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Abstract: A function f : V → {−1, 0, 1} is an affirmative dominating function of graph G
satisfying the conditions that for every vertex u such that f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 1 and

∑
u∈N(v) f(u) ≤ 1 for every v ∈ V . The affirmative domination

number γa(G) =max{w(f) : f is affirmative dominating function}. In this paper, we initiate
the study of affirmative and strongly affirmative dominating functions. Here, we obtain some
properties of these new parameters and also determine exact values of some special classes of
graph.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) = V of order |V | = n, edge set
E(G) = E of size |E| = m and let v be a vertex of V . The open neighborhood of v is N(v) =
{u ∈ V : uv ∈ E(G)} and closed neighborhood of v is N [v] = N(v) ∪ {v}. For more details
about the basic definition and terminologies which does not appear here, we refer to Harary [3].

Definition 1.1. A function f : V → {0, 1} which assigns to each vertex of a graph an element
of the set {0, 1}, then f is a dominating function if

∑
u∈N [v] f(u) ≥ 1 for every v ∈ V . The

domination number denoted by γ(G) is the minimum weight of the dominating function on G.

Definition 1.2. A dominating function f is said to be maximal if there exists no dominating
function g such that f 6= g and g(v) ≥ f(v) for every v ∈ V . The literature on this subject has
been surveyed and detailed in the two books by Haynes et al. [5] and [6].

Allowing a negative weight of −1 motivated the definition of minus domination function in
[9] as a function f : V → {−1, 0, 1} satisfying

∑
u∈N [v] f(u) ≥ 1 for every v ∈ V . The minus

domination number denoted by γ−(G) of graph G is the minimum weight of minus dominat-
ing function on G. There are several graphs with minus domination number which is positive,
negative or zero. Many bounds for γ−(G) were studied in [10] and [11].

Definition 1.3. A function f : V → {−1, 0, 1} is a minus total dominating function of graph G,
if
∑

u∈N(v) f(u) ≥ 1 for every v ∈ V . The minus total domination number denoted by γ−t (G)
of graph G is the minimum weight of minus total dominating function on G. Harris et al. [4]
introduced the concept of minus total dominating function and has been extensively studied in
[2], [7] and [8].

In this paper, we initiate the study of a new graph parameter by changing “ ≥ ” to “ ≤ ” in
the definition of minus total domination number with a restriction of a vertex assigned 0 being
adjacent to at least one vertex assigned 1.

Definition 1.4. A function f : V → {−1, 0, 1} is an affirmative dominating function (ADF) of
G satisfying the conditions that for every vertex u such that f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 1 and

∑
u∈N(v) f(u) = f(N(v)) ≤ 1 for every v ∈ V . The affirmative

domination number γa(G) =max{w(f) : f is affirmative dominating function}.

In ADF, the function f instead of v ∈ N(v), if we use v ∈ N [v], then f is called strongly
affirmative dominating function (SADF). The maximum of the values of f(V ), taken over all
SADF of f is called a strongly affirmative domination number γsa(G) of a graph G.

The motivation for studying these parameters may be explained through modelling perspec-
tive. Let us consider this illustration: by assigning the values−1, 0 or 1 to the vertices of a graph
we can model networks of people or organizations in which global decision must be made in
terms of negative, neutral or positive responses or preferences. We assume that each individual
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has one vote, and each has an initial opinion. We assign the values 1, 0,−1 to vertices of positive,
neutral and negative opinion respectively. We assume that an individual’s vote is affected by the
opinion of neighboring individual and that a voter with neutral opinion is made adjacent to at
least one voter with positive opinion. A voter votes NO if there are more vertices in its neighbor-
hood with negative opinion than those with positive opinion and votes YES other wise. We look
for an assignment of opinions that guarantee a unanimous decision that is in which every vertex
votes NO. We call such an assignment an uniform negative assignment. The affirmative domi-
nation number is the maximum possible sum of all opinions with −1 for negative opinion, 0 for
neutral opinion and 1 for positive opinion in a uniformly negative assignment. The affirmative
domination number corresponds to the minimum number of individuals who can have negative
opinions and in doing so force every individual to vote NO.

