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RADIATION AND NON-DARCY EFFECTS ON
CONVECTION IN POROUS MEDIA

N. RUDRAIAH and T. P. SASIKUMAR

UGC-DSA Centre in Fluid Mechanics, Department of Mathematics
Central College, Bangalore University, Bangalore-560001, India

(Received November 2. 1988; in final form April 14, 1989)

Combined conduction. convection and radiation heat transfer in a gray fluid-saturated sparsely packed
porous medium is examined analytically for marginal convection using linear stability analysis. The
effects of boundary and inertia which were absent in the usual Darcy model are considered. The
Milne-Eddington approximation is employed to determine the solutions valid for transparent and
opaque media which absorbs and emits thermal radiation. It is shown that the nature of the bounding
surfaces and radiation significantly influence the critical Rayleigh and wave numbers. The mechanism
for suppressing or augmenting convection is discussed in detail. The results obtained using Galerkin
technique are compared with the existing results of Darcy model and of non-radiating systems and
agreement is found.
KEYWORDS Radiation Non-Darcy Convection Porous media.

INTRODUCTION

It is known that although radiative heat transfer is neglected in homogeneous
reactors, the situation is different in packed bed reactors (Vortmeyer (1972»_ A
large amount of heat is emitted by the surface of the solid particle at high
temperature, since the emitted energy is proportional to T 4

• Therefore, the
temperature gradients in the reaction zones of exothermic reactions lead to
radiative fluxes as they produce conductive fluxes. For radiation, the magnitude
of the fluxes depends mainly on temperature level and surface emissivity. These
fluxes contribute much to heat and mass transfer in porous media. This has
important applications in variety of areas, including collection and storage of
solar energy, processing of glasses and other semi-transparent materials, geother­
mal energy and fibrous and foam insulations. Most of the work on this has been
concerned with problems of combined conduction and radiation in a porous
medium (Vortmeyer (1972), Fernades and Francis (1982) and Ho and Ozisik
(1988». However, heat transfer by combined conduction, convection and
radiation is more likely to occur in many of the practical problems mentioned
above. Inspite of these applications this problem has not been given much
attention.

Recently, Vortmeyer et al. (1988) have studied this heat transfer problem using
Darcy's law which neglects the boundary and inertia effects on fluid 1I0w and heat
transfer. The Darcy model is valid in a densely packed porous medium made up
of uniform spherical particles, for which the porosity and permeability are small.
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54 N. RUDRAIAH AND T.P. SASIKUMAR

To achieve effective insulation and high efficiency in many practical problems
sited above it is advantageous to use special type of solid materials having high
permeability and porosity. In such sparsely packed porous media the boundary
and inertia effects can not be neglected. Beavers and Sparrow (1969) have shown
that though inertia effects are not important in low-porosity porous media they
are significant in high-porosity media. The inertia effects also become important
at high Darcy-Reynolds number. Further, the distortion of velocity at the
boundaries gives rise to the usual viscous force, which was first postulated by
Brinkman (1947). In the absence of radiation, Vafai and Tien (1981), Rudraiah
(1984) and Gill and Minkowycz (1988) have studied convection, incorporating the
effects of boundary and inertia. These effects are also significant on heat transfer
by combined conduction, convection and radiation because of their importance in
engineering applications where high temperature and higher designing accuracy
are required to improve the power systems. The results of earlier work
(Vortmeyer et of. (1988» are not of much use here, because they neglect the
non-Darcy effects. These non-Darcy effects are considered in this paper using
Darcy-Forchheimer-Brinkman model (Gill and Minkowycz (1988».

To bridge the gap between the mathematical complexity of the exact radiative
transfer theory and the need of concise engineering formulae, the two-flux model
(Vortmeyer et of. (1980» is employed to estimate the radiative flux. The complete
set of conservative equations in this case are extremely difficult to solve.
Therefore, these equations are solved analytically adopting Milne-Eddington
approximation considering transparent and opaque media. The medium is
assumed to be gray and black and has constant properties. We ignore the
radiative stress in the momentum equation, because its magnitude is negligible
when compared to the more significant molecular stress (Arpaci and Guzum
(1973». Hence the radiation contribution comes only through the energy
equation. We note that the principle of exchange of stability is valid in the
present problem as in the viscous flow (Arpaci and Guzum (1973». Therefore we
study only the condition for the onset of marginal convection using Galerkin
technique. The critical Rayleigh and wave numbers are obtained, which are
functions of absorptive, radiative intensity and porous parameters. To show that a
single-term Galerkin expansion gives reasonable results, the results obtained by
this method are compared with those obtained using Darcy law and viscous flow
and some important conclusions are drawn.

