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Abstract

On Page 259 of his second notebook [3], Ramanujan recorded many
cubic modular equations of degree 2. In this paper we establish several
cubic modular equations of degree 2 akin to those in Ramanujan’s work.
As an application of our results, we also establish some new P −Q eta-
function identities.
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1. A Family of Cubic Modular Equations

The ordinary hypergeometric series 2F1(a, b; c;x) is defined by

2F1(a, b; c;x) =
∞∑

n=0

(a)n(b)nx
n

(c)n

,
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where

(a)0 = 1, (a)n = a(a+ 1)(a+ 2)...(a+ n− 1), for n ≥ 1, | x |< 1.

Let

Z(r) := Z(r;x) :=2 F1

(
1

r
,
r − 1

r
; 1; x

)
and

qr := qr(x) := exp

(
−π csc

(π
r

)
2F1(

1
r
, r−1

r
; 1; 1− x)

2F1(
1
r
, r−1

r
; 1; x)

)
.

where r = 2, 3, 4, 6 and 0 < x < 1.

Let n denote a fixed natural number, and assume that

n
2F1

(
1
r
, r−1

r
; 1; 1− α

)
2F1

(
1
r
, r−1

r
; 1;α

) =
2F1

(
1
r
, r−1

r
; 1; 1− β

)
2F1

(
1
r
, r−1

r
; 1; β

) , (1.1)

where r = 2, 3, 4 or 6. Then a modular equation of degree n in the theory of

elliptic functions of signature r is a relation between α and β induced by (1.1).

On Pages 257-262 of his second notebook [3, pp. 257-262], Ramanujan gives an

outline of the theories of elliptic functions to alternate bases corresponding to

the classical theory by way of statements of some results. Venkatachaliengar [4]

examined some of these results. Proofs of all these identities can be found in [2,

pp.122-123]. Recently, Adiga, Kim and Naika [1] also established some cubic

modular equations in the theory of signature 3. Now we state a transformation

formula which is useful in establishing several cubic equations of degree 2 in

the theory of signature 3.
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Lemma 1.1. (see [3, p. 258]). If

α := α(q) =
p(3 + p)2

2(1 + p)3
and β := β(q) =

p2(3 + p)

4
, (1.2)

then for 0 ≤ p ≤ 1,

2F1

(
1

3
,
2

3
; 1;α

)
= (1 + p)2F1

(
1

3
,
2

3
; 1; β

)
. (1.3)

For a proof of Lemma 1.1, see the work of Berndt [2, p. 112].

Theorem 1.1. If β is of degree 2 over α in the theory of signature 3, then

(i)

m3 = 3

(
β(1− β)

α(1− α)

) 1
3

((
1− β

α

) 1
3

−
(

β

1− α

) 1
3

)
+

8

m3

(
β(1− β)

α(1− α)

)
, (1.4)

(ii)

m2

(
α(1− α)

β2(1− β)2

) 1
3

= m6

(
α(1− α)

β(1− β)

)
+

4

3
, (1.5)

(iii)

m4

(
β(1− β)

α2(1− α)2

) 1
3

= 16

(
β(1− β)

α(1− α)

)
+
m6

3
, (1.6)

(iv)

8

m3
=
α

β
− 3

(
α(1− α)2

β2(1− β)

) 1
3

, (1.7)

(v)

m3 =
1− β

1− α
− 3

(
β2(1− β)

α(1− α)2

) 1
3

, (1.8)
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(vi)

m3 = 3

(
β(1− β)2

α2(1− α)

) 1
3

− β

α
, (1.9)

(vii)

8

m3
= 3

(
α2(1− α)

β(1− β)2

) 1
3

− 1− α

β
, (1.10)

(viii)

m = 3

(
β

α2

) 1
3

− 4

m2

β

α
(1.11)

(ix)

m2 = 3

(
1− α

(1− β)2

)
− 2

m

(
1− β

1− α

)
, (1.12)

(x) (
β(1− α)2

α2(1− β)

) 1
3

=

(
(α(1− β)2)

1
3 − 3(β2(1− α))