Throughout this paper, if f is either ADF or SADF, then let V1, V0 and V−1 denote sets of
vertices of G assigned the values 1, 0, −1 respectively.

2 Affirmative domination

Theorem 2.1. Let f be an ADF of a graph G. Then

(i) Every vertex of set V0 is dominated by a vertex of V1.

(ii) V1 ∪ V−1 is a dominating set of G.

(iii) γa(G) = |V1| − |V−1|.

(iv) |N(v) ∩ V1| ≤ 1 for some vertex v ∈ V1; provided γ(G) = γa(G).

(v) |N(v) ∩ V1| ≤ |N(v) ∩ V−1|+ 1 for any v ∈ V .

(vi) γ(G) ≤ γa(G); provided4(G) = n− 1.

Proof. Let f : V → {−1, 0, 1} be ADF.
(i) By the definition of ADF, a vertex assigned 0 is adjacent to at least one vertex assigned 1.
Hence (i) follows.
(ii) As vertices of V1 dominates vertices of V0 and may or may not dominate vertices of V−1, the
set V1 ∪ V−1 is a dominating set of G.
(iii) As V0 ⊆ N(V1), we have γa(G) = |V1| − |V−1|.
(iv) If γ(G) = γa(G), then |V−1| = 0. For any vertex v ∈ V1, if |N(v) ∩ V1| > 1, then
f(N(v)) ≥ 2 which contradicts f being ADF.
(v) Assume to the contrary, that |N(v) ∩ V1| > |N(v) ∩ V−1|+ 1. As f(N(v)) = |N(v) ∩ V1| −
|N(v) ∩ V−1|, implies f(N(v)) > 1 which is a contradiction to f being ADF.
(vi) Let 4(G) = n − 1. Then γ(G) = 1. If v ∈ V1 and all vertices adjacent to v belongs to the
set V0 such that f(N(u)) ≤ 1 for all u ∈ V , then γa(G) ≥ f(V ).

Theorem 2.2. An ADF is maximal if and only if for every vertex v ∈ V with f(v) = −1, there
exist a vertex u ∈ N(v) such that f(N(u)) = 0 or 1.

Proof. Suppose f is maximal ADF and assume that there is a vertex v ∈ V with f(v) = −1
such that f(N(u)) ≤ −1 for every u ∈ N(v). Define a function g : V → {−1, 0, 1} such that
g(v) = f(v) + 2 for u = v and g(u) = f(u) for u 6= v. Then for all u ∈ N(v), g(N(u)) =
f(N(u)) + 2, implies g(N(u)) ≤ 1 and for w /∈ N(v), g(N(v)) = f(N(v)) ≤ 1. Hence g is
ADF. Since g > f , the maximality of f has been contradicted.

Conversely, let f be ADF such that for every v ∈ V with f(v) = −1, there exists a vertex
u ∈ N(v) such that f(N(u)) = 0 or 1. Suppose f is not maximal ADF. Then there is an
ADF, the function g with g > f . For every v ∈ V , g(v) ≥ f(v). As f(v) ≤ g(v), we have
f(N(v)) ≤ g(N(v)) − 2. This implies f(N(v)) ≤ −1, which is a contradiction. Hence f is
maximal ADF.

Theorem 2.3. For any graph G, γa(G) = n if and only if G ∼= Kn or K2 or tK2 or Kn ∪K2.

Proof. If G is totally disconnected graph with n vertices, then vertices of G cannot be assigned
0 as such vertex should be adjacent to at least one vertex assigned 1. Thus vertices of G should
be either assigned 1 or −1. But γa(G) is maximum of such assignment implies every vertex of
G should be assigned 1. Hence γa(G) = n. If G = K2, then assigning 1 to both vertices of G
results in maximum weight of G. Conversely, if γa(G) = n, then |V1| − |V−1| = n. This implies
|V1| = n + |V−1| which is not possible. Hence |V−1| = 0, which implies every vertex of G is
assigned 1. We shall consider different cases:
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Case 1. If n = 2, then either G = K2 or K2 for which the converse holds.
Case 2. For n = 1, the converse holds.
Case 3. Let n ≥ 3. If G is connected graph, then it leads to contradiction of f being ADF.