MATHEMATICAL FORMULATION

Consider an incompressible Boussinesq fluid-saturated high porosity porous layer
of finite depth 'h', confined between two infinite horizontal isothermal and
radiating surfaces heated from below and cooled from above. The lower plate is
kept on the xy-plane and z-axis is vertically upwards. For this physical
configuration, the basic conservative equations with the radiative contribution in
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CONVECfION IN POROUS MEDIA 55

the energy equation are

V·q=O (I)

aq/at + Cb Iql qN'/( = -Vp/p, + pg/p, - vq/k + vV2q (2)

aT/~+~·V)T=K~T+H 0)
p = p,[1 - a(T -- T.)] (4)

The quantities are defined in the nomenclature. Here Cb/Yk = 1.75(1 - cJ»/ cJ>3d,

k = d2cJ>3/175(1 - cJ»2 (Rohsenow and Hartnett (1973».

BASIC STATE

(6)

(5)

(7)

The basic system is quiescent with heat transfer by conduction and radiation given
by

0= H; + Kd 2T
b/dz

2
•

If F is the z-component of the radiative heat flux, then

Hb = -dF/dz.

We may now write (5), using (6), in the integrated form

F- K{3= C

where C is the constant of integration. Here, the basic temperature gradient {3 is
related to the radiative flux, F, which depends on the radiative intensity, I.

The computation of I for gray emitting packed bed is based on the fact that the
particles emit, absorb and reflect heat. In addition, radiative energy may
penetrate the bed through the void volume. This can be analysed by considering
two-flux model, as shown in Figure 1, for which

I(s)=r-r (8)

/ ///Jij1'////////////////J//////J/////J//<
z =h

m~1

m

1r~-1 1;'-1 ~
m -1 CXXXXXXXXXXXX:X::XX:XXX:; Tm-1

z=o
'l777777/7/777/77777777/7/77/7777777777//

FIGURE I Two flux step model

r;;, = Nl-;;'_, + £(1- N)oT~+ 1;;;(1 - N)(I- e)

I;;; = Nl;;;+, + £(1- N)oT~+,+ 1~;(I- N)(I - s)

D
ow

nl
oa

de
d 

by
 [

N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
4:

34
 2

8 
N

ov
em

be
r 

20
12

 



56 N. RUDRAIAH AND T.P. SASIKUMAR

(9)

where rand r are the net forward and reverse respectively. Since the average
diameter of the particles is small compared to the width of the bed, these two
fluxes are related to each other through the set of linear ordinary differential
equations

dl" Ids = -Kar + Kb€aT
4 / 1r - Kgr

dl" Ids = Kar - Kb€aT
4 / 1r + Kgr

where a is the Stefan's constant, the total absorption coefficient Ka , emission
coefficient K; and scattering coefficient Kg are given by (Vortmeyer (1980))

K; = [2(1 + N)2 + (I - N2)(I- €)2(1_ N)j/[(1 + N)2 - (1- N)\I - €)2j(1 + N)d

(10)

Kb = 2[(1 + N)2 - (1- N2)(I_ €)j€(I- N)/[(I + N)2 - (1- N)2(1 - €)2j(1 + N)d

(11)

Kg = 2[(1 + N)2 + (1- N2)j(1 - €)(I- N)/[(I + N)2 - (I - N)(I- €)2j(1 + N)d.

(12)

Coefficients Ka, Kb and Kg depend on the transmittance number N which is a
function of the emissivity € and porosity cp. We see that (K; - Kg) will be the true
absorption coefficient. In this case the scattering coefficient Kg is zero and
absorption coefficient equals emission coefficient, and is given by

K, = K; = 2(1 - N)/(1 + N)d.

Then the radiative heat transfer equations (9) simplify to

dl" Ids = Ka[aT
4/1r - rj

drlds = -K.[aT4 /1r - rj.

Combining these, using (8) and defining the black-body intensity as

B = aT4 / 1r

we get

dl lds= Ka[B -Ij.

