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Abstract--The dezincification of 60/40 brass has been studied in acidic chloride and sulphate solutions 
under accelerated experimental conditions using weight loss and potential measurement techniques. A 
particular variation of potential with immersion time was observed to be the characteristic feature of 
dezincification. The results obtained support substantially the operation of both selective dissolution of 
zinc and simultaneous dissolution of copper and zinc followed by redeposition of copper, alternatively 
with time, during dezincification. The effect of surface active compounds such as thiourea, thioglycolic 
acid, thioglycol and halo-acetic acids on dezincification of brass has been discussed on the basis of models 
proposed for synergistic effects of organic molecules and anions involved in the medium. 

INTRODUCTION 

IN THE field of non- fe r rous  alloys, the subject  of  de-a l loying is of cur ren t  interest .  
Dezincif icat ion is one  of the we l l -known de-al loying processes by means  of which 

brass loses its va luable  physical and  mechanica l  proper t ies  leading to the total  fai lure 
of the s t ructure .  The  l i te ra ture  survey on  the m e c ha n i sm  of de-a l loying t in genera l  

and  dezincif icat ion 2 in par t icular  provides  a good basis for u n d e r s t a n d i n g  var ious 
aspects of dezincif icat ion and  its inhib i t ion .  The  work of A b r a m s  3 in 1922, deal ing 

with the critical analysis of the var ious  e n v i r o n m e n t a l  factors on  dezincif icat ion,  
con t r ibu ted  a basic u n d e r s t a n d i n g  of the p rob lem.  D ue  to its industr ia l  significance, 
dezincif icat ion has b e e n  an active field of research and  a t tempts  have been  made  
using chemical  and  e lect rochemical ,  *~9 radiometr ic  t° and  optical  t echn iques  u to 

resolve the cont roversy  over  the mechan i sm of the process.  Despi te  the extensive 
work on  this subject ,  still there  is no  universa l ly  acceptable  mechan i sm.  

The  diversity of op in ion  and  widespread  in teres t  in the p rob l em,  p r o m p t e d  the 
p resen t  inves t igat ion which a t tempts  pr imari ly  to u n d e r s t a n d  the me c ha n i sm  of 

dezincif icat ion and  the role of inhibi tors  in the process.  

EXPERIMENTAL METHOD 
All chemicals used were of AR grade and the solutions were prepared using freshly distilled triple 

distilled water. Brass having the composition Cu 59.8%, Zn 40.08%, Fe trace, Sn trace and free from Pb 
and As has been used for the study. The specimen in cylindrical form (10.0 mm dia. and 15.0 mm length) 
was fixed in Tygon tubing so that only the cross-sectional area would be exposed to the medium. The 
surface was mechanically polished successively on different grades of emery paper (2/0 to 4/0) using 
ethanol as a lubricant. Subsequently, it was subjected to further polishing for desired smoothness and 
brightness on wet chamois leather using fine carborundum powder (600 mesh). The finished surface was 
then washed thoroughly with running distilled water, degreased, cleaned with triple distilled water and 
used for dezincification studies. 

The weight loss studies were carried out by immersing the sample in the medium for a desired period 
and colorimetrically analysing the solution for individual contents of copper and zinc. Individual as well as 
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the overall dissolution rates (mg cm -2 h -~) were calculated using these values. For galvanostatic 
polarization studies,  a 90 V battery was used as a constant  current  source across a series of variable 
resistances. A saturated calomel electrode and a platinized plat inum electrode were employed to serve as 
reference and auxiliary electrodes,  respectively. The corrosion potentials and overpotentials were 
recorded with an accuracy of +2  mV using a high impedance VTVM.  The detailed experimental  
procedure  has been given elsewhere.  12j3 

