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UNIQUENESS OF A MEROMORPHIC FUNCTIONS THAT

SHARE ONE SMALL FUNCTION AND ITS DERIVATIVE.

HARINA P. WAGHAMORE , HUSNA V.

Abstract. In this paper we consider the problem of uniqueness of meromor-

phic functions that share one small function and its derivatives, and obtain
two theorems which improve the result of Qingcai Zhang [11].

1. Introduction

Let f be a non-constant meromorphic function defined in the whole complex
plane C. It is assumed that the reader is familiar with the following notations of
Nevanlinna theory such as T (r, f),m(r, f), N(r, f), S(r, f) and so on, that can be
found, for instance in [1,2].

Let f and g be two non-constant meromorphic functions, a ∈ C ∪ {∞}, we say
that f and g share the value a CM (counting multiplicity) if f−a and g−a have the
same zeroes with the same multiplicities and they share the value a IM (ignoring
multiplicities) if we do not consider the multiplicities. When a = ∞ the zeroes of
f − a means the poles of f(see [7]).

Let k be a non-negative integer or infinity. For any a ∈ C ∪ {∞}, we denote by
Ek(a, f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ k and k+ 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f, g
share the value a with weight k.(see[3],[5]).

We write f and g share (a, k) to mean that f and g share the value a with weight
k. Clearly, if f and g share (a, k), then f and g share (a, p) for all integers p with
0 ≤ p ≤ k. Also, we note that f, g share a value a IM or CM if and only if they
share (a, 0) or (a,∞) respectively.

A function a(z) is said to be a small function of f if a(z) is a meromorphic
function satisfying T (r, a) = S(r, f), i.e,T (r, a) = o(T (r, f)) as r → +∞ possibly
outside of set of finite linear measure. Similarly, we define that f and g share a
small function a IM or CM or with weight k by f − a and g − a sharing the value
0 IM or CM or with weight k respectively.

For any constant a, we denote by Nk)(r,
1

f−a ) the counting function for zeros of

f − a with multiplicity no more than k, and by Nk)(r,
1

f−a ) the corresponding one
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for which multiplicity is not counted. Let N(k(r, 1
f−a ) be the counting function for

zeros of f −a with multiplicity at least k and N (k(r, 1
f−a ) be the corresponding one

for which multiplicity is not counted. Set
Nk(r, 1

f−a ) = N(r, 1
f−a ) +N (2(r, 1

f−a ) + ...+N (k(r, 1
f−a ).

We define

Θ(a, f) = 1− lim sup
r−→∞

N(r, 1
f−a )

T (r, f)
, δ(a, f) = 1− lim sup

r−→∞

N(r, 1
f−a )

T (r, f)
,

We further define

δk(a, f) = 1− lim sup
r−→∞

Nk(r, 1
f−a )

T (r, f)

Clearly,

0 ≤ δ(a, f) ≤ δk(a, f) ≤ δk−1(a, f)... ≤ δ2(a, f) ≤ δ1(a, f) = Θ(a, f).

In additional, we shall also use the following notations:
Let f and g be two non-constant meromorphic functions such that f and g share

1 IM. We denote by NL(r, 1
f−1 ) the counting function for 1-point of both f and g

about which f has larger multiplicity than g, with multiplicity being not counted,
and denote by N11(r, 1

f−1 ) the counting function for common simple 1-point of both

f and g, and denote by N(22(r, 1
f−1 ) the counting function of those same multiplicity

1-point of both f and g and the multiplicity is ≥ 2. In the same way, we can define
NL(r, 1

g−1 ), N11(r, 1
g−1 ), and N(22(r, 1

g−1 ). Especially, if f and g share 1 CM, then

NL(r, 1
g−1 ) = 0.

R.Bruck [4] first considered the uniqueness problems of an entire function sharing
one value with its derivative and proved the following result.
Theorem A. Let f be a entire function which is not constant. If f and f ′ share

the value 1 CM and if N(r, 1
f ′ ) = S(r, f), then f ′−1

f−1 ≡ c for some nonzero constant

c ∈ C \ {0}.
Bruck [4] further posed the following conjecture.

