
This article was downloaded by: [UNIVERSITY OF ADELAIDE LIBRARIES]
On: 09 December 2014, At: 22:27
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Discrete Mathematical Sciences and
Cryptography
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tdmc20

Lict edge semientire graph of a planar graph
Y. B. Maralabhavi a & Venkanagouda M. Goudar a
a Department of Mathematics , Bangalore University, Central College Campus ,
Bangalore , 560 001 , India
Published online: 03 Jun 2013.

To cite this article: Y. B. Maralabhavi & Venkanagouda M. Goudar (2007) Lict edge semientire graph of a planar graph,
Journal of Discrete Mathematical Sciences and Cryptography, 10:3, 433-438, DOI: 10.1080/09720529.2007.10698130

To link to this article:  http://dx.doi.org/10.1080/09720529.2007.10698130

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72805331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tandfonline.com/loi/tdmc20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09720529.2007.10698130
http://dx.doi.org/10.1080/09720529.2007.10698130
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Lict edge semientire graph of a planar graph

Y. B. Maralabhavi

Venkanagouda M. Goudar ∗

Department of Mathematics
Central College Campus
Bangalore University
Bangalore 560 001
India

Abstract
In this paper, we introduce the concept of the Lict edge semientire graph of a

planar graph. We present characterizations of graphs whose lict edge semientire graphs are
planar, outerplanar and Maximal outerplanar, crossing number one. Further, we establish a
characterization of graphs whose lict edge semi entire graphs are Eularian and Hamiltonian.

Keywords and phrases : Pathos, pathoslength, edge semientire graph, outerplanar, crossing

number.

1. Introduction

The lict graph(4) n(G) of a graph G is the graph whose vertex set
is the union of the set of edges and the set of cutvertices of G in which
two vertices are adjacent if and only if the corresponding edges of G are
adjacent or the corresponding members of G are incident.

The edge semientire graph(3) ee(G) of a plane graph G is the graph
whose vertices can be put in one to one correspondence with the edges and
regions of G in such a way that two vertices of ee(G) are adjacent if and
only if the corresponding elements of G are adjacent. The line graph L(G)
of a graph G is the graph whose vertex set coincides with the edge set of
G and in which two vertices are adjacent if and only if the corresponding
edges are adjacent in G.
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434 Y. B. MARALABHAVI AND V. M. GOUDAR

A regionvertex is a vertex in lict edge semientire graph corresponding to
the regions of G.

We now define the lict edge semientire graph ne(G) of a planar graph
G whose vertex set is the union of the set of edges, set of vertices and
set of regions of G in which two vertices are adjacent if and only if the
corresponding edges are adjacent, edges are incident to the cutvertex and
edges are lies on the region. In Figure 1, a graph G and its lict edge
semientire graph ne(G) of a planar graph are shown.

Figure 1

All the undefined terms may be referred to Harrary2. All graphs
considered here are finite, undirected and without loops or multiple edges.

We need the following theorem for the proof of our further results.

Theorem 1. If G is a (p, q) graph whose vertices have degree di then L(G) has
q vertices and qL edges where qL = −q + 1

2 ∑ d2
i .

Theorem 2. The line graph L(G) of a graph G has crossing number one if and
only if G is planar and 1 or 2 holds:

(1) The maximum degree ∆(G) is 4 and there is unique non cutvertex of degree.

(2) The maximum degree ∆(G) is 5, every vertex of degree 4 is a cutvertex,
there is a unique vertex of degree 5 and has almost 3 edges in any block.

Theorem 3. A connected graph G is isomorphic to its line graph if and only if it
is a cycle.

Theorem 4. The lict graph n(G) is planar if and only if deg v ≤ 3.

Theorem 5. The edge semi entire graph ee(G) is planar if and only if

(1) G is a tree

(2) deg v ≤ 3 for every vertex v of G.
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LICT EDGE SEMIENTIRE GRAPH 435

Theorem 6. Let G be a plane graph. A necessary and sufficient condition for
ee(G) to be eulerian is that each of the following holds:

(1) Each edge of G is adjacent to even number of elements

(2) Each region of G has even number of elements adjacent to it.