E X P E R I M E N T A L  R E S U L T S  

Dezincification characteristics 

Dissolution rates. Dezincification was observed when brass was kept immersed 
in stirred aerated 0.1 M H N O  3 having various concentrations of chloride or sulphate 
ions at 30°C. The kinetics of dissolution and the degree of dezincification (defined by 
the ratio of individual dissolution rates of copper and zinc, i.e. r = Cu/Zn) of brass 
were found to depend significantly on the anion (C1- or SO4 ~-) concentration in the 
medium. Figure 1 illustrates the dependence of overall dissolution rates and corre- 
sponding changes in the degree of dezincification as a function of anion concentra- 
tion. As the chloride concentration was varied from 10 -6 to 10 -4 M,  the total 
dissolution rate decreased gradually and then more rapidly to a minimum value. 
Further increase in chloride content beyond 10 -4 M resulted in negligible dissolution 
even after prolonged immersion. In the presence of sulphate ions, the rate continu- 
ously decreased as a result of gradual increase in sulphate content from 10 -5 to 10 -2 
M. An increase of anion concentration exhibited a progressive increase in the 
tendency for dezincification (i.e. decrease in r values) as shown in Fig. 1. Thus under 
the conditions tested, slow dissolution favoured dezincification. The effective con- 
centration at which anions exhibit a pronounced effect on dissolution or dezincifica- 
tion is characteristically different for chloride and sulphate ions. 
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The dependence  of total dissolution rate and degree of dezincification (r) of  brass 
on anion concentrat ion in stirred 0.1 M HNO3. 
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TABLE 1, THE VARIATION OF TOTAL DISSOLUTION RATE AND DEGREE 

OF DEZINCIFICATION (F) IN STIRRED H N O  3 SOLUTION OF VARIOUS 

CONCENTRATIONS CONTAINING 10 -5 M CHLORIDE IONS AT 3 0 ° 6  

(IMMERSION PERIOD: 4 h) 

Total dissolution Degree of 
Acid concentration rate dezincification 

(M) (mgcm-2 h -l) (r = Cu/Zn) 

0.08 0.5 0.08 
0.02 3.2 0.10 
0.05 5.5 0.15 
0.10 7.4 0.20 
0.20 15.0 0.42 
0.50 26.0 0.75 
1.00 38.0 0.94 
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Experiments were also conducted under identical conditions using H N O  3 sol- 
utions of various concentrations containing fixed amount of chloride (10 -5 M) or 
sulphate (10 -2 M) ions. When the nitric acid concentration was increased from 0.01 
to 1.0 M, the dissolution was accelerated, an effect accompanied by a decreased 
tendency for dezincification. Table 1 shows the influence of HNO3 on the corrosion 
and dezincification of brass in a stirred solution containing chloride. Similar trends 
with different dissolution rates were also observed in sulphate solutions. The data in 
Table 1 indicate that preferential dissolution of zinc was at a maximum (low r value) 
in 0.01 M H N O  3 at which the overall rate was low. This is notably consistent with the 
earlier observations (Fig. 1) that conditions of slow dissolution favoured dezincifi- 
cation while those of fast dissolution showed increased tendency for simultaneous 
removal of copper and zinc. 

The dezincification experiments were performed after adding Zn 2÷ and Cu 2+ ions 
to both chloride and sulphate solutions. It was found that the presence of these metal 
ions, individually or in combination (in different proportions) up to 0.05 M, brought 
negligible effect either on dissolution rate or on degree of dezincification observable 
otherwise in their absence. 

The samples were kept immersed continuously for various periods during 
dezincification in 0.1 M H N O  3 containing chloride or sulphate ions and the observed 
time dependent  changes in weight loss are shown in Fig. 2. These experiments reveal 
that brass continued to dissolve resulting in a linear variation of weight loss (Fig. 2) 
without causing much change in the degree of dezincification. 