Conjecture 1.1. Let f be an entire function, which is not constant, ρ1(f) be the
first iterated order of f . If ρ1(f) < +∞ and ρ1(f) is not a positive integer, and if f

and f ′ share one value a CM, then f ′−a
f−a ≡ c for some nonzero constant c ∈ C \ {0}.

Yang [8] proved that the conjecture is true if f is an entire function of finite
order. Zhang[10] extended Theorem A to meromorphic functions. Yu[9] recently
considered the problem of an entire or meromorphic function sharing one small
function with its derivative and proved the following two theorems.
Theorem B([9]). Let f be a non-constant entire function and a ≡ a(z) be a
meromorphic function such that a 6≡ 0,∞ and T (r, a) = o(T (r, f)) as r → +∞. If
f − a and f (k) − a share the value 0 CM and δ(0, f) > 3

4 , then f ≡ f (k).
Theorem C([9]). Let f be a non-constant, non-entire meromorphic function and
a ≡ a(z) be a meromorphic function such that a 6≡ 0,∞ and T (r, a) = o(T (r, f))
as r → +∞. If
(i) f and a have no common poles,
(ii) f − a and f (k) − a share the value 0 CM,
(iii) 4δ(0, f) + 2Θ(∞, f) > 19 + 2k,
then f ≡ f (k) where k is a positive integer.
In the same paper, Yu[9] further posed the following open questions.



EJMAA-2016/4(2) UNIQUENESS OF A MEROMORPHIC FUNCTIONS THAT SHARE ... 27

(i) Can a CM shared be replaced by an IM shared value ?
(ii) Can the condition δ(0, f) > 3

4 of Theorem B be further relaxed ?
(iii) Can the condition (iii) of Theorem C be further relaxed ?
(iv) Can in general the condition (i) of Theorem C be dropped ?
Lahiri[5] improved the results of Zhang[10] with weighted shared value obtained

the following two theorems.
Theorem D([5]). Let f be a non-constant meromorphic function and k be a
positive integer. If f and f (k) share (1,2) and

2N(r, f) +N2(r,
1

f (k)
) +N2(r,

1

f
) < (λ+ o(1))T (r, f (k))

for r ∈ I, where 0 < λ < 1 and I is a set of infinite linear measure, then f(k)−1
f−1 ≡ c

for some constant c ∈ C \ {0}.
Theorem E([5]). Let f be a non-constant meromorphic function and k be a
positive integer. If f and f (k) share (1,1) and

2N(r, f) +N2(r,
1

f (k)
) + 2N(r,

1

f
) < (λ+ o(1))T (r, f (k))

for r ∈ I, where 0 < λ < 1 and I is a set of infinite linear measure, then f(k)−1
f−1 ≡ c

for some constant c ∈ C \ {0}.
In the same paper Lahiri[5] also obtained the following result which is an im-

provement of Theorem C.
Theorem F([5]). Let f be a non-constant meromorphic function and k be a
positive integer. Also let a ≡ a(z)( 6≡ 0,∞) be a meromorphic function such that
T (r, a) = S(r, f). If

(i) a has no zero(pole) which is also a zero(pole) of f or f (k) with the same
multiplicity.

(ii) f − a and f (k) − a share (0,2) CM,
(iii) 2δ2+k(0, f) + (4 + k)Θ(∞, f) > 5 + k,

then f ≡ f (k).
In 2005, Zhang[11] improved the above results and proved the following theorems.

