ON MEROMORPHIC FUNCTIONS THAT SHARE A SMALL FUNCTION WITH ITS DERIVATIVES

HARINA P. WAGHAMORE AND RAJESHWARI S.

(COMMUNICATED BY DAVID KALAJ)

Abstract

In this paper, we study the problem of meromorphic functions sharing a small function with its derivative and prove one theorem. The theorem improves the results of Jin-Dong Li and Guang-Xin Huang [10].

1. Introduction

Let f be a nonconstant meromorphic function defined in the whole complex plane \mathbb{C}. It is assumed that the reader is familiar with the notations of the Nevanlinna theory such as $T(r, f), N(r, f)$ and so on, that can be found, for instance in [1].

Let f and g be two nonconstant meromorphic functions. Let a be a finite complex number. We say that f and g share the value $a \mathrm{CM}$ (counting multiplicities) if $f-a$ and $g-a$ have the same zeros with the same multiplicites and we say that f and g share the value $a \mathrm{IM}$ (ignoring multiplicities) if we do not consider the multiplicities. When f and g share 1 IM , let z_{0} be a 1-points of f of order p, a 1-points of g of order q, we denote by $N_{11}\left(r, \frac{1}{f-1}\right)$ the counting function of those 1-points of f and g where $p=q=1$; and $N_{E}^{(2}\left(r, \frac{1}{f-1}\right)$ the counting function of those 1-points of f and g where $p=q \geq 2 . \bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ is the counting function of those 1-points of both f and g where $p>q$. In the same way, we can define $N_{11}\left(r, \frac{1}{g-1}\right), N_{E}^{(2}\left(r, \frac{1}{g-1}\right)$ and $\bar{N}_{L}\left(r, \frac{1}{g-1}\right)$. If f and g share 1 IM , it is easy to see that

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f-1}\right) & =N_{11}\left(r, \frac{1}{f-1}\right)+\bar{N}_{L}\left(r, \frac{1}{f-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g-1}\right)+N_{E}^{(2}\left(r, \frac{1}{g-1}\right) \\
& =\bar{N}\left(r, \frac{1}{g-1}\right)
\end{aligned}
$$

Let f be a nonconstant meromorphic function. Let a be a finite complex number, and k be a positive integer, we denote by $N_{k)}\left(r, \frac{1}{f-a}\right)\left(\operatorname{or} \bar{N}_{k)}\left(r, \frac{1}{f-a}\right)\right)$ the counting function for zeros of $f-a$ with multiplicity $\leq k$ (ignoring multiplicities), and by $N_{(k}\left(r, \frac{1}{f-a}\right)\left(\operatorname{or} \bar{N}_{(k}\left(r, \frac{1}{f-a}\right)\right)$ the counting function for zeros of $f-a$ with multiplicity

2000 Mathematics Subject Classification. 35A07, 35Q53.
Key words and phrases. Uniqueness, Meromorphic function, Weighted sharing.
(c)2016 Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 12, 2015. Published March 3, 2016.
atleast k (ignoring multiplicities). Set

$$
\begin{aligned}
& N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right) \\
& \Theta(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}, \delta(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
\end{aligned}
$$

We further define

$$
\delta_{k}(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{N_{k}\left(r, \frac{1}{f-a}\right)}{T(r, f)}
$$

Clearly

$$
0 \leq \delta(a, f) \leq \delta_{k}(a, f) \leq \delta_{k-1}(a, f) \ldots \leq \delta_{2}(a, f) \leq \delta_{1}(a, f)=\Theta(a, f)
$$

Definition 1.1(see 3). Let k be a nonnegative integer or infinity. For $a \in \overline{\mathbb{C}}$ we denote by $E_{k}(a, f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a, f)=E_{k}(a, g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k; clearly if f, g share (a, k), then f, g share (a, p) for all integers p with $0 \leq p \leq k$. Also, we note that f, g share a value a IM or CM if and only if they share $(a, 0)$ or (a, ∞), respectively.