Corrosion potential variations. During simultaneous corrosion of brass in 0.1 M 
HNO3 (free from chloride or sulphate), its potentials decreased continuously with 
immersion time and attained steady values (Fig. 3). However ,  during its dezincifi- 
cation in 0.1 M HNO3 containing chloride or sulphate, the potentials exhibited a 
different trend in variation with time. As indicated in Fig. 3, from the moment  of 
immersion of the specimen, corrosion potentials continuously decreased to a 
minimum value (negative shift), after which they continuously increased (positive 
shift) and finally attained steady values with time. After  attaining the steady values, 
they remained more or less constant during further dissolution. It is emphasized that 
this type of potential- t ime relationship was a characteristic feature observed only 
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FIG. 2. 

when brass experienced dezincification in chloride or sulphate solution. From the 
potential time characteristics of the process supported by weight loss measurements 
at different concentrations of HNO 3 with chloride or sulphate, it is also notable that 
the changes in potential time curves are indicative of changes in the extent of 
dezincification. Thus in the presence of 10 -5 M chloride, as the HNO3 concentration 
was varied from 0.02 to 1.0 M, the hump of the potential-time curves (Fig. 4) 
gradually decreased, accompanied by a gradual fall in the degree of dezincification 
(Table 1) and resulted in a hump-free curve at 1.0 M HNO3 where the system 
exhibited simultaneous corrosion. The changes of this kind were also observable 
under comparable conditions in the presence of 10 -2 M sulphate. 

Surface features. After each dissolution test, the surface of brass was examined 
visually under a metallurgical microscope. The dissolution of brass in 0.1 M HNO3 
produced an etched surface exhibiting exposed alloy phases with well-defined 
boundaries, and retaining the true colour of brass. These features did not appear on 
the surface when brass was subjected to dezincification. Instead the surface exhibited 
a copper-like appearance, as a result of dezincification. Prolonged immersion during 
dezincification produced a thick non-coherent deposit of copper on the surface. 

Polarization behaviour. Brass was anodically polarized under galvanostatic 
conditions at different current densities (0.5-20.0 mA cm -2) in stirred 0.1 M HNO3 
containing either 10 -5 M chloride or 10 -2 M sulphate ions. Individual trials were 



FIG. 3. 

300 

280 

260 

240 

o 

• --- 0.1 M HNO 3 

-~ x--x O.I M HNO3*Chtoride (IO-5M) 
¶o--o O.I M HNOs+SuLphate (IO-2M) 

It/ 
.- 220 
O 

200 

~8o I 
o 5 io 15 20 25 3o 

Immersion time (rain) 

The variation of dissolution potential with immersion time during dezincification 
in stirred acidic chloride and sulphate solutions. 

340 

Fro. 4. 

320 

300 

-~ 260 o f~ r', ~ O. I M 

~ 240 

0.05 M 
._~ ~,.,,.o =o~ Ioz~" 

200 . ~  

180 

160 

140 O 5 I0 15 20 25 30 

Immersion time (rain) 

Potential-time curves of brass during dezincification in stirred nitric acid of various 
concentrations containing 10 -s M chloride ions. 



354 R. K. DINNAPPA and S. M. MAYANNA 

4 2 0  

F[6. 5. 

E 

t~ 

c 

420 

380 

360 

340 

320 

3 0 0  

280 

260 

240 

o 
n n 2 0  m A  

0 0 I I l ~  12 m A  

o,.--- 0 . 5  m A  

220 [ I I I I 
5 I 0 15 20 25 30 

P o L a r i z a t i o n  t i m e  ( ra in )  

The variation of anodic potential with time when brass was polarized anodically 
during dezincification in stirred 0.1 M HNO3 having 10 -5 chloride ions. 

conducted at each applied current density and the variations of anodic potentials 
were recorded as a function of time. As observed during dezincification under free 
dissolution conditions (Fig. 4), anodic polarization also reflected a similar trend in 
variation of potential with time. While time dependent  variations of anodic potential 
remained virtually similar under comparable conditions in both 10 -5 M chloride and 
10 -2 M sulphate solutions, those observed in chloride media are illustrated in Fig. 5. 
As shown in Fig. 5, if the current density was varied from 0.5 to 20.0 mA cm -2, the 
hump of the curve gradually disappeared producing finally a hump-free curve, thus 
indicating the transition of the process from dezincification to simultaneous dissol- 
ution. The occurrence of dezincification at each applied current density was also 
confirmed by analysis of the solution. The steady anodic potentials obtained at 
various current densities were used to construct anodic Tafel plots. Figure 6 
represents Tafel curves derived under the typical conditions both of dezincification 
and of simultaneous dissolution of brass. 

