A Note on Cubic Modular Equations of Degree Two*

M. S. Mahadeva Naika ${ }^{\dagger}$
Department of Mathematics, Bangalore University, Central College Campus
Bangalore 560 001, Karnataka State, India

Received June 23, 2004, Accepted January 14, 2005.

Abstract

On Page 259 of his second notebook [3], Ramanujan recorded many cubic modular equations of degree 2 . In this paper we establish several cubic modular equations of degree 2 akin to those in Ramanujan's work. As an application of our results, we also establish some new $P-Q$ etafunction identities.

Keywords and Phrases: Cubic modular equations, Eta-function identities.

1. A Family of Cubic Modular Equations

The ordinary hypergeometric series ${ }_{2} F_{1}(a, b ; c ; x)$ is defined by

$$
{ }_{2} F_{1}(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} x^{n}}{(c)_{n}},
$$

[^0]where
$$
(a)_{0}=1,(a)_{n}=a(a+1)(a+2) \ldots(a+n-1), \text { for } n \geq 1,|x|<1 .
$$

Let

$$
Z(r):=Z(r ; x):={ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; x\right)
$$

and

$$
q_{r}:=q_{r}(x):=\exp \left(-\pi \csc \left(\frac{\pi}{r}\right) \frac{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; x\right)}\right) .
$$

where $r=2,3,4,6$ and $0<x<1$.
Let n denote a fixed natural number, and assume that

$$
\begin{equation*}
{ }_{n} \frac{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; 1-\alpha\right)}{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; \alpha\right)}=\frac{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; 1-\beta\right)}{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; \beta\right)}, \tag{1.1}
\end{equation*}
$$

where $r=2,3,4$ or 6 . Then a modular equation of degree n in the theory of elliptic functions of signature r is a relation between α and β induced by (1.1). On Pages 257-262 of his second notebook [3, pp. 257-262], Ramanujan gives an outline of the theories of elliptic functions to alternate bases corresponding to the classical theory by way of statements of some results. Venkatachaliengar [4] examined some of these results. Proofs of all these identities can be found in [2, pp.122-123]. Recently, Adiga, Kim and Naika [1] also established some cubic modular equations in the theory of signature 3 . Now we state a transformation formula which is useful in establishing several cubic equations of degree 2 in the theory of signature 3 .

Lemma 1.1. (see [3, p. 258]). If

$$
\begin{equation*}
\alpha:=\alpha(q)=\frac{p(3+p)^{2}}{2(1+p)^{3}} \text { and } \beta:=\beta(q)=\frac{p^{2}(3+p)}{4}, \tag{1.2}
\end{equation*}
$$

then for $0 \leq p \leq 1$,

$$
\begin{equation*}
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \alpha\right)=(1+p){ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \beta\right) . \tag{1.3}
\end{equation*}
$$

For a proof of Lemma 1.1, see the work of Berndt [2, p. 112].

Theorem 1.1. If β is of degree 2 over α in the theory of signature 3, then
(i)

$$
\begin{equation*}
m^{3}=3\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{\frac{1}{3}}\left(\left(\frac{1-\beta}{\alpha}\right)^{\frac{1}{3}}-\left(\frac{\beta}{1-\alpha}\right)^{\frac{1}{3}}\right)+\frac{8}{m^{3}}\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right), \tag{1.4}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
m^{2}\left(\frac{\alpha(1-\alpha)}{\beta^{2}(1-\beta)^{2}}\right)^{\frac{1}{3}}=m^{6}\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)+\frac{4}{3} \tag{1.5}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
m^{4}\left(\frac{\beta(1-\beta)}{\alpha^{2}(1-\alpha)^{2}}\right)^{\frac{1}{3}}=16\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)+\frac{m^{6}}{3}, \tag{1.6}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\frac{8}{m^{3}}=\frac{\alpha}{\beta}-3\left(\frac{\alpha(1-\alpha)^{2}}{\beta^{2}(1-\beta)}\right)^{\frac{1}{3}} \tag{1.7}
\end{equation*}
$$

(v)

$$
\begin{equation*}
m^{3}=\frac{1-\beta}{1-\alpha}-3\left(\frac{\beta^{2}(1-\beta)}{\alpha(1-\alpha)^{2}}\right)^{\frac{1}{3}} \tag{1.8}
\end{equation*}
$$