Theorem G([11]). Let f be a non-constant meromorphic function and k(≥ 1), l(≥
0) be integers. Also, let a ≡ a(z)(6≡ 0,∞) be a meromorphic function such that
T (r, a) = S(r, f). Suppose that f − a and f (k) − a share (0, l). If l ≥ 2
and

2N(r, f) +N2(r,
1

f (k)
) +N2(r,

1

(f/a)′
) < (λ+ o(1))T (r, f (k)), (1)

or l = 1 and

2N(r, f) +N2(r,
1

f (k)
) + 2N(r,

1

(f/a)′
) < (λ+ o(1))T (r, f (k)), (2)

or l = 0, i.e, f − a and f (k) − a share the value 0 IM and

4N(r, f) + 3N2(r,
1

f (k)
) + 2N(r,

1

(f/a)′
) < (λ+ o(1))T (r, f (k)) (3)

for r ∈ I, where 0 < λ < 1 and I is a set of infinite linear measure, then f(k)−a
f−a ≡ c

for some constant c ∈ C \ {0}.
Theorem H([11]). Let f be a non-constant meromorphic function and k(≥ 1), l(≥
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0) be integers. Also let a ≡ a(z)(6≡ 0,∞) be a meromorphic function such that
T (r, a) = S(r, f). Suppose that f − a and f (k) − a share (0, l). If l ≥ 2 and

(3 + k)Θ(∞, f) + 2δ2+k(0, f) > k + 4, (4)

or l = 1 and

(4 + k)Θ(∞, f) + 3δ2+k(0, f) > k + 6, (5)

or l = 0 ie f − a and f (k) − a share the value 0 IM and

(6 + 2k)Θ(∞, f) + 5δ2+k(0, f) > 2k + 10, (6)

then f ≡ f (k).
In this paper we pay our attention to the uniqueness of more generalised form of a
function namely fn and (f (k))msharing a small function for two arbitrary positive
integer n and m.
Theorem 1.1. Let f be a non-constant meromorphic function and k(≥ 1), n(≥
1),m(≥ 2), l(≥ 0) be integers. Also let a ≡ a(z)( 6≡ 0,∞) be a meromorphic function
such that T (r, a) = S(r, f). Suppose that fn − a and (f (k))m − a share (0, l).
If l ≥ 2 and

2

m
N(r, f) +

2

m
N(r,

1

f (k)
) +N2(r,

1

(f/a)′
) < (λ+ o(1))T (r, f (k)) (7)

or l = 1 and

2

m
N(r, f) +

2

m
N(r,

1

f (k)
) + 2N(r,

1

(f/a)′
) < (λ+ o(1))T (r, f (k)) (8)

or l = 0 ie f − a and (f (k))m − a share the value 0 IM and

4

m
N(r, f) +

6

m
N(r,

1

f (k)
) + 2N(r,

1

(f/a)′
) < (λ+ o(1))T (r, f (k)) (9)

for r ∈ I, where 0 < λ < 1 and I is a set of infinite linear measure, then (f(k))m−a
fn−a ≡ c

for some constant c ∈ C \ {0}.
Theorem 1.2. Let f be a non-constant meromorphic function and k(≥ 1), n(≥
1),m(≥ 2), l(≥ 0) be integers. Also let a ≡ a(z)( 6≡ 0,∞) be a meromorphic function
such that T (r, a) = S(r, f). Suppose that fn − a and (f (k))m − a share (0, l).
If l ≥ 2 and

(3 + 2k)Θ(∞, f) + 2Θ(0, f) + 2δ1+k(0, f) > 2k + 7− n (10)

or l = 1 and

(4 + 2k)Θ(∞, f) + 4Θ(0, f) + 2δ1+k(0, f) > 2k + 10− n (11)

or l = 0 ie f − a and (f (k))m − a share the value 0 IM and

(6 + 4k)Θ(∞, f) + 6Θ(0, f) + δ1+k(0, f) > 16 + 4k − n, (12)

then fn ≡ (f (k))m.
From Theorem 1.2 we have the following corollary.
Corollary 1.3. Let f be a non-constant entire function and a ≡ a(z)(6= 0,∞) be a
meromorphic function such that T (r, a) = S(r, f). If fn − a and (f (k))m − a share
the value 0 CM and δ(0, f) > 1− n