Theorem 7. If G is a hamiltonian plane graph, then ee(G) is also hamiltonian.

Lict edge semientire graph ne(G) of a planar graph G

We start with a few preliminary results.

Remark 1. For any graph G, L(G) ⊂ n(G) ⊂ ne(G) and ee(G) ⊂ ne(G).

Remark 2. For any graph G, ne(G) is nonseparable.

Remark 3. If a graph G is K2 then, ne(G) is complete.

Remark 4. If G itself is a block then ne(G) = ee(G).

In the following theorem, we obtain the number of vertices and edges
in lict edge semientire graph.

Theorem 8. For any (p, q) graph G whose vertices have degree di, cutvertices c,
regions r and li be the number of edges to which cutvertex ci belongs and ek be the
number of edges in which the region rk lies, the lict edge semientire graph ne(G)

has (q + c + r) vertices and ∑
[ d2

i
2 + li

]
+ ek edges.

Proof. By definition of ne(G), the number of vertices is the union of edges,
cutvertices and regions of G. Hence ne(G) has (q + c + r) vertices. Further
the number of edges in n(G) is the sum of number of edges incident with
cutvertices in G, the sum of number of edges in L(G). Since the number

of edges in L(G) has −q + ∑
d2

i
2 , hence the number of edges in ne(G) is the

sum of edges in n(G) and the number of edges bounded by the regions ek.
In addition, the total number of edges that lie on the region ∑ ri of G is q.
Hence

E[ne(G)] = − q + ∑
[

d2
i

2
+ li

]
+ q + ek

= ∑
[

d2
i

2
+ li

]
+ ek .
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436 Y. B. MARALABHAVI AND V. M. GOUDAR

Planar lict edge semientire graph

In this section, we obtain the condition for planarity of lict edge
semientire graph.

Theorem 9. The lict edge semientire graph ne(G) is planar if and only if
deg v ≤ 3, for every vertex v of G.

Proof. Suppose ne(G) is planar. Assume deg v ≥ 4. If there exists a
vertex v of degree 4, then by definition, L(G) is planar which contains
〈K4〉 as an induced subgraph. So the lict graph n(G) contains 〈K5〉 as an
induced subgraph, which is nonplanar. Clearly, ne(G) is also nonplanar, a
contradiction.

Conversely suppose deg v ≤ 3. By the Theorem 5, ee(G) is planar
and by the Theorem 4, n(G) is also planar. Clearly, ne(G) is planar. ¤

We now present a characterization of graphs whose lict edge semien-
tire graph is outerplanar and maximum outerplanar.

Theorem 10. The lict edge semientire graph ne(G) is outer planar if and only if
G is a path.

Proof. Suppose ne(G) is outerplanar. Assume that G has a vertex v of
degree 3. The edges incident to v and the cutvertex v form 〈K4〉 as a
subgraph in ne(G). Hence ne(G) is non outerplanar, a contradiction.

Conversely, suppose T is a path Pt of length t ≥ 1. For t = 1, the result
is obvious. For t > 1, the graph n(G) has (t− 1) blocks which are K3. Since
G has exactly one region it follows that the region vertex, corresponding to
this region, together with the above blocks form (t− 1) number of induced
subgraphs which are all 〈K4 − x〉 in ne(G). Hence ne(G) is outerplanar. ¤
Theorem 11. The lict edge semientire graph ne(G) is maximum outerplanar if
and only if G is a path.

Proof. Proof follows from the Theorem 10. ¤
In the next theorem, we characterize lict edge semientire graph in

terms of crossing number one.