A meromorphic function a is said to be a small function of f where $T(r, a)=$ $S(r, f)$, that is $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$, outside of a possible exceptional set of finite linear measure. Similarly, we can define that f and g share a small function a IM or CM or with weight k.
R.Bruck 4] first considered the uniqueess problems of an entire function sharing one value with its derivative and proved the following result.
Theorem A. Let f be a non-constant entire function satisfying $N\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$.
If f and f^{\prime} share the value 1 CM , then $\frac{f^{\prime}-1}{f-1} \equiv c$ for some nonzero constant c.
Bruck [4] further posed the following conjecture.
Conjecture 1.1. Let f be a non-constant entire function, $\rho_{1}(f)$ be the first iterated order of f. If $\rho_{1}(f)$ is not a positive integer or infinite, f and f^{\prime} share the value 1 CM, then $\frac{f^{\prime}-1}{f-1} \equiv c$ for some nonzero constant c.
Yang [5] proved that the conjecture is true if f is an entire function of finite order. Yu [6] considered the problem of an entire or meromorphic function sharing one small function with its derivative and proved the following two theorems.
Theorem B. Let f be a non-constant entire function and $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. If $f-a$ and $f^{(k)}-a$ share 0 CM and $\delta(0, f)>\frac{3}{4}$, then $f \equiv f^{(k)}$.
Theorem C. Let f be a non-constant non-entire meromorphic function and $a \equiv$ $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. If
(i) f and a have no common poles.
(ii) $f-a$ and $f^{(k)}-a$ share 0 CM .
(iii) $4 \delta(0, f)+2(8+k) \Theta(\infty, f)>19+2 k$,
then $f \equiv f^{(k)}$ where k is a positive integer.
In the same paper, Yu [6] posed the following open questions.
(i) can a CM shared be replaced by an IM share value ?
(ii) Can the condition $\delta(0, f)>\frac{3}{4}$ of theorem B be further relaxed?
(iii) Can the condition (iii) in theorem C be further relaxed?
(iv) Can in general the condition (i) of theorem C be dropped ?

In 2004, Liu and Gu [7] improved theorem B and obtained the following results.
Theorem D. Let f be a non-constant entire function and $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. If $f-a$ and $f^{(k)}-a$ share 0 CM and $\delta(0, f)>\frac{1}{2}$, then $f \equiv f^{(k)}$.

Lahiri and Sarkar [8] gave some affirmative answers to the first three questions imposing some restrictions on the zeros and poles of a. They obtained the following results.
Theorem E. Let f be a non-constant meromorphic function, k be a positive integer, and $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. If
(i) a has no zero (pole) which is also a zero (pole) of f or $f^{(k)}$ with the same multiplicity.
(ii) $f-a$ and $f^{(k)}-a$ share $(0,2)$
(iii) $2 \delta_{2+k}(0, f)+(4+k) \Theta(\infty, f)>5+k$ then $f \equiv f^{(k)}$.

In 2005, Zhang [?] improved the above results and proved the following theorem.
Theorem F. Let f be a non-constant meromorphic function, $k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose that $f-a$ and $f^{(k)}-a$ share $(0, l)$. If
$l \geq 2$ and

$$
\begin{equation*}
(3+k) \Theta(\infty, f)+2 \delta_{2+k}(0, f)>k+4 \tag{1.1}
\end{equation*}
$$

or $l=1$ and

$$
\begin{equation*}
(4+k) \Theta(\infty, f)+3 \delta_{2+k}(0, f)>k+6 \tag{1.2}
\end{equation*}
$$

or $l=0$ and

$$
\begin{equation*}
(6+2 k) \Theta(\infty, f)+5 \delta_{2+k}(0, f)>2 k+10 \tag{1.3}
\end{equation*}
$$

then $f \equiv f^{(k)}$.
In 2015, Jin-Dong Li and Guang-Xiu Huang [?] proved the following Theorem.
Theorem G. Let f be a non-constant meromorphic function, $k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose that $f-a$ and $f^{(k)}-a$ share $(0, l)$. If
$l \geq 2$ and

$$
\begin{equation*}
(3+k) \Theta(\infty, f)+\delta_{2}(0, f)+\delta_{2+k}(0, f)>k+4 \tag{1.4}
\end{equation*}
$$