2 , or if fn − a and (f (k))m − a share the value 0

IM and δ(0, f) > 1− n
4 , then fn ≡ (f (k))m.
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2. Main Lemmas

Lemma 2.1[5]. Let f be a non-constant meromorphic function, k be a positive
integer,then

Np(r,
1

f (k)
) ≤ Np+k(r,

1

f
) + kN(r, f) + S(r, f)

Lemma 2.2[7]. Let f be a non-constant meromorphic function, n be a positive
integer. P (f) = anf

n + an−1f
n−1 + ... + a1f where ai is a meromorphic function

such that T (r, ai) = S(r, f)(i = 1, 2, ...n) Then T (r, P (f)) = nT (r, f) + S(r, f).

3. Proof of Theorem 1.1

Let F = fn

a , G = (f(k))m

a , then F − 1 = fn−a
a , G− 1 = (f(k))m−a

a . Since fn − a
and (f (k))m−a share (0, l), F and G share (1, l) except the zeros and poles of a(z).
Define

H = (
F ′′

F ′
− 2F ′

F − 1
)− (

G′′

G′
− 2G′

G− 1
), (13)

we have the following two cases to investigate
Case 1. H ≡ 0. Integration yields

1

F − 1
≡ C 1

G− 1
+D, (14)

where C and D are constants and C 6= 0. If there exists a pole z0 of f with
multiplicity p which is not the pole and zero of a(z), then z0 is the pole of F with
multiplicity p and the pole of G with multiplicity p+k. This contradicts with (14).
So

N(r, f) ≤ N(r, a) +N(r,
1

a
) = S(r, f), (15)

N(r, F ) = S(r, f) N(r,G) = S(r, f)

(14) also shows F and G share the value 1 CM. Next we prove D = 0. We first
assume that D 6= 0, then

1

F − 1
≡
D(G− 1 + C

D )

G− 1
(16)

So,

N(r,
1

G− 1 + C
D

) = N(r, F ) = S(r, f) (17)

If C
D 6= 1, by the second fundamental theorem and (15),(17) and S(r,G) = S(r, f),

we have

T (r,G) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G− 1 + C
D

) + S(r,G)

≤ N(r,
1

G
) + S(r, f) ≤ T (r,G) + S(r, f)

So, T (r,G) = N(r,
1

G
) + S(r, f), (18)

i.e, T (r, (f (k))m) = N(r, 1
(f(k))m

) + S(r, f)
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mT (r, (f (k))) = N(r, 1
f(k) ) + S(r, f).

this contradicts with conditions (1),(2) and (3) of this theorem.
If C

D = 1, from (16) we know

1

F − 1
≡ C G

G− 1

then

(F − 1− 1

C
)G = − 1

C
.

Noticing that F = fn

a , G = (f(k))m

a , wehave

1

fn(fn − (1 + 1
C )a)

≡ −C
a2

.
(f (k))m

fn
(19)

By Lemma 2.2 and (15) and (19), then

2T (r, fn) = T (r, fn(fn − (1 +
1

C
)a)) + S(r, f) (20)

2nT (r, f) = T (r,
1

fn(fn − (1 + 1
C )a)

) + S(r, f)

= T (r,
(f (k))m

fn
) + S(r, f)

≤ N(r,
1

fn
) +mN(r, f (k)) + S(r, f)

≤ nN(r,
1

f
) + S(r, f)

≤ nT (r, f) + S(r, f)

So, nT (r, f) = S(r, f), which is impossible. Hence D=0, and G−1
F−1 ≡ C, ie,

(f(k))m−a
fn−a ≡ C. This is just the conclusion of this theorem.

Case 2.H 6≡ 0, From (13) it is easy to see that m(r,H) = S(r, f).
Subcase 2.1. l ≥ 1. From (13) we have

N(r,H) ≤ N(r, F ) +N (l+1(r,
1

F − 1
) +N (2(r,

1

F
) +N (2(r,

1

G
)

+N0(r,
1

G′
) +N(r, a) +N(r,

1

a
).