1
3

3(α(1− β)2)
1
3 − (β2(1− α))

1
3

)
(1.13)

and

(xi) (
α(1− β)2

β2(1− α)

) 1
3

=

(
(β(1− α)2)

1
3 − 3(α2(1− β))

1
3

3(β(1− α)2)
1
3 − (α2(1− β))

1
3

)
. (1.14)

Proof of (1.4). From (1.2), by elementary calculations, we have

1− α =
(1− p)2(1 + p)

2(1 + p)3
and 1− β =

(1− p)(2 + p)2

4
(1.15)

Using (1.2) and (1.15) in (1.4), we find that

3

(
β(1− β)

α(1− α)

) 1
3

((
1− β

α

) 1
3

−
(

β

1− α

) 1
3

)
+

8

m3

(
β(1− β)

α(1− α)

)
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= (1 + p)3 = m3.

This completes the proof of (1.4).

The proofs of the identities (1.5) to (1.15) are similar to the proof of (1.4). We

omit the details.

2. P-Q Eta-Function Identities

Following Ramanujan’s work, we define

ϕ(q) = f(q, q) =
∞∑

n=−∞

qn2

,

ψ(q) = f(q, q3) =
∞∑

n=0

q
n(n+1)

2

and

f(−q) = f(−q,−q2) =
∞∑

n=−∞

(−1)nq
n(3n−1)

2

where

(a; q)∞ =
∞∏

n=0

(1− aqn), | q |< 1.

In this section we obtain some new P − Q eta-function identities on em-

ploying modular equations in Section 2 and the following lemma:

Lemma 2.1. For 0 < x < 1,

b(q) = (1− x)
1
3 z =

f 3(−q)
f(−q3)

and c(q) = x
1
3 z =

3q
1
3f 3(−q3)

f(−q)
. (2.1)
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For a proof of Lemma 2.1, see [2, p.109].

Theorem 2.1. (see [3, p. 327]).Let

P =
f(−q2)

q
1
24f(−q3)

and Q =
f(−q)
q

5
24

. (2.2)

Then

(PQ)2 − 9

(PQ)2
=

(
Q

P

)3

−
(
P

Q

)3

. (2.3)

Proof. Using (2.1) in (1.4) and then using (2.2), we obtain

1 =
P 5

Q
+

9P

Q5
+

8P 6

Q6
. (2.4)

On simplification, we obtain (2.3).

Theorem 2.2. Let

P =
ψ4(q)

qψ4(q3)
and Q =

ψ4(q2)

q2ψ4(q6)
. (2.5)

Then

P 2

(
P − 9

P − 1

)
= Q

(
Q− 9

Q− 1

)2

. (2.6)

Proof. Using (2.1) in (1.13), we find that

ϕ4(−q)
ϕ4(−q3)

=
ψ4(q)− 9qψ4(q3)

ψ4(q)− qψ4(q3)
. (2.7)
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Using Entry 24(ii) and (iv) of Chapter 16 of Ramanujan’s second notebook [3,

p. 198] in (2.7), we obtain

f 6(−q)
q

1
2f 6(−q3)

=
ψ2(q)

q
1
2ψ2(q3)

ψ4(q)− 9qψ4(q3)

ψ4(q)− qψ4(q3)
(2.8)

and
f 12(−q2)

f 12(−q6)
=

ψ8(q)

ψ8(q3)

(
ψ4(q)− 9qψ4(q3)

ψ4(q)− qψ4(q3)

)
(2.9)

Using (2.5) in (2.8) and (2.9), we obtain the required result.

Theorem 2.3. Let

P =
ϕ(−q)
ϕ(−q3)

and Q =
ϕ(−q2)

ϕ(−q6)
. (2.10)

Then

P

(
P − 9

P − 1

)2

= Q2

(
Q− 9

Q− 1

)
. (2.11)

The proof of Theorem 2.3 is similar to the proof of Theorem 2.2, so we omit

the details.

Remark. The P −Q eta-function identities (2.6) and (2.12) appear to be new

in the literature.
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