From all the above cases the result follows.

Theorem 2.4. If G is a r-regular graph of order n, then

γa(G) ≤
n

r
.

Proof. Let f be an ADF with an affirmative domination number γa(G). Consider the sum s =∑
v∈V

∑
u∈N(v) f(u). This sum counts the value f(u) exactly deg(u) times for each u ∈ V .

Thus, s =
∑

u∈V deg(u)f(u). As f(N(v)) ≤ 1, the sum
∑

v∈V f(N(v)) ≤ n. This implies
s ≤ n. For r-regular graph, degree of every vertex is r implies r

∑
v∈V f(v) ≤ n. Hence the

required result follows.

Theorem 2.5. For any complete graph Kn,

γa(Kn) =

{
2 if n = 2,
1 if otherwise.

Proof. A complete graph Kn is (n − 1)-regular graph. BY Theorem 2.4, we have γa(Kn) ≤
n

n−1 , that is γa(Kn) ≤ 2. As γ(Kn) = 1 and by (iv) of Theorem 2.1, we have γa(Kn) ≥ 1.
This implies 1 ≤ γa(Kn) ≤ 2. By Theorem 2.3, we have the affirmative domination number
γa(Kn) = 2 if and only if graph is K2 and for all other complete graphs γa(Kn) = 1. Thus the
result follows.

Theorem 2.6. For any path Pn with n ≥ 2 vertices,

γa(Pn) =


n
2 if n ≡ 0 (mod 4),
n+1

2 if n ≡ ±1 (mod 4),
n+2

2 if n ≡ −2 (mod 4).

Proof. Let f be ADF. In a path Pn with n ≥ 2 vertices, there are two end vertices and (n − 2)-
vertices of degree 2. An end vertex and its support vertex both can belong to set V1. But if v
is not an end vertex and v ∈ V1, then it can be adjacent to at most one vertex belonging to V1
and the other vertex adjacent to v should belong to V0 such that the weight is maximized. For a
vertex w ∈ V0, w can be adjacent to at most one vertex belonging to V1. Every four vertices are
assigned 1, 1, 0, 0 such that f(N(v)) ≤ 1 for every v ∈ V . Then the following three cases are
arises:
Case 1. If n ≡ 0 (mod 4), then n is a multiple of 4. Let n = 4k, where k is a positive integer.
Here, vertices of Pn are assigned 1, 1, 0, 0. Thus, γa(Pn) = 2k = n

2 .
Case 2. We shall consider following two subcases.
Subcase 2.1. If n ≡ −1 (mod 4), then n+ 1 is a multiple of 4. Let n = 4k − 1 = 4(k − 1) + 3.
Here, vertices of Pn are assigned 1, 1, 0, 0.... (k − 1) times and remaining three vertices are
assigned 1, 1 and 0 such that f(N(v)) ≤ 1 for all v ∈ V . The affirmative domination number
γa(Pn) = 2(k − 1) + 2 = n+1

2 .
Subcase 2.2. If n ≡ 1 (mod 4), then n−1 is a multiple of 4. Let n = 4k+1. Here, vertices of Pn

are assigned 1, 1, 0, 0.... k times and remaining one vertex is assigned 1 such that f(N(v)) ≤ 1
for all v ∈ V . The affirmative domination number γa(Pn) = 2k + 1 = n+1

2 .
Case 3. If n ≡ −2 (mod 4), then n+ 2 is a multiple of 4. Let n = 4k− 2 = 4(k− 1) + 2. Here,
vertices of Pn are assigned 1, 1, 0, 0 .... (k − 1) times and remaining two vertices are assigned
1. Thus, γa(Pn) = 2(k − 1) + 2 = n+2

2 .