(21)

where N0(r, 1
F ′ ) denotes the counting function of the zeros of F ′ which are not

the zeros of F and F − 1, and N0(r, 1
F ′ ) denotes its reduced form. In the same

way, we can define N0(r, 1
G′ ) and N0(r, 1

G′ ), Let z0 be a simple zero of F − 1 but
a(z0) 6= 0,∞, then z0 is also the simple zero of G− 1. By calculating z0 is the zero
of H, So

N1)(r,
1

F − 1
) ≤ N(r,

1

H
) +N(r, a) +N(r,

1

a
) ≤ N(r,H) + S(r, f) (22)
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Noticing that N1)(r,
1
G ) = N1)(r,

1
F ) + S(r, f)

we have

N(r,
1

G− 1
) = N1)(r,

1

F − 1
) +N (2(r,

1

F − 1
)

≤N(r, F ) +N (l+1(r,
1

F − 1
) +N (2(r,

1

F − 1
)

+N (2(r,
1

F
) +N (2(r,

1

G
) +N0(r,

1

F ′
) +N0(r,

1

G
) + S(r, f)

(23)

By the second fundamental theorem and (23) and noticing

N(r, F ) = N(r,G) + S(r, f),

then

T (r,G) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G− 1
)−N0(r,

1

G′
) + S(r,G)

≤ 2N(r, F ) +N(r,
1

G
) +N (2(r,

1

G
) +N (2(r,

1

F
)

+N (l+1(r,
1

F − 1
) +N (2(r,

1

F − 1
) +N0(r,

1

F ′
) + S(r, f).

(24)

While l ≥ 2,

N (2(r,
1

F
) +N (l+1(r,

1

F − 1
) +N (2(r,

1

F − 1
) +N0(r,

1

F ′
) ≤ N2(r,

1

F ′
), (25)

So

T (r,G) ≤ 2N(r, F ) +N2(r,
1

G
) +N2(r,

1

F ′
) + S(r, f)

i.e,

mT (r, f (k)) ≤ 2N(r, f) +N2(r,
1

(f (k))m
) +N2(r,

1

( fn

a )′
) + S(r, f)

T (r, f (k)) ≤ 2

m
N(r, f) +

2

m
N(r,

1

f (k)
) +N2(r,

1

( fn

a )′
) + S(r, f)

this contradicts with (1).
While l = 1, (25) turns into

N (2(r,
1

F
) +N (l+1(r,

1

F − 1
) +N (2(r,

1

F − 1
) +N0(r,

1

F ′
) ≤ 2N(r,

1

F
)

Similarly as above , we have

T (r, f (k)) ≤ 2

m
N(r, f) +

2

m
N(r,

1

f (k)
) + 2N(r,

1

( fn

a )′
) + S(r, f)

This contradicts with (2).
Subcase 2.2. l = 0. In this case, F and G share 1 IM except the zeros and poles
of a(z). Let z0 be the zero of F − 1 with multiplicity p and the zero of G− 1 with
multiplicity q.

We denote by N
1)
E (r, 1

F ) the counting function of the zeros of F −1 where p−q = 1;

by N
2)
E (r, 1

F ) the counting function of the zeros of F − 1 where p = q ≥ 2; by

NL(r, 1
F ) the counting function of the zeros of F − 1 where p > q ≥ 1, each point
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in these counting functions is counted only once. In the same way, we can define

N
1)
E (r, 1

G ),N
(2
E (r, 1

G ) and NL(r, 1
G ). It is easy to see that

N
1)
E (r,

1

F − 1
) = N

1)
E (r,

1

G− 1
) + S(r, f),

N
2)

E (r,
1

F − 1
) = N

(2

E (r,
1

G− 1
) + S(r, f),

N(r,
1

F − 1
) = N(r,

1

G− 1
) + S(r, f)

= N
1)
E (r,

1

F − 1
) +N

(2
E (r,

1

F − 1
) +NL(r,

1

F − 1
)

+NL(r,
1

G− 1
) + S(r, f)

(26)

From (13) we have now

N(r,H) ≤ N(r, F ) +N (2(r,
1

F
) +N (2(r,

1

G
) +NL(r,

1

F − 1
)

+NL(r,
1

G− 1
) +N0(r,

1

F ′
) +N0(r,

1

G′
) + S(r, f).