Theorem 12. The lict semientire graph ne(G) has a crossing number one if and
only if the following conditions hold:

(1) deg v ≤ 3, for every vertex v of G, and

(2) G has unique vertex of degree 4, which is not a cutvertex.
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LICT EDGE SEMIENTIRE GRAPH 437

Proof. Suppose ne(G) has crossing number one. Then it is nonplanar.
By Theorem 9, deg v ≥ 4 for every vertex v of G. We now consider the
following cases:

Case 1. Assume G has a vertex u of degree 5. If u is not a cutvertex, then
by Theorem 4, the regionvertex is adjacent to edges of G. Clearly
C[ne(G)] > 1, a contradiction. If u is a cutvertex then the edges
incident to this vertex together with the cutvertex form 〈K6〉 as a
subgraph in n(G), the regionvertex is adjacent to atleast one vertex
of 〈K6〉 in ne(G). This gives C[ne(G)] > 1, a contradiction.

Case 2. Assume G has atleast two vertices of degree 4. Suppose v1 and
v2 are two noncutvertices of degree 4. Then L(G) has atleast two
crossings, by Theorem 2, C[ne(G)] > 1, a contradiction. Suppose
v1 and v2 are two cutvertices of degree 4. Then cutvertices v1 and
v2 together with their corresponding four incident edges form two
〈K6〉 as subgraphs in n(G) and hence in ne(G). Hence C[ne(G)] >

1, a contradiction.

Conversely, suppose G holds both the conditions of the Theorem. Let
v1 be the noncutvertex of degree 4. Then by Theorems 2 and 3, n(G) has
crossing number one and hence ne(G) has crossing number one. ¤
Theorem 13. The lict edge semientire graph ne(G) is eulerian if and only if G is
a cycle Cn, n is even.

Proof. The cycle Cn does not contains a cutvertex. By the Remark 4,
ne(G) = ee(G). Also by Theorem 6, ee(G) is eulerian and hence ne(G)
is eulerian.

Theorem 14. The lict edge semientire graph ne(G) is hamiltonian if and only if
G 6= K2.

Proof. Suppose ne(G) is hamiltonian. Assume that G is K2. Then this edge
is incident with regionvertex w to form K2, which is nonhamiltonian, a
contradiction.

Conversely, suppose G 6= K2, we now consider the following cases:

Case 1. If G is a path and has exactly one regionvertex. Let V[n(G)] =
(e1, e2, . . . en) ∪ (c1, c2, . . . cn−2), where (c1, c2, . . . cn−2) are cutver-
tices of G. Each block is a triangle and each block consist as vertices
B1 = (e1, c1, e2), B2 = (e2, c2, e3), . . . Bn = (en−1, cn−2, en). Also
in ne(G), the regionvertex w is adjacent to (e1, e2, . . . en). Hence
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438 Y. B. MARALABHAVI AND V. M. GOUDAR

V[ne(G)] = (e1, e2, . . . en) ∪ (c1, c2, . . . cn−2) ∪ w form a cycle
we1c1e2c2e3 . . . en−1cn−1cnw containing all the vertices of ne(G).
Clearly ne(G) is hamiltonian.

Case 2. If G is a tree and has exactly one regionvertex. Let [n(G)] =
(e1, e2, . . . en) ∪ (c1, c2, . . . c j), where (c1, c2, . . . c j) are the cutver-
tices of G. Clearly, each block is K3 if degree of the cutvertex is
two and is K4 if degree of the cutvertex is three. In ne(G), the
regionvertex w is adjacent to (c1, c2, . . . c j). By Remark 2, ne(G) is
nonseparable. Clearly, the vertices (e1, e2, . . . en)∪ (c1, c2, . . . c j)∪w
form we1c1e2c2e3e4 . . . c jenw containing all the vertices of ne(G).
Hence ne(G) is hamiltonian.

Case 3. If G is hamiltonian graph, then by Theorem 7, ee(G) is hamiltonian.
Hence ne(G) is hamiltonian.

Case 4. If G is the graph other than above types of graphs, then by
Remark 2, ne(G) is nonseparable, hence it is hamiltonian.
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