Theorem 2.7. For any cycle Cn with n ≥ 3 and integer −3 ≤ l ≤ 0,

γa(Cn) =
n+ l

2
,

where n ≡ l (mod 4).

Proof. As a cycle is 2-regular and by Theorem 2.4, we have γa(Cn) ≤ n
2 . If a vertex v ∈ V0,

then both vertices adjacent to v cannot belong to V1 as f(N [v]) ≥ 1. Thus, one vertex belongs
to V1 and other vertex belongs to V0. For a vertex w ∈ V1, both vertices adjacent to w cannot
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belong to V1. Thus, one vertex belongs to V1 and other vertex belongs to V0. Since every four
consecutive vertices of G are assigned 0, 1, 1, 0. Hence the following four cases are arises:
Case 1. If n ≡ 0 (mod 4), then n is a multiple of 4. Let n = 4k, where k is any positive integer.
Here, vertices of Cn are assigned (0, 1, 1, 0..... k)- times. Thus, γa(Cn) = 2k = n

2 .
Case 2. If n ≡ −1 (mod 4), then n+ 1 is a multiple of 4. That is n = 4k − 1 = 4(k − 1) + 3.
Here, 0, 1, 1, 0 is assigned (k − 1)- times and remaining 3 vertices are in between two vertices
assigned 0. Among remaining vertices, which are adjacent to vertex assigned 0 can neither be
assigned 1 as f(N(v)) ≥ 1 nor be assigned −1 as weight of Cn will not be maximized. Thus,
these 3 vertices are assigned 0, 1, 0. Thus, γa(Cn) = 2(k − 1) + 1 = 2k − 1 = n−1

2 .
Case 3. If n ≡ −2 (mod 4), then n+ 2 is a multiple of 4. That is n = 4k − 2 = 4(k − 1) + 2.
Here, 0, 1, 1, 0 is assigned (k − 1) times and remaining two vertices are assigned 0 such that
f(N(v)) ≤ 1 for every v ∈ V . Thus, γa(Cn) = 2(k − 1) = n−2

4 .
Case 4. If n ≡ −3 (mod 4), then n+ 3 is a multiple of 4. That is n = 4k − 3 = 4(k − 1) + 1.
Here, 0, 1, 1, 0 is assigned to vertices (k−1) times. And remaining one vertex is adjacent to two
vertices assigned 0. Hence this vertex cannot be assigned 1 or 0. This implies remaining vertex
belongs to −1. Thus, γa(Cn) = 2(k − 1)− 1 = 2k − 3 = n−3

2 .

Theorem 2.8. For any complete multipartite graph G ∼= Kr1,r2,.....rt with t ≥ 2,

γa(G) = 2.

Proof. Let A1, A2,.....,At denote the partite sets of G. Let pi = {v ∈ Ai : f(v) = 1} and
qi = {v ∈ Ai : f(v) = −1} for 1 ≤ i ≤ t. There exists an integer i such that |pi| − |qi| < 2
where 1 ≤ i ≤ t. For u ∈ Ai, f(N(u)) =

∑
v∈V−Ai

f(v) ≤ 1. This implies that γa(G) =
f(V ) =

∑
v∈V f(N(v)) = f(N(u)) +

∑
v∈Ai

f(v) ≤ 1 + |pi| − |qi|. Hence γa(G) ≤ 2.
On the other hand, let v1 and v2 be two vertices in partitions A1 and A2 respectively. Also, let

g : V → {−1, 0, 1} such that vertices v1, v2 ∈ V1 and remaining vertices that is V −{v1, v2} ∈ V0.
This implies that g is an ADF on graph G with g(V ) = 2. This implies that γa(G) ≥ g(V ) = 2.
Hence γa(G) = 2.

3 Strongly affirmative domination

Theorem 3.1. Let f be a SADF of a graph G. Then

(i) Every vertex of set V0 is dominated by a vertex of V1.