(13)

(14)

(15)

(16)

This equation of transfer is analogous to the one given by Kourganoff (1952) in
the case of pure viscous flow. Also the radiative heating rate of the fluid-saturated
porous medium is

H = - I (dI(s)lds) dw (17)

where w is the element of solid angle and the integral is taken over an angle 41r.
In the basic state all the quantities are functions of z only and hence the

equation of transfer (16) takes the form

/13 dl l ds = Ka[B - II· (18)

D
ow

nl
oa

de
d 

by
 [

N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
4:

34
 2

8 
N

ov
em

be
r 

20
12

 



CONVECfION IN POROUS MEDIA 57

Here K. is given by (13) and 1t3 is the direction cosine of the vector s in the
z-direction. Assuming Milne-Eddington approximation, we can obtain the
differential equation for F, using the radiative equation (18) in the form
(Vortmeyer et al. (1988»

d2Fldz2
- A 2F = -A2XC/(1 + X) (19)

where X = 4:n:QI3K.K and Q = (4al:n:)(Tb + T'? which is assumed to be
constant. Solving (7) and (19) using the radiative boundary conditions

we get

dFldz = -2K.hF

dFIdz =2K.hF

at z = 1/2

at z = -1/2
(20)

Here

and

f = (31{3 = L cosh(Az) + M.

L =XI[(2X + V(3 + 3X)/2)sinh(A/2) + cosh(A/2»)

(21)

M =L[V(3 + 3X) sinh(A/2)/2 + cosh(A/2))1X.

The quantities X =4:n:Q 13K.K and A =K.hV'3(1 + X) are the radiative para­
meters which determine the radiative intensity and absorptivity.

LINEAR STABILITY ANALYSIS

On the basic state discussed in the above section we superimpose a small
perturbation of the form

q=q', T= Tb + T', P=Pb+P', H =Hb +H' (22)

where the primes denote the perturbed quantities. Substituting these into (1)-(4),
linearizing, assuming the principle of exchange of stability is valid, eliminating the
pressure and expressing the resulting equations in terms of the z-cornponent of
velocity, W, we obtain the perturbation equations in the form

v4W ' - V2W'lk =- rxgViT' [v

W'{3= KV2T ' + H'.

(23)

(24)

(25)

The contribution of radiative heating rate to the energy equation relates to the
temperature 'through a differential equation under the two approximations,
transparent and opaque, based on the optical thickness, K.h compared to the
wave length, a (Vortmeyer et al. (1988». For the derivation of this relation we
combine (17) and (18) to get

H' = -4:n:K.B + K. f I(s) dw.
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58 N. RUDRAIAH AND T.P. SASIKUMAR

For a transparent medium (Kah« a), the second term in (25) can be neglected
compared to the first term. Hence in the linear analysis using (IS) we get

viw = -4.7lQKaViT'. (26a)

For opaque medium (Kah »a), H in (25) can be expanded in a power series in
terms of K;;I. The resulting series after successive integration with respect to w
using (IS) leads to

ViR' = (4.7lQ/3Ka)V
2(ViT').

On substituting (26a) and (26b) into (24) we get

Vi(W' (3) = KV2(ViT') - 4.7lQKaViT'

for transparent medium and

Vi(W'f3) = KV2(ViT') - (4.7lQ/3Ka)V
2(ViT')

(26b)

(27a)

(27b)

for opaque medium.
The solution of the momentum and the energy equations are assumed to be of

the form

[
W '(X, y, z)] [W(z)]
T'(x,y,z) = T(z) exp(i(lx+my» (28)

where W(z) and T(z) are the amplitude of the perturbed quantities. Substituting
(28) into (23), (27a) and (27b), non-dimensionalizing using the transformation

W--+KW/h, D--+D/h, a-o alh, T--+PhT (29)

we obtain
(D 2_ a2)2W - P(D2 - a2)W = Ra 2T

-Wf = (D 2 - a2 - A 2X/(1 + X»T

for transparent medium and

(30)
(3Ia)

(32)

(33a)

(33b)

-Wf=(1+X)(D2-a2)T (3Ib)

for opaque medium. Here, R = -agph4
/ Kv is the Rayleigh number and P = h2/k

is the porous parameter.
The exact solutions of (3Ia) and (3Ib) are difficult due to the presence of f

Therefore to get an eigenvalue relation for the present problem we use the
Galerkin method. In this method, we multiply (30) by W, (3Ia) and (3Ib) by T,
integrate with respect to z from -1/2 to 1/2 and obtain the equations

«D2W)2 + (202+ p)(DW)2 + (a4 + Pa2)W 2) = Ra 2(WT}

(WTf) = «DT)2 + (a 2+ A 2X/(1 + X»T2)

(WTf) = (I + X)«DTf + a2T2).

We substitute W = CW" T = ET, and eliminate the constants C and E from the
resulting equations and for simplicity neglecting the suffix unity, we get

R, = «D2W)2 + (2a2+ p)(DWf + (a4 + Pa2)W 2)

x «DT)2 + (a2+ A 2X/(l" + X»T2)/a2(WT) (WTf) (34a)
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CONVECfION IN POROUS MEDIA 59

in the transparent approximation and

R; = (1 + X)«D2W)2 + (2a2 + p)(DW)2 + (a4 + Pa2)W2
)

x «DTf + a2T2)/a2 ( W T) ( W Tt> (34b)

in the opaque approximation.