The influence of  inhibitors on corrosion and dezincification of  brass 
Surface active organic compounds such as thiourea (TU),  thioglycolic acid 

(TGA) ,  thioglycol (TG),  n-octyl amine (n-OA),  chloro-acetic acid (CAA),  bromo- 
acetic acid (BAA),  iodo-acetic acid ( IAA),  etc. exhibited a marked effect on kinetics 
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of dissolution and dezincification of brass in acidic chloride and sulphate solutions. 
Figures 7 and 8 illustrate the influence of these inhibitors on the process as a function 
of their concentrat ion in chloride solution while similar observations were also made 
in sulphate solutions. Considering the trend in variation of the dissolution rate, the 
inhibitors could be grouped into two different sets. With the first set to which the 
halo-acetic acids and amines belong, the dissolution rate decreased continuously to a 
minimum value (Fig. 7) while with the second set to which thio compounds  belong, 
the rate showed a gradual decrease followed by a rapid fall (Fig. 8) to a minimum, in 
response to an increase in inhibitor concentration from 10 -7 to 10 -2 M. 

The efficiency of the inhibitor in inhibiting the process was evaluated as 

% p  W o -  W 
- × 100 

w0 

where W and W0 are the values of weight loss of brass obtained with and without the 
inhibitor, respectively. Tables 2 and 3 summarize the data on the relative perform- 
ance on these inhibitors. Under  comparable  conditions, the effectiveness of the 
inhibitor was shown to depend upon the nature of the inhibitor and its concentration. 

Besides their influence on the overall kinetics of the dissolution process, the 
added compounds also affected the ratio of individual dissolution rates of copper  and 
zinc, depending on their concentration in the medium (Figs 7 and 8). Regardless of 
the inhibitor involved, if the inhibitor concentration was low, i.e. when the inhibition 
of the process was less than 80%, the ratio of individual dissolution rates and hence 
the degree of dezincification was hardly affected. However ,  if the inhibitor content 
was sufficient to cause more than 80% inhibition, the dissolution rates of the alloy 
components  were relatively affected, tending towards simultaneous dissolution (i.e. 
r = >0.9) .  Thus at 90% inhibition, at which the net dissolution rate was very low. 
brass experienced simultaneous corrosion. This was observable when the immersion 
period was extended up to 30 h, during which detectable weight loss occurred. 
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DISCUSSION 
The present status of knowledge on the subject advances three hypotheses on the 

mechanism of dezincification of brass; (1) residual copper theory--according to 
which zinc dissolves preferentially leaving behind copper in the crystalline lattice, 
(2) copper redeposition theory- - in  which both copper and zinc dissolve simul- 
taneously followed by redeposition of copper,  and (3) the combined theory of both 

TABLE 2. INHIBITOR EFFICIENCY ( % P )  AT DIFFERENT CONCENTRATIONS OF n-OCTYL AMINE AND 

HALO-ACETIC ACIDS DURING DEZINCIFICATION OF BRASS IN STIRRED 0.1 M H N O  3 CONTAINING 10 -5 M 

CHLORIDE IONS AT 30°C (IMMERSION PERIOD: 4 h)  

Inhibitor 
concentration Inhibitor efficiency (%P) 

(M) n-OA CAA BAA IAA 

10 -7 12.0 

10 -6 28 42.0 

5 X 10 6 49 70.0 

10 -5 11.5 70 90.0 

5 x 10 -5 35.0 83 95.0 

1 x 10 -4 56.0 90 98.0 

5 x 10 -4 10.2 70.2 95 100.0 

1 x 10 -3 30.0 90.6 98 - -  

5 x 10 -3 58.5 96.0 100 - -  

1 x 10 -2 84.0 100.0 100 - -  
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ions. 

