

Special Issue honouring Dr. KM. Kathiresan Volume 2 Issue 2 2016

Honorary Editors

KM Kathiresan, India Sin–Min Lee, USA Harris Kwong, USA Joseph A Gallian, USA W C Shiu, China

Managing Editors

Tao-Ming Wang, Taiwan M Salman A N, Indonesia Founder • Editor-in-Chief G Marimuthu, India

SQUARE SUM LABELING OF DISJOINT UNION OF GRAPHS

AUTHORS INFO

Medha Itagi Huilgol* and V.Sriram, Department of Mathematics, Bangalore University, Bengaluru, India.

E.Mail : medha@bub.ernet.in vs140580@gmail.com *Corresponding Author

ARTICLE INFO

JOURNAL INFO

J. Graph Label. 2(2) (2016), 103-106.

Article History :

AMS MSC: 05C78.

Received	: 08.12.2015
Received in revised form	: 05.01.2016
Accepted	: 10.01.2016
Available online	: 20.01.2016

Keywords: Square sum labeling, square sum graph.

ESTD: 2015 ISSN (Print) : 2454-4515 ISSN (Online) : 2454-7735 Abstracting and Indexing: Zentralblatt MATH.

© 2015 Journal of Graph Labeling. All rights reserved.

Abstract

A (p,q) graph *G* is said to be square sum, if there exists a bijection $f : V(G) \rightarrow \{0,1,2,\ldots,p-1\}$ such that the induced function $f^* : E(G) \rightarrow N$ defined by $f^*(uv) = (f(u))^2 + (f(v))^2$, for every $uv \in E(G)$ is injective. In this paper we prove that if G_1 and G_2 are square sum, then $G_1 \cup G_2 \cup G_3$ is also square sum, where G_3 is a set of isolated vertices.

1 Introduction

All graphs considered here are finite, undirected, and simple. For terminologies and notations not defined in this paper, the reader is referred to [1]. Labeling of a graph *G* is an assignment of integers either to the vertices or edges or both subject to certain conditions. A dynamic survey to know about the numerous graph labeling methods is regularly updated by J.A. Gallian [4]. Acharya and Germina [2] defined a square sum labeling of a (p,q)-graph *G* as follows.

A (p,q)-graph *G* is said to be square sum, if there exists a bijection $f : V(G) \rightarrow \{0,1,2,\ldots,p-1\}$ such that the induced function $f^* : E(G) \rightarrow N$ defined by $f^*(uv) = (f(u))^2 + (f(v))^2$, for every $uv \in E(G)$ is injective.

Several results on square sum labeling can be found in [3], [5], [6], [7].

2 Results

Theorem 2.1. Let G_1 and G_2 be square sum graphs then $G_1 \cup G_2 \cup G_3$ is square sum, with $|G_3| = \mathcal{L}$, isolates.

Proof. Let G_1 be a (p_1,q_1) -graph and G_2 be a (p_2,q_2) -graph. Let $V(G_1)$ be labeled as $\{v_1, v_2, v_3, \ldots, v_{p_1}\}$ and let the edge set of G_1 be labeled as $\{e_1, e_2, e_3, \ldots, e_{q_1}\}$. Let $V(G_2)$ be labeled as $\{u_1, u_2, u_3, \ldots, u_{p_2}\}$ and let the edge set of G_1 be labeled as $\{e_1', e_2', e_3', \ldots, e_{q_2}'\}$. Without loss of generality let $p_1 \ge p_2$. Since G_1 is square sum there exists a bijection $f : V(G_1) \to \{0, 1, 2, \ldots, p_1 - 1\}$ such that the induced function $f^* : E(G_1) \to N$ defined by $f^*(v_i v_j) = (f(v_i))^2 + (f(v_j))^2$, for every $v_i v_j \in E(G_1)$ and $i \ne j$ is injective. Also since G_2 is square sum there exists a bijection, say g, $g: V(G_2) \to \{0, 1, 2, \ldots, p_2 - 1\}$ such that the induced function $g^* : E(G_2) \to N$ defined by $g^*(u_m u_n) = (g(u_m))^2 + (g(u_n))^2$, for every $u_m u_n \in E(G_2)$ and $m \ne n$ is injective.