(vi)

$$
\begin{equation*}
m^{3}=3\left(\frac{\beta(1-\beta)^{2}}{\alpha^{2}(1-\alpha)}\right)^{\frac{1}{3}}-\frac{\beta}{\alpha} \tag{1.9}
\end{equation*}
$$

(vii)

$$
\begin{equation*}
\frac{8}{m^{3}}=3\left(\frac{\alpha^{2}(1-\alpha)}{\beta(1-\beta)^{2}}\right)^{\frac{1}{3}}-\frac{1-\alpha}{\beta} \tag{1.10}
\end{equation*}
$$

(viii)

$$
\begin{equation*}
m=3\left(\frac{\beta}{\alpha^{2}}\right)^{\frac{1}{3}}-\frac{4}{m^{2}} \frac{\beta}{\alpha} \tag{1.11}
\end{equation*}
$$

(ix)

$$
\begin{equation*}
m^{2}=3\left(\frac{1-\alpha}{(1-\beta)^{2}}\right)-\frac{2}{m}\left(\frac{1-\beta}{1-\alpha}\right), \tag{1.12}
\end{equation*}
$$

(x)

$$
\begin{equation*}
\left(\frac{\beta(1-\alpha)^{2}}{\alpha^{2}(1-\beta)}\right)^{\frac{1}{3}}=\left(\frac{\left(\alpha(1-\beta)^{2}\right)^{\frac{1}{3}}-3\left(\beta^{2}(1-\alpha)\right)^{\frac{1}{3}}}{3\left(\alpha(1-\beta)^{2}\right)^{\frac{1}{3}}-\left(\beta^{2}(1-\alpha)\right)^{\frac{1}{3}}}\right) \tag{1.13}
\end{equation*}
$$

and
(xi)

$$
\begin{equation*}
\left(\frac{\alpha(1-\beta)^{2}}{\beta^{2}(1-\alpha)}\right)^{\frac{1}{3}}=\left(\frac{\left(\beta(1-\alpha)^{2}\right)^{\frac{1}{3}}-3\left(\alpha^{2}(1-\beta)\right)^{\frac{1}{3}}}{3\left(\beta(1-\alpha)^{2}\right)^{\frac{1}{3}}-\left(\alpha^{2}(1-\beta)\right)^{\frac{1}{3}}}\right) \tag{1.14}
\end{equation*}
$$

Proof of (1.4). From (1.2), by elementary calculations, we have

$$
\begin{equation*}
1-\alpha=\frac{(1-p)^{2}(1+p)}{2(1+p)^{3}} \text { and } 1-\beta=\frac{(1-p)(2+p)^{2}}{4} \tag{1.15}
\end{equation*}
$$

Using (1.2) and (1.15) in (1.4), we find that

$$
3\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)^{\frac{1}{3}}\left(\left(\frac{1-\beta}{\alpha}\right)^{\frac{1}{3}}-\left(\frac{\beta}{1-\alpha}\right)^{\frac{1}{3}}\right)+\frac{8}{m^{3}}\left(\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right)
$$

$$
=(1+p)^{3}=m^{3}
$$

This completes the proof of (1.4).
The proofs of the identities (1.5) to (1.15) are similar to the proof of (1.4). We omit the details.

2. P-Q Eta-Function Identities

Following Ramanujan's work, we define

$$
\begin{aligned}
& \varphi(q)=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}, \\
& \psi(q)=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}
\end{aligned}
$$

and

$$
f(-q)=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}
$$

where

$$
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right),|q|<1
$$

In this section we obtain some new $P-Q$ eta-function identities on employing modular equations in Section 2 and the following lemma:

Lemma 2.1. For $0<x<1$,

$$
\begin{equation*}
b(q)=(1-x)^{\frac{1}{3}} z=\frac{f^{3}(-q)}{f\left(-q^{3}\right)} \quad \text { and } \quad c(q)=x^{\frac{1}{3}} z=\frac{3 q^{\frac{1}{3}} f^{3}\left(-q^{3}\right)}{f(-q)} . \tag{2.1}
\end{equation*}
$$

For a proof of Lemma 2.1, see [2, p.109].