$l=1$ and

$$
\begin{equation*}
\left(\frac{7}{2}+k\right) \Theta(\infty, f)+\frac{1}{2} \Theta(0, f)+\delta_{2}(0, f)+\delta_{2+k}(0, f)>k+5 \tag{1.5}
\end{equation*}
$$

or $l=0$ and

$$
\begin{equation*}
(6+2 k) \Theta(\infty, f)+2 \Theta(\infty, f)+\delta_{2}(0, f)+\delta_{1+k}(0, f)+\delta_{2+k}(0, f)>2 k+10 \tag{1.6}
\end{equation*}
$$

then $f \equiv f^{(k)}$.
In this paper we pay our attention to the uniqueness of more generalised form of a function namely f^{m} and $\left(f^{n}\right)^{(k)}$ sharing a small function for two arbitrary positive integer n and m.

Theorem 1.1. Let f be a non-constant meromorphic function, $k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose
that $f^{m}-a$ and $\left(f^{n}\right)^{(k)}-a$ share $(0, l)$. If
$l \geq 2$ and

$$
\begin{equation*}
(k+4) \Theta(\infty, f)+(k+5) \Theta(0, f)>2 k+9-m \tag{1.7}
\end{equation*}
$$

$l=1$ and

$$
\begin{equation*}
\left(k+\frac{9}{2}\right) \Theta(\infty, f)+\left(k+\frac{11}{2}\right) \Theta(0, f)>2 k+10-m \tag{1.8}
\end{equation*}
$$

or $l=0$ and

$$
\begin{equation*}
(2 k+7) \Theta(\infty, f)+(2 k+8) \Theta(0, f)>4 k+15-m \tag{1.9}
\end{equation*}
$$

then $f^{m} \equiv\left(f^{n}\right)^{(k)}$.
Corollary 1.2. Let f be a non-constant meromorphic function, $m, k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose that $f^{m}-a$ and $\left(f^{n}\right)^{(k)}-a$ share $(0, l)$. If
$l \geq 2$ and $\Theta(0, f)>\frac{4}{5}$
or $l=1$ and $\Theta(0, f)>\frac{9}{11}$
or $l=0$ and $\Theta(0, f)>\frac{7}{8}-\frac{1}{8}[7 \Theta(\infty, f)-7 \Theta(0, f)]$
then $f^{m} \equiv\left(f^{n}\right)^{(k)}$.

2. Lemmas

Lemma 2.1 (see [10]). Let f be a non-constant meromorphic function, k, p be two positive integers, then

$$
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

clearly $\bar{N}\left(r, \frac{1}{f^{(k)}}\right)=N_{1}\left(r, \frac{1}{f^{(k)}}\right)$
Lemma 2.2 (see [10]). Let

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.1}
\end{equation*}
$$

where F and G are two non constant meromorphic functions. If F and G share 1 IM and $H \not \equiv 0$, then

$$
N_{11}\left(r, \frac{1}{F-1}\right) \leq N(r, H)+S(r, F)+S(r, G)
$$

Lemma 2.3 (see [11]). Let f be a non-constant meromorphic function and let

$$
R(f)=\frac{\sum_{k=0}^{n} a_{k} f^{k}}{\sum_{j=0}^{m} b_{j} f^{j}}
$$

be an irreducible rational function in f with constant coefficients a_{k} and b_{j} where $a_{n} \neq 0$ and $b_{m} \neq 0$. Then

$$
T(r, R(f))=d T(r, f)+S(r, f)
$$

where $d=\max \{n, m\}$.

3. Proof of the Theorem 1.2

Let $F=\frac{f^{m}}{a}$ and $G=\frac{\left(f^{n}\right)^{(k)}}{a}$. Then F and G share $(1, l)$, except the zeros and poles of $a(z)$. Let H be defined by (2.1)
Case 1. Let $H \not \equiv 0$.
By our assumptions, H have poles only at zeros of F^{\prime} and G^{\prime} and poles of F and G, and those 1-points of F and G whose multiplicities are distinct from the multiplicities of corresponding 1-points of G and F respectively. Thus, we deduce from (2.1) that

$$
\begin{align*}
N(r, H) & \leq \bar{N}_{(2}\left(r, \frac{1}{H}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}(r, H) \\
& +N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \tag{3.1}\\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)
\end{align*}
$$

here $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ is the counting function which only counts those points such that $F^{\prime}=0$ but $F(F-1) \neq 0$.
Because F and G share 1 IM , it is easy to see that