(1) and (2). Based on the experimental findings, earlier workers expressed their 
views in support of both copper residual 14-17 and copper redeposition 3'18'19 theories. 

Dezincification occurs under well-defined circumstances in solutions containing 
specific chemical species. Previous work 2° revealed that anions such as thiocyanate, 
bromide and iodide ions did not cause dezincification while chloride or sulphate ions 
in certain concentrations induced dezincification. This observation emphasizes the 
specific action of chloride and sulphate ions on the dissolution of brass in dilute 
HNO3. Anions are known to affect the kinetics of dissolution of metals or alloys due 
to their specific action on the surface. In general the inorganic anions referred to 
above are accelerators of zinc corrosion while the same species are effective 
inhibitors of copper corrosion in acidic media. The observed variation in the kinetics 
of dissolution and the degree of dezincification (Fig. 1) in both chloride and sulphate 

TABLE 3. INHIBITOR EFFICIENCY (%P)  AT VARIOUS CONCENTRATIONS 
OF THIOGLYCOL (TG) ,  THIOGLYCOLIC ACID ( T G A )  AND THIOUREA 

(TU)  DURING DEZINCIFICATION OF BRASS IN 0. I M H N O  3 
CONTAINING 1 0  -5  M chloride ions at 30°C (IMMERSION PERIOD: 4 h) 

Inhibitor 
o concentration Inhibitor efficiency (VoP) 

(M) TG TGA TU 

5 X 10 -7 0 .0  0 .0  15 

1 × 10 -6 10.5 42 .0  81 

5 × 10 -6 30 .2  98 .8  92 

1 x 10 -5 76 .0  98 .0  98 

5 x 10 -5 95 .0  100.0  100 

1 x 10 -4 100 .0  100 .0  100 
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media could be essentially due to the interaction between copper and the anions 
involved. Thus under the circumstances in which dezincification was observed, it can 
be supposed that the process involves the formation of a cuprous compound (CuCI 
or Cu2SO4) in situ at the interface. Unlike CuSCN, CuBr or CuI (which, being 
sparingly soluble, are usually precipitated on the corroding surface), cuprous 
chloride and cuprous sulphate are metastable in aqueous solution 21 and may decom- 
pose in the following ways resulting in redeposition of copper. 3 

Scheme I 

2CuX ~ Cu + C u X  2 (1) 

Scheme II 

4CuX + 0 ~ Cu2 0 + 2CuX 2 (2) 

C u X  2 + CH ---) 2CuX (3) 

CuX2 + Zn ~ ZnX2 + Cu (4) 

( X =  CI- or SO42-). 

These events occur at the interface that serves as a stage for the electrode 
reactions. The formation of a cuprous compound appears to be the basic requirement 
for the observation of dezincification in acidic solutions containing chloride or 
sulphate ions. Therefore, even though both copper and zinc dissolve simultaneously 
from brass, copper can be redeposited resulting in the preferential loss of zinc. Thus 
these arguments favour copper redeposition theory. 

The availability of Cu ÷ ions for the formation of cuprous compounds is possibly 
due to their rapid formation as the intermediate species in the dissolution reaction 22 
followed by rate controlling oxidation of Cu ÷ to Cu 2+. 

Cu(Cu-Zn) ~ Cu ÷ + e- (5) 

Cu ÷ --~ Cu 2+ + e-. (6) 

This suggests that the prior presence of either Cu 2+ or Zn 2+ or both (at low 
concentration) in the medium, as experimented, will not bring about any appreciable 
effect on dezincification. 