Theorem 2.1. (see [3, p. 327]).Let

$$
\begin{equation*}
P=\frac{f\left(-q^{2}\right)}{q^{\frac{1}{24}} f\left(-q^{3}\right)} \text { and } Q=\frac{f(-q)}{q^{\frac{5}{24}}} \text {. } \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
(P Q)^{2}-\frac{9}{(P Q)^{2}}=\left(\frac{Q}{P}\right)^{3}-\left(\frac{P}{Q}\right)^{3} \tag{2.3}
\end{equation*}
$$

Proof. Using (2.1) in (1.4) and then using (2.2), we obtain

$$
\begin{equation*}
1=\frac{P^{5}}{Q}+\frac{9 P}{Q^{5}}+\frac{8 P^{6}}{Q^{6}} \tag{2.4}
\end{equation*}
$$

On simplification, we obtain (2.3).

Theorem 2.2. Let

$$
\begin{equation*}
P=\frac{\psi^{4}(q)}{q \psi^{4}\left(q^{3}\right)} \quad \text { and } \quad Q=\frac{\psi^{4}\left(q^{2}\right)}{q^{2} \psi^{4}\left(q^{6}\right)} \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
P^{2}\left(\frac{P-9}{P-1}\right)=Q\left(\frac{Q-9}{Q-1}\right)^{2} \tag{2.6}
\end{equation*}
$$

Proof. Using (2.1) in (1.13), we find that

$$
\begin{equation*}
\frac{\varphi^{4}(-q)}{\varphi^{4}\left(-q^{3}\right)}=\frac{\psi^{4}(q)-9 q \psi^{4}\left(q^{3}\right)}{\psi^{4}(q)-q \psi^{4}\left(q^{3}\right)} \tag{2.7}
\end{equation*}
$$

Using Entry 24(ii) and (iv) of Chapter 16 of Ramanujan's second notebook [3, p. 198] in (2.7), we obtain

$$
\begin{equation*}
\frac{f^{6}(-q)}{q^{\frac{1}{2}} f^{6}\left(-q^{3}\right)}=\frac{\psi^{2}(q)}{q^{\frac{1}{2}} \psi^{2}\left(q^{3}\right)} \frac{\psi^{4}(q)-9 q \psi^{4}\left(q^{3}\right)}{\psi^{4}(q)-q \psi^{4}\left(q^{3}\right)} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f^{12}\left(-q^{2}\right)}{f^{12}\left(-q^{6}\right)}=\frac{\psi^{8}(q)}{\psi^{8}\left(q^{3}\right)}\left(\frac{\psi^{4}(q)-9 q \psi^{4}\left(q^{3}\right)}{\psi^{4}(q)-q \psi^{4}\left(q^{3}\right)}\right) \tag{2.9}
\end{equation*}
$$

Using (2.5) in (2.8) and (2.9), we obtain the required result.

Theorem 2.3. Let

$$
\begin{equation*}
P=\frac{\varphi(-q)}{\varphi\left(-q^{3}\right)} \quad \text { and } \quad Q=\frac{\varphi\left(-q^{2}\right)}{\varphi\left(-q^{6}\right)} \tag{2.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
P\left(\frac{P-9}{P-1}\right)^{2}=Q^{2}\left(\frac{Q-9}{Q-1}\right) \tag{2.11}
\end{equation*}
$$

The proof of Theorem 2.3 is similar to the proof of Theorem 2.2, so we omit the details.

Remark. The $P-Q$ eta-function identities (2.6) and (2.12) appear to be new in the literature.

Acknowledgments

The author is grateful to Prof. H. M. Srivastava for his valuable suggestions.

References

[1] C. Adiga, T. Kim and M. S. Mahadeva Naika, Modular equations in the theory of signature 3 and $P-Q$ identities, Adv. Stud. Contemp. Math. 7 (2003), 33-40.
[2] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1994.
[3] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
[4] K. Venkatachaliengar, Development of Elliptic Functions According to Ramanujan, Technical Report 2, Madurai Kamaraj University, Madurai,1988.

[^0]: *2000 Mathematics Subject Classification. Primary 33D15, 33D20; Secondary 11S23.
 ${ }^{\dagger}$ E-mail: msmnaika@rediffmail.com