CRITICAL IRAYLEIGH NUMBER

Since the dependence of the values of the critical Rayleigh number on the
boundaries are crucial, we now discuss the problem considering different
boundary conditions. We may consider the three cases: (i) both boundaries free,
(ii) lower boundary rigid and upper boundary free and (iii) both boundaries rigid.
In each case we compute R, and Ro and the results will be discussed in the final
section.

Both Boundaries Free

The boundary conditions are

W=D2W=T=0

In this case we select the trial functions

W = (Z2 -l/4)(Z2 - 5/4),

at z = ±1/2.

T=I/4-z 2

(35)

(36)

satisfying the boundary conditions (35). Substituting (36) in (34a) and (34b),
using (21) and performing integration, we get

and

R, = C[IO + a2 + A 2X /(1 + X)]/J (37a)

R; = (1 + X)C(IO + a2)/J (37b)

where C == 28[3024+ 306(2a2+ P) + 31a2(a 2 + P)] and J = 51a2[17M +
(420L/A7)[(4A 4

- 96A 2 -1440)sinh(A/2) + (720A - A 3)cosh(A/2)]).

Lower Boundary Rigid and Upper Boundary Free

The boundary conditions are

W=DW=T=O

W=D2W= T=O

atz=-1/2

at z = 1/2.
(38)

The suitable trial functions satisfying the boundary conditions (38) are

W = (z + 1/2)'(1- 2z)(1- z), (39)

Substituting (39) into (34a) and (34b), using (21) and performing integration
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60

we get

and

where

and

N. RUDRAIAH AND T.P. SASIKUMAR

R, = U[10 + a2 + A 2X /(1 + X)]/V

Ro =(1 + X)U(10 + a2)/V

U = 28[4536+ 216(2a 2 + P) + 19(a4 + Pa2
)]

v = 39a2[13M + (840L/A7)[A4
- 132A 2

- 1440)sinh(A/2)

+ (00 3 + nOA)cosh(A/2)]].

(40a)

(40b)

Both Boundaries Rigid

The boundary conditions are

W=DW= T=O

we choose the trial functions

atz=±1/2 (41)

W = (Z2 - 1/4)2, T = 1/4 - Z2 (42)

satisfying the boundary conditions (41). Substituting (42) into (34a) and (34b),
using (21) and performing integration, we get

R, = Y[lO + a2 + A 2X /(1 + X)]/Z (43a)
and

where

and

Ro = (1 + X)Y(lO + a2)/Z

Y = 28[504+ 12(2a2 + P) + a2(p + a 2
) ]

(43b)

Z = 27a2[M + (1680L/A7)[(A 3 + 6OA)cosh«A/2) - (A 2 + 1O)sinh(A/2)]].

R, and Ro attains their minimum values R,c and Roc> the critical Rayleigh
numbers for transparent and opaque approximations respectively, at the cor­
responding critical wave numbers a,c and aoc. By assigning values to the physical
parameters and minimizing R with respect to a, both R; and ac are determined for
the above two approximations. The effect of different parameters on the onset of
instability and on the cell size are computed both in transparent and opaque
approximations, for all the three boundary combinations discussed above. The
results are depicted in Figures 2-4 and are discussed in the next section.

RESULTS AND CONCLUSIONS

The effects of radiation, the porous parameter and the boundary combination on
the linear stability of a radiating fluid-saturated porous layer heated from below
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CONVECTION IN POROUS MEDIA 61

'ct

Rigid-Rigid

Rigid -Free

Free - Free

--"'~=~~_]. 10'

FIGURE 2 a"Vs. log(A) for X = 106 and different P.

has been investigated. The problem is solved analytically using a single term
Galerkin procedure. The critical wave number ac and the critical Rayleigh
number R; are computed in both transparent and opaque approximations for all
the three boundary combinations and are depicted in Figures 2-4 and the
following conclusions have been drawn.

In Figure 2, ate is drawn against A for different values of P for transparent
approximation (A < lOS). The effect of A is visible only when X > 103 and ate is
independent of X. From this figure it is clear that both A and P have significant

16

'4

-- Rigid-Rigid

Rigid-Free

- - -- Free - Free

----P.,O'

FIGURE 3 Lo.g(RJ Vs. Log(A) for X = 10" and different P. The lines at the left and right part are
for transparent and opaque approximations respectively. The dolled lines in the middlepart represent
the interpolation of the two approximations where neither of them holds.
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62 N. RUDRAIAH AND T.P. SASIKUMAR

-- Rigid-Rigid
_.- Rigid-Free

Free· Free

... '"-~] X =10"

~2;-~i;-~-!;-~+-~--i6'------""-----;<--'------.!