The degree of dezincification is dependent on chloride or sulphate concentration 
(Fig. 1). Below a critical concentration of the anions (where the solubility product is 
not reached), the probability of the formation of a cuprous compound is less and 
hence there is little tendency for dezincification. An increase of anion concentration 
above the critical level (where the solubility product conditions are met) promotes 
the chances of formation of cuprous compound which in turn provides more 
favourable conditions for the dezincification process. In addition, depending upon 
the nature of anions involved, the rapid formation of cuprous compound as a result 
of step (5), accompanied by its controlled dissociation steps (1) and (2), permits the 
precipitation and accumulation of Cu2SO4 or CuCI which gets absorbed onto the 
corroding surface and retards the overall rate of the process. If the anion concen- 
tration exceeds a limit (10 -4 for chloride, Fig. 1) the adsorbed species progressively 
covers and then passivates the surface. As tested in solutions having 10 -5 M chloride 
or 10 -2 M sulphate, the steady increase in weight loss with time (Fig. 2) clearly 
indicates the absence of such protective film on the surface during dezincification. 
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The characteristic variation of dissolution potential with immersion time during 
the course of dezincification (in chloride or sulphate solutions) under the accelerated 
conditions of free dissolution (Figs 3 and 4) and anodic polarization (Fig. 5), relates 
to the changes taking place on the surface. The identical trends in potential-time 
relationship reflect essentially the view that the process follows common dissolution 
mechanism under both the conditions. Similar potential variations have also been 
observed by other workers 1° during dezincification of brass under anodic polarization 
in chloride medium. Based on their study, the negative shift of potential in the initial 
stages of the process is attributed to the selective removal of zinc leaving behind 
copper in the alloy matrix. Many investigators 2'9'1°'23'24 in the field have studied the 
subject by different methods and also reported that zinc dissolves preferentially in 
the initial stages of dezincification. The selective attack can exist for a limited period 
until it penetrates to several monolayers on the surface of brass. Further removal of 
zinc by the same process becomes less probable as it needs extra energy for zinc atoms 
to diffuse through the solid phase 5'23 and hence a new mode of attack becomes 
necessary. As a result, after the lapse of certain time, copper also begins to go into 
solution along with zinc at comparatively low rate causing the shift of potentials 
(Figs 3-5) then indicates simultaneous dissolution of copper and zinc. 1° The redepo- 
sition of copper immediately follows simultaneous dissolution leaving behind zinc in 
the solution. In the light of these comments and interpretations, it is proposed that 
the dezincification phenomenon is initiated by selective dissolution of zinc and 
propagated by simultaneous dissolution followed by redeposition of copper. Thus 
both the dissolution mechanisms are expected to operate alternately with time during 
dezincification. 

Due to the establishment of galvanic coupling, preferential dissolution usually 
starts at sites abnormally rich in zinc (active component) such as grain boundaries or 
phases. 25 In 60/40 brass, an alloy of a~-phases free from arsenic, the process may 
initiate on the zinc-rich E-phase which is anodic to the a-phase, leading to preferential 
dissolution of zinc in the initial stages. Since phases in an alloy are interdependent, 
]3-phases or grain boundaries alone will not be sites for preferential dissolution. 26'27 
In the course of time during the process, the attack also affects the other phase, 
spreads throughout the surface and penetrates to a certain depth. Subsequently 
simultaneous dissolution prevails, followed by copper redeposition process. 

Simultaneous dissolution and copper redeposition processes are mutually inde- 
pendent of each other, but both the processes respond to changes in the experimental 
conditions. Thus increase of nitric acid concentration (Fig. 4, Table 1) or anodic 
polarization (Fig. 5) enhances the oxidizing power of the system which tends to 
promote dissolution and prevent redeposition. Therefore, in the present system (free 
from inhibitors) conditions of slow dissolution favoured dezincification while fast 
dissolution ensured simultaneous attack. In pure nitric acid brass undergoes simul- 
taneous dissolution 28 and polarization studies produced an anodic Tafel plot (Fig. 6) 
having a slope of 40 + 5 mV decade -1. Similarly polarization of brass during 
dezincification also produced Tafel curves (of the same slope) quite parallel to that 
obtained in pure nitric acid (Fig. 6). This observation suggests the existence of a 
common mode of dissolution in both the solution conditions and substantiates the 
view that brass components dissolve simultaneously during the propagation stage 
(i.e. steady state potential conditions). Subsequent reaction, i.e. copper redepo- 
sition, takes place as the secondary process. 
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The dependence of inhibitor efficiency or total dissolution rate on the inhibitor 
concentration in the case of halo-acetic acids and amines (Fig. 7) resembles a typical 
adsorption isotherm which suggests that inhibition of the process occurs due to their 
simple molecular adSorption 27 on the surface. But the observed variation of dissol- 
ution kinetics with the concentration of thiocompounds (Fig. 8), a case typical of film 
forming inhibitors, shows that they exercise their action through adsorption followed 
by complex formation on the surface. All the inhibitors used in the study, besides 
dissolution kinetics, have also affected the degree of dezincification (Figs 7 and 8). 
The role of inhibitors in bringing changes in dezincification characterstics is discussed 
below based on the models proposed for the synergistic effects of organic molecules 
and the anions. 29-31 