(ii) V1 ∪ V−1 is a dominating set of G.

(iii) γsa(G) = |V1| − |V−1|.

(vi) γ(G) ≤ γsa(G); provided4(G) = n− 1.

(v) |N(v) ∩ V1| < 1 for a vertex v ∈ V1; provided γ(G) = γsa(G).

(vi) |N(v) ∩ V1| ≤ |N(v) ∩ V−1| for any vertex v ∈ V1.

Proof. Let f be a SADF on graph G. Results (i) to (iv) are same as in ADF
(v) If γ(G) = γsa(G), then |V−1| = 0. For any vertex v ∈ V1, if |N(v) ∩ V1| ≥ 1, then
f(N [u]) ≥ 2 for every vertex u ∈ V , which is a contradiction. Thus, (v) follows.
(vi) Assume to the contrary, that for any vertex v ∈ V1, |N(v) ∩ V1| > |N(v) ∩ V−1|. As
f(N [v]) = f(v) + |N(v) ∩ V1| − |N(v) ∩ V−1|. f(N [v]) > 1 which is a contradiction. Hence
|N(v) ∩ V1| ≤ |N(v) ∩ V−1| follows.

Theorem 3.2. For any graph G,
γa(G) ≥ γsa(G).

Proof. By Theorems 2.1 and 3.1, the desired result follows. Also, whenG ∼= Kn andKn(6= K2),
the equality holds.

Theorem 3.3. An SADF is maximal if and only if for every vertex v ∈ V with f(v) = −1, there
exist a vertex u ∈ N [v] such that f(N [u]) = 0 or 1.

Proof. Proof follows as in Theorem 2.2.

Theorem 3.4. For any graph G, γsa(G) = n if and only if G ∼= Kn.
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Proof. If G is totally disconnected graph with n vertices, then vertices of G cannot be assigned
0 as they should be adjacent to at least one vertex assigned 1. Thus, vertices of G should be
either assigned 1 or −1. But γsa(G) is maximum of such assignment, every vertex should be
assigned 1. Hence γsa(G) = n. Conversely, if γsa(G) = n, then |V1| − |V−1| = n. This implies
|V1| = n+ |V−1| which is not possible. Hence |V−1| = 0, implies every vertex of G is assigned
1. If G is connected graph with n > 1, then it contradicts to f being SADF. Hence the result.

Theorem 3.5. If G is a r-regular graph, then

γsa(G) ≤
n

r + 1
.

Proof. Let f be a SADF with a strongly affirmative domination number γsa(G). Consider the
sum s =

∑
v∈V

∑
u∈N [v] f(u). This sum counts the value f(u) exactly deg(u)+1 times for each

u ∈ V . The sum s =
∑

u∈V [deg(u) + 1]f(u). As f(N [v]) ≤ 1,
∑

v∈V f(N [v]) ≤ n, the sum
s ≤ n. For r-regular graph, degree of every vertex is r. This implies (r+1)

∑
v∈V f(v) ≤ n.

Theorem 3.6. For any complete graph Kn,

γsa(Kn) = 1.

Proof. As a complete graphKn is (n−1)-regular graph. By Theorem 3.5, we have γsa(Kn) ≤ 1.
Also γ(Kn) = 1 and by Theorem 3.1, we have the strongly affirmative domination number
γsa(Kn) ≥ 1. Thus the result follows.

Theorem 3.7. For any path Pn with integers n ≥ 1 and −2 ≤ l ≤ 0,

γsa(Pn) =
n− l

3
,

where n ≡ l (mod 3).