(AI

FIGURE 4 Log(Rc)Vs. Log(A) for P = 10' and different X. The lines at the left and right part are
for transparent and opaque approximations respectively. The dotted lines in the middle part represent
the interpolation of the two approximations where neither of them holds.

influence in contracting the cells only when l.O<A < 105
. But when A < 1.0 the

contraction of cells is only due to P and radiation has no influence on the cell size.
Boundary effects influence the cell size only for values of A in the range
102 < A < 105

• In particular, in the rigid-free case the cell gets contracted more
than that in the free-free case and it is much more contracted in the rigid-rigid
case (see Figure 2). It is found, from the computed results, that in opaque
approximation the radiative parameters have no effect on the cell size. Thus the
wave number, 0oc, in this approximation coincides with that in a non-radiating
system.

In Figures 3 and 4, the critical Rayleigh numbers, Reo is drawn against A for
different values of P and X. We see that the critical Rayleigh number increases
with A and X. Hence the effect of radiation is to inhibit the onset of convection
both in transparent and opaque approximations. The extent of inhibition depends
on the values of A, X and P. From Figure 3 it is clear that for small values of A
the critical Rayleigh number is independent of X. As A increases R; increases in
transparent approximation but it is independent of A in opaque approximation.
The porous parameter also inhibits the onset of convection. The porous
parameter and radiative intensity significantly effect the onset of convection for
values of A in the range 102<A < lOS, i.e., only in large absorptive transparent
medium.

According to Eq. (21), f3/i3~-l if either A or X tend to zero independently. If
A and X are both greater than unity, there is a boundary layer in which the
variation of temperature is exponential and which tend to a discontinuity as
A~ 00. If X »A2, f3 /i3 become a function of A only; Figure 5 shows a number of
profiles for this limiting case.

These figures also reveal that the opaque medium with rigid-rigid boundaries is
the most stable situation while less absorptive transparent medium with free-free
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CONVECfION IN POROUS MEDIA

o
z

FIGURE 5 fJ/fJ as a function of Z for the limiting case X »A2

63

boundary is the most unstable one. Thus, radiation may be effectively used in the
control of convection. We conclude that for large values of the porous parameter
(P> 105

) the results obtained in the present paper are comparable with those
obtained using Darcy model. Finally we note that although the non-linear inertia
effect is significant in a high porosity porous media it has no effect on the onset of
convection, since the base state is quiescent and the analysis is linear.
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NOMENCLATURE

a dimensionless wave number, ~n2

A radiative parameter determining the absorption, 3Kahv'(1 + X)

B black body intensity, aT4 /lf
Cb drag coefficient

d porous particle diameter

D derivative, dldz
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64 N. RUDRAIAH AND T.P. SASIKUMAR

f non-dimensional temperature gradient, fJ / fj
F z-component of the radiative flux

g gravitational acceleration
h vertical length scale, medium thickness
H rate of radiative heating per unit volume

I radiative intensity

k permeability

K effective thermal diffusivity

K; absorption coefficient, defined by (10)

K b emission coefficient, defined by (11)

Kg scattering coefficient, defined by (12)

I, m horizontal wave numbers in the x- and y-direction

N transmittance number

p pressure

P porous parameter, h2/k

ii Darcy velocity vector, (U, Y, W)

Q assumed as constant, (4a/n)(Tb + T')3

R Rayleigh number, - rxgfjh 4 / K v

s heat content per unit volume

time

T

x,y,z
x

temperature

horizontal and vertical space co-ordinates

nondimensional parameter determining the radiative heating,
4nQ/3KaK

Greek Symbols

ll' coefficient of expansion

fJ basic temperature gradient, dTb/dz

fj mean value of fJ throughout the medium

E emissivity

v kinematic viscosity

p density

a Stefan's constant

IjJ porosity

Operators

liil
<- .. )

YU2 + y 2 + W 2

JiA/2 (...)dz
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Subscripts

b

c

o

s

OC

IC

CONVECTION IN POROUS MEDIA

(~/ax2+ ~/ay2 + ~/az2

(~/ax2+ a2/ay2

basic state

critical

opaque medium

transparent medium

reference state

c:ritical value in opaque medium

c:ritical value in transparent medium
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