,0
2

N

E S N

I
U t U t
 

 
  

 

(where    ,0 ExpU t iH t  ): 

       

 

2 2

1 1
,0 1 1 ,

2 2

2
    cos .

z z

N

A t x t x t I

At
x t

N

      

 
  

 

I



(19) 

From this, the intermediate map  2 1,A t t
 ,B t

 (see Equa-
tion (8)) and in turn the corresponding  may be 
readily evaluated. We obtain, 

2 1t

   

 
  

2 1 2 2

2

1

                

1
,

2

.
2

z z

x x y y

B t t I I

x t

x t

 

   

   

    



(20) 

The eigenvalues of  are   2 1,B t t

 
 

2

1

0,0,1 .
x t

x t
  

Clearly, the intermediate time dynamics exhibits NCP  

nature as one of the eigenvalues i.e. 
 
 

2

1

1
x t

x t
    of  

 2 1,B t t   can assume negative values. 
We illustrate regimes of Markovianity/non-Markovi- 
anity revealed via positive/negative values of   (plot 
ted as a function of 2 1t t  ) in Figure 4. 

 

Figure 4. The variation of the eigenvalue λ  of  ,2 1B t t  

(as a function of μ = t t2 1 ) from positive to negative values 

and back with the passage of time for different values of N. 

5.4. Two Qubit Unitary Evolution 

We now consider the open system dynamics arising from 
the unitary evolution [13] 

 
   2 2         

,0

cos 2 sin 2

z xi t

z x

U t e

t I I i t

 

   

   

   
 (21) 

on the system-environment initial state  

         2 2

1 1
0 0 0

2 2SE S E x zI I          .  

The ( ,0)A t  map is given by, 

    

  

2 2

              

1
,0 1 cos

2
1

1 cos .
2 z z

A t t I I

t



  

  

  
(22) 

Following Equation (8), we obtain 

   

 
   

2 1 2 2

2

1

1
,

2

cos
               .

2cos

z z

x x y y

B t t I I

t

t

 


   



   

   

  (23) 

The eigenvalues of the B-map are given by  

2

1

cos
0, 0,1

cos

t

t




 . The eigenvalue 2

1

cos
1

cos

t

t





   can  

assume negative values—bringing out the non-Mark- 
ovian features prevalent in the dynamical process. Fig- 
ure 5 illustrates the transitions from Markovianity to 
non-Markovianity. This model, with initially correlated 
states, has been explored before in Refs. [13,17] and the 
dynamical map turned out to be NCP throughout not 
merely in the intermediate time interval). 

6. Summary 

In conclusion, a few remarks on a variety of definitions  
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Figure 5. The plot of the eigenvalue 
cos

cos
2

1

1
ωt

λ =
ωt

  as a 

function of μ = t t2 1 . The periodic transitions of λ  from 

positive to negative values indicates the transition of the 
process from Markovian to non-Markovian. 
 
of non-Markovianity in the recent literature may be re-
called here. Mainly the focus has been towards capturing 
the violation of semi-group property [17,27] or more 
recently—its two-parameter generalization viz the divisi- 
bility of the dynamical map [11,12]. Yet another measure, 
where non-Markovianity [28] is attributed to increase of 
distinguishability of any pairs of states (as a result of the 
partial back-flow of information from the environment 
into the system) and is quantified in terms of trace dis- 
tance of the states. It has been shown that the two differ- 
ent measures of non-Markovianity—one based on the 
divisibility of the dynamical map [12] and the other 
based upon the distinguishability of quantum states [28] 
—need not agree with each other [29,30]. A modified 
version of the criterion of Ref. [12] was proposed re- 
cently [32]. In this paper we have established the inter- 
play of stochastic A and dynamical B maps at intermedi- 
ate times, revealing Markovian/non-Markovian regimes. 
We have explored four different examples revealing the 
features of intermediate time maps originating from vari- 
ety of physical mechanisms: 1) A toy model map in- 
spired by general considerations based on Jamiolkowski 
isomorphism—which explores a two qubit Werner state 
with time-dependent noise parameter as a dynamical map; 
2) A reinterpretation of the phenomenological model 
explaining the recent optical experiment by Liu et al., [34] 
in terms of NCP nature of the intermediate B map; 3) 
Hamiltonian evolution describing the hyperfine interact- 
tion of a spin—1/2 system with N spin—1/2 nuclear en- 
vironment in a quantum dot [32] displaying Mark- 
ovian/non-Markovian behavior and 4) Unitary evolution 
of Jordan et al., [13]—wherein initial system-environ- 
ment two qubit is chosen in a product state. Here too, 
intermediate time dynamical map exhibits Markov/non- 
Markov regimes. It is interesting to note that the dy-  

namics had been identified to be NCP throughout not 
merely in the intermediate time interval—when initially 
correlated states were employed [13,17]. Placing these 
two results together, brings forth that the source of non- 
Markovianity in this model is attributable entirely to the 
unitary dynamics—rather than initial correlations of sys-
tem-environment qubits. We have thus exposed the un- 
derlying features of intermediate time A and B maps to 
bring out clearly if the dynamics relies on past history of 
the states or not. 
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