(27)

In this case, (22) is replaced by

N
1)
E (r,

1

F − 1
) ≤ N(r,H) + S(r, f). (28)

From (26),(27) and (28), we have

N(r,
1

G− 1
) ≤ N(r, F ) +N (2(r,

1

F
) +N (2(r,

1

G
) +N

(2

E (r,
1

F − 1
)

+ 2NL(r,
1

F − 1
) + 2NL(r,

1

G− 1
) +N0(r,

1

F ′
)

+N0(r,
1

G′
) + S(r, f)

≤ N(r, F ) + 2N(r,
1

F ′
) + 2NL(r,

1

G− 1
)

+N (2(r,
1

G
) +N0(r,

1

G′
) + S(r, f)

By the second fundamental theorem, then

T (r,G) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G− 1
)−N0(r,

1

G′
) + S(r,G)

≤ 2N(r,G) + 2N(r,
1

F ′
) +N(r,

1

G
) + 2N(r,

1

G′
) + S(r, f)

From Lemma 2.1 for p = 1, k = 1 we know

N(r,
1

G′
) ≤ N2(r,

1

G
) +N(r,G) + S(r,G),

So,

T (r,G) ≤ 4N(r, F ) + 3N2(r,
1

G
) + 2N(r,

1

F ′
) + S(r, f)
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i.e,

mT (r, f (k)) ≤ 4N(r, f) + 3N2(r,
1

(f (k))m
) + 2N(r,

1

( fn

a )′
) + S(r, f).

T (r, f (k)) ≤ 4

m
N(r, f) +

6

m
N(r,

1

f (k)
) + 2N(r,

1

( fn

a )′
) + S(r, f)

This contradicts with (3). The proof is complete.

4. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. We define F and G and (13) as
above, and we also distinguish two cases to discuss.
Case 3. H ≡ 0. We also have (14). From (15) we know that Θ(∞, f) = 1, and
from (4),(5) and (6), We further know δ1+k(0, f) > 1 − n

2 . Assume that D 6= 0,
then

−D(F − 1− 1
D )

F − 1
≡ C 1

G− 1
,

so

N(r,
1

F − 1− 1
D

) = N(r,G) = S(r, f).

If D 6= −1, using the second fundamental theorem for F, similarly as (18)
we have T (r, F ) = N(r, 1

F ) + S(r, f),

i.e., T (r, fn) = N(r, 1
fn ) + S(r, f),

nT (r, f) = N(r, 1f ) + S(r, f)

Hence Θ(0, f) = 0, this contradicts with Θ(0, f) ≥ δ1+k(0, f) > 1− n
2 .

If D = −1, then N(r, 1
F ) = S(r, f), i.e., N(r, 1f ) = S(r, f), and

F

F − 1
≡ C 1

G− 1
.

Then F (G− 1− C) ≡ −C
and thus,

(f (k))m((f (k))m − (1 + C)a) ≡ −C a
2(f (k))m

fn
. (29)

As same as (20), by Lemma 2.2 and (15) and N(r, 1f ) = S(r, f). from (29)

we have

2T (r, (f (k))m) = T (r,
(f (k))m

f
) + S(r, f)

= N(r,
(f (k))m

f
) + S(r, f)

≤ mkN(r, f) +mN(r,
1

f
) + S(r, f)

= S(r, f)
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So, T (r, (f (k))m) = S(r, f) and T (r, (f
(k))m

f ) = S(r, f).