Proof. In a path Pn with n ≥ 1 vertices, there are two end vertices and n− 2 vertices of degree
2. If v is end vertex and w is its support vertex, then both vertices cannot belong to the same set.
That is if v ∈ V1, then w ∈ V0 and vice versa. If v is neither an end vertex nor a support vertex,
then both vertices adjacent to v may belong to V0 or V1 provided v ∈ V1 or v ∈ V−1 respectively.
Every three consecutive vertices are assigned 0, 1, 0 such that f(N [v]) ≤ 1 for every v ∈ V . We
shall prove in following three cases:
Case 1. If n ≡ 0 (mod 3), then n is a multiple of 3. Let n = 3k, where k is a positive
integer. Here, vertices of Pn are assigned 0, 1, 0. The strongly affirmative domination number
γsa(Pn) = k = n

3 .
Case 2. If n ≡ −1 (mod 3), then n + 1 is a multiple of 3. Let n = 3k − 1 = 3(k − 1) + 2.
Here, vertices of Pn are assigned 0, 1, 0.... (k−1) times and remaining two vertices are assigned
0 and 1 such that f(N [v]) ≤ 1 for all v ∈ V . The strongly affirmative domination number
γsa(Pn) = k = n+1

3 .
Case 3. If n ≡ −2 (mod 3), then n+ 2 is a multiple of 3. Let n = 3k− 2 = 3(k− 1)+ 1. Here,
vertices of Pn are assigned 1, 0, 0,.... (k − 1) times and remaining one vertex is assigned 1 such
that f(N [v]) ≤ 1 for all v ∈ V . The strongly affirmative domination number γsa(Pn) =

n+2
3 .

Theorem 3.8. For any cycle Cn with integers n ≥ 3 and −2 ≤ l ≤ 0

γsa(Cn) =
n+ 2l

3
,

where n ≡ l (mod 3).

Proof. As a cycle is 2-regular, by Theorem 3.5, we have γsa(Cn) ≤ n
3 . If a vertex v ∈ V1, then

both the vertices adjacent to v cannot belong to V1 as f(N [v]) ≥ 1. Thus, one neighbor of v
belongs to V1 and other neighbor of v belongs to V−1. Hence every three consecutive vertices of
G are assigned −1, 1, 1 in order. We consider following three cases:
Case 1. If n ≡ 0 (mod 3), then n is a multiple of 3. Let n = 3k, where k is any positive
integer. Here, vertices of Cn are assigned −1, 1, 1, −1, 1, 1,....k times. The strongly affirmative
domination number γsa(Cn) = k = n

3 .
Case 2. If n ≡ −1 (mod 3), then n+ 1 is a multiple of 3. That is n = 3k − 1 = 3(k − 1) + 2.
Here,−1, 1, 1 is assigned (k−1) - times and out of remaining two vertices one vertex adjacent to
vertex assigned 1 should be assigned −1 and other vertex is assigned 1. The strongly affirmative
domination number γsa(Cn) = (k − 1) + 1− 1 = n−2

3 .
Case 3. If n ≡ −2 (mod 3), then n+ 2 is a multiple of 3. That is n = 3k − 2 = 3(k − 1) + 1.
Here, −1, 1, 1 is assigned (k− 1)-times and remaining one vertex is assigned −1 as it cannot be
assigned 1 or 0. The strongly affirmative domination number γsa(Cn) = (k− 1)− 1 = n−4

3 .
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Theorem 3.9. For any complete multipartite graph G ∼= Kr1,r2,.....rt ,

γsa(G) = 0.

Proof. Let A1, A2,.....,At be t partitions of G. Also, let pi = {v ∈ Ai : f(v) = 1} and
qi = {v ∈ Ai : f(v) = −1} for 1 ≤ i ≤ t. There exists an integer i such that |pi| − |qi| < 1
where 1 ≤ i ≤ t. For u ∈ Ai, f(N [u]) = f(u) +

∑
v∈V−Ai

f(v) ≤ 1. Also, γsa(G) = f(V ) =∑
v∈V f(N [v]) ≤ 0.
On the other hand, let v1, v2 ∈ A1 and v3, v4 ∈ A2 such that v1, v3 ∈ V1 and v2, v4 ∈ V−1 and

remaining vertices V − {v1, v2, v3, v4} ∈ V0. Then g is a SADF with g(V ) = 0. The strongly
affirmative domination number γsa(G) ≥ g(V ) = 0. Hence the result follows.
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