(a) The presence of the inhibitors in traces can affect the overall dissolution rate 
due to their adsorption at the interface which may not effect the extent of dezincifi- 
cation--Fig. 9, Model I. 

(b) On increasing the inhibitor concentration, the inhibitor molecules tend to 
replace the adsorbed anions, thereby showing the possibility of c0-adsorption of the 
inhibitor molecules and anions--Fig. 9, Model II. The presence of adsorbed 
inhibitor molecules may affect copper redeposition process, causing a change in the 
degree of dezincification. 

(c) When the concentration of the inhibitor is sufficient enough to bring high 
inhibition (>80%), the competitive adsorption of inhibitor molecules predomi- 
nates--Fig. 9, Model III. This type of preferential adsorption effectively hinders the 
adsorption of anions and also affects redeposition process. Under these conditions, 
it is quite possible that brass may dissolve at a very slow rate without any indication 
of dezincification. 

The activity of an inhibitor at the interface (hence its influence on the electrode 
process) is known to depend upon its nature and its concentration. Thus strongly 
adsorbable/complexing type inhibitors such as thiocompounds show more effect on 
dezincification than non-complexing type compounds, like halo-acetic acids. 
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C O N C L U S I O N S  

(1) T h e  f o r m a t i o n  a n d  d i s s o c i a t i o n  o f  c u p r o u s  s u l p h a t e  and  c u p r o u s  c h l o r i d e  

c o n s t i t u t e  an  e s sen t i a l  s t ep  fo r  dez inc i f i c a t i on .  

(2) U n d e r  t h e  tes t  c o n d i t i o n s ,  t h e  o b s e r v e d  d a t a  a re  c o n s i s t e n t  w i th  the  o p e r a t i o n  

o f  b o t h  s e l e c t i v e  d i s s o l u t i o n  ( in i t i a t i on  s t age )  and  s i m u l t a n e o u s  d i s s o l u t i o n  f o l l o w e d  

by c o p p e r  r e d e p o s i t i o n  ( p r o p a g a t i o n  s t age ) ,  a l t e r n a t e l y  wi th  t i m e  d u r i n g  dez inc i f i -  

c a t i on .  

(3) T h e  o c c u r r e n c e  o f  d e z i n c i f i c a t i o n  is c h a r a c t e r i z e d  by  the  p o t e n t i a l - t i m e  

r e l a t i o n s h i p .  

(4) C o n d i t i o n s  o f  fast  d i s s o l u t i o n  f a v o u r  s i m u l t a n e o u s  c o r r o s i o n  wh i l e  s low 

d i s s o l u t i o n  f a v o u r s  d e z i n c i f i c a t i o n  in ac id ic  c h l o r i d e  and  s u l p h a t e  s o l u t i o n s  ( f r ee  

f r o m  inh ib i t o r s ) .  

(5) S t r o n g l y  a d s o r b a b l e  b u t  c o m p l e x i n g  t y p e  i nh ib i t o r s  exh ib i t  m o r e  e f fec t  on  

d e z i n c i f i c a t i o n  t h a n  n o n - c o m p l e x i n g  t y p e  c o m p o u n d s .  
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