Hence

T (r, fn) ≤ T (r,
fn

(f (k))m
) + T (r, (f (k))m) +O(1)

= T (r,
(f (k))m

fn
) +mT (r, f (k)) +O(1)

= S(r, f),

this is impossible. Therefore D = 0, and from (14) then

G− 1 ≡ 1

C
(F − 1)

If C 6= 1, then G = 1
C (F − 1 + C),

and N(r, 1
G ) = N(r, 1

F−1+C )

By the second fundamental theorem and (15) we have

T (r, F ) ≤ N(r, F ) +N(r,
1

F
) +N(r,

1

F − 1 + C
) + S(r,G)

≤ N(r,
1

F
) +N(r,

1

G
) + S(r, f)

By Lemma 2.1 for p = 1 and (15), we have

nT (r, f) ≤ N(r,
1

fn
) +N(r,

1

(f (k))m
) + S(r,G)

≤ N(r,
1

f
) +N(r,

1

f (k)
) + S(r, f)

≤ 2N1+k(r,
1

f
) + S(r, f)

Hence δ1+k(0, f) ≤ 1− n
2 . This is a contradiction with δ1+k(0, f) ≤ 1− n

2 . So C = 1

and F ≡ G, i.e., fn = (f (k))m. This is just the conclusion of this theorem.
Case 4. H 6≡ 0
Subcase 4.1 l ≥ 1 As similar as Subcase 2.1, From (21) and (22) we have

N(r,
1

F − 1
) +N(r,

1

G− 1
) = N1)(r,

1

F − 1
) +N (2(r,

1

F − 1
) +N(r,

1

G− 1
)

≤ N(r, F ) +N (2(r,
1

F
) +N (2(r,

1

G
) +N (l+1(r,

1

G− 1
)

+N (2(r,
1

G− 1
) +N(r,

1

G− 1
) +N0(r,

1

F ′
)

+N0(r,
1

G′
) + S(r, f)

While l ≥ 2,

N (l+1(r,
1

G− 1
) +N (2(r,

1

G− 1
) +N(r,

1

G− 1
) ≤ N(r,

1

G− 1
) ≤ T (r,G) +O(1),

So,

N(r,
1

F − 1
) +N(r,

1

G− 1
) ≤ N(r, F ) +N (2(r,

1

F
) +N (2(r,

1

G
)

+N0(r,
1

F ′
) +N0(r,

1

G′
) + T (r,G) + S(r, f).
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By the second fundamental theorem, we have

T (r, F ) + T (r,G) ≤ N(r, F ) +N(r,G) +N(r,
1

F
) +N(r,

1

G
) +N(r,

1

F − 1
)

+N(r,
1

G− 1
)−N0(r,

1

F ′
)−N0(r,

1

G′
) + S(r, F ) + S(r,G)

≤ 3N(r, F ) +N2(r,
1

F
) +N2(r,

1

G
) + T (r,G) + S(r, f),

So, T (r, F ) ≤ 3N(r, F ) +N2(r,
1

F
) +N2(r,

1

G
) + S(r, f),

i.e, nT (r, f) ≤ 3N(r, f) +N2(r,
1

f
) +N2(r,

1

(f (k))m
) + S(r, f)

nT (r, f) ≤ 3N(r, f) +N2(r,
1

f
) + 2N(r,

1

f (k)
) + S(r, f)

By Lemma 2.1 for p = 2 we have

nT (r, f) ≤ (3 + 2k)N(r, f) + 2N(r,
1

f
) + 2N1+k(r,

1

f
) + S(r, f)

So, (3 + 2k)Θ(∞, f) + 2Θ(0, f) + 2δ1+k(0, f) ≤ 7 + 2k − n.
This contradicts with (4).
While l = 1,

N (l+1(r,
1

G− 1
) +N(r,

1

G− 1
) ≤ N(r,

1

G− 1
) ≤ T (r,G) +O(1),

so by Lemma 2.1 for p = 1, k = 1, we have

N(r,
1

F − 1
) +N(r,

1

G− 1
) ≤ N(r, F ) +N (2(r,

1

F
) +N (2(r,

1

G
) +N (2(r,

1

F − 1
) +N0(r,

1

F ′
)

+N0(r,
1

G′
) + T (r,G) + S(r, f).

≤ N(r, F ) +N (2(r,
1

G
) +N(r,

1

F ′
) +N0(r,

1

G′
) + T (r,G) + S(r, f)

≤ 2N(r, F ) +N (2(r,
1

G
) +N2(r,

1

F
) +N0(r,

1

G′
) + T (r,G) + S(r, f)

As same as above, by the second fundamental theorem we have

T (r, F ) + T (r,G) ≤ 4N(r, F ) + 2N2(r,
1

F
) +N2(r,

1

G
) + T (r,G) + S(r, f),

so

T (r, F ) ≤ 4N(r, F ) + 2N2(r,
1

F
) +N2(r,

1

G
) + S(r, f),

i.e.,

nT (r, f) ≤ 4N(r, f) + 2N2(r,
1

fn
) +N2(r,

1

(f (k))m
) + S(r, f),

nT (r, f) ≤ 4N(r, f) + 4N(r,
1

f
) + 2N(r,

1

f (k)
) + S(r, f)

≤ 4N(r, f) + 4N(r,
1

f
) + 2{N1+k(r,

1

f
) + kN(r, f)}+ S(r, f)
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By Lemma 2.1 for p=2 we have

nT (r, f) ≤ (4 + 2k)N(r, f) + 2N1+k(r,
1

f
) + 4N(r,

1

f
) + S(r, f)

So,

(4 + 2k)Θ(∞, f) + 4Θ(0, f) + 2δ1+k(0, f) ≤ 10 + 2k − n

This contradicts with (5).
Subcase 4.2. l = 0. From (26),(27) and (28) and Lemma 2.1 for p = 1, k = 1,
noticing

N
(2
E (r,

1

G− 1
) +NL(r,

1

G− 1
) +N(r,

1

G− 1
) ≤ N(r,

1

G− 1
) ≤ T (r,G) + S(r, f)

then

N(r,
1

F − 1
) +N(r,

1

G− 1
) = N

1)
E (r,

1

F − 1
) +N

(2
E (r,

1

F − 1
) +NL(r,

1

F − 1
) +NL(r,

1

G− 1
)

+N(r,
1

G− 1
)

≤ N(r, F ) +N (2(r,
1

F
) +N (2(r,

1

G
) + 2NL(r,

1

F − 1
) +NL(r,

1

G− 1
)

+N
(2

E (r,
1

G− 1
) +NL(r,

1

G− 1
) +N(r,

1

G− 1
) +N0(r,

1

F ′
) +N0(r,

1

G′
)

+ S(r, f)

≤ N(r, F ) + 2N(r,
1

F ′
) +N(r,

1

G′
) + T (r,G) + S(r, f)

≤ 4N(r, F ) + 2N2(r,
1

F
) +N2(r,

1

G
) + T (r,G) + S(r, f)

As same as above, by the second fundamental theorem,we can obtain

T (r, F ) + T (r,G) ≤ 6N(r, F ) + 3N2(r,
1

F
) + 2N2(r,

1

G
) + T (r,G) + S(r, f)

So

T (r, F ) ≤ 6N(r, F ) + 3N2(r,
1

F
) + 2N2(r,

1

G
) + S(r, f),

nT (r, f) ≤ 6N(r, f) + 6N(r,
1

fn
) + 2N2(r,

1

(f (k))m
) + S(r, f)

nT (r, f) ≤ 6N(r, f) + 6N(r,
1

f
) + 4N(r,

1

f (k)
) + S(r, f)

By Lemma 2.1 for p = 2 we have

nT (r, f) ≤ (6 + 4k)N(r, f) + 6N(r,
1

f
) + 4N1+k(r,

1

f
) + S(r, f)

(6 + 4k)Θ(∞, f) + 6Θ(0, f) + 4δ1+k(0, f) ≤ 16 + 4k − n

this contradicts with (6). Now the proof has been completed.
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