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right) & =N_{11}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \\
& =\bar{N}\left(r, \frac{1}{G-1}\right) \tag{3.2}
\end{align*}
$$

By the second fundamental theorem, we see that

$$
\begin{align*}
T(r, F)+T(r, G) & \leq \bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right) \\
& +\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \tag{3.3}\\
& -N_{0}\left(r, \frac{1}{F^{\prime}}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, F)+S(r, G)
\end{align*}
$$

Using Lemma 2.2 and (3.1), (3.2) and (3.3) We get

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right) \\
& +N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \tag{3.4}\\
& +3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, F)+S(r, G)
\end{align*}
$$

We discuss the following three sub cases.
Sub case 1.1. $l \geq 2$. Obviously.

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) & +3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \tag{3.5}\\
& \leq T(r, G)+S(r, F)+S(r, G)
\end{align*}
$$

Combining (3.4) and (3.5), we get

$$
\begin{equation*}
T(r, F) \leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+S(r, F) \tag{3.6}
\end{equation*}
$$

that is

$$
T\left(r, f^{m}\right) \leq 3 \bar{N}\left(r, f^{m}\right)+N_{2}\left(r, \frac{1}{f^{m}}\right)+N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f)
$$

By Lemma 2.1 for $p=2$, we get

$$
m T(r, f) \leq(k+5) \bar{N}\left(r, \frac{1}{f}\right)+(k+4) \bar{N}(r, f)+S(r, f)
$$

So

$$
(k+4) \Theta(\infty, f)+(k+5) \Theta(0, f) \leq 2 k+9-m
$$

which contradicts with (1.7).
Sub case 1.2. $l=1$. It is easy to see that

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) & +2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \tag{3.7}\\
& \leq T(r, G)+S(r, F)+S(r, G) \\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \leq & \frac{1}{2} N\left(r, \frac{F}{F^{\prime}}\right) \\
& \leq \frac{1}{2} N\left(r, \frac{F^{\prime}}{F}\right)+S(r, F) \tag{3.8}\\
& \leq \frac{1}{2}\left[\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)\right]+S(r, F)
\end{align*}
$$

Combining (3.4) and (3.7) and (3.8), we get

$$
\begin{equation*}
T(r, F) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\frac{7}{2} \bar{N}(r, F)+\frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+S(r, F) \tag{3.9}
\end{equation*}
$$

that is

$$
m T(r, f) \leq N_{2}\left(r, \frac{1}{f^{m}}\right)+N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+\frac{7}{2} \bar{N}\left(r, f^{m}\right)+\frac{1}{2} \bar{N}\left(r, \frac{1}{f^{m}}\right)+S(r, f)
$$

By Lemma 2.1 for $p=2$, we get

$$
m T(r, f) \leq\left(k+\frac{9}{2}\right) \bar{N}(r, f)+\left(k+\frac{11}{2}\right) \bar{N}\left(r, \frac{1}{f}\right)+S(r, f)
$$

So

$$
\left(k+\frac{9}{2}\right) \Theta(\infty, f)+\left(k+\frac{11}{2}\right) \Theta(0, f) \leq 2 k+10-m
$$

which contradicts with (1.8).
Sub case 1.3. $l=0$. It is easy to see that

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) & +\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \tag{3.10}\\
& \leq T(r, G)+S(r, F)+S(r, F)
\end{align*}
$$

$$
\begin{align*}
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{1}{F-1}\right)-\bar{N}\left(r, \frac{1}{F-1}\right. \\
& \leq N\left(r, \frac{F}{F^{\prime}}\right) \leq N\left(r, \frac{F^{\prime}}{F}\right)+S(r, F) \tag{3.11}\\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, F)
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\bar{N}_{L}\left(r, \frac{1}{G-1}\right) & \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+S(r, F) \tag{3.12}\\
& \leq N_{1}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+S(r, G)
\end{align*}
$$

Combining (3.4) and (3.10) - (3.12), we get

$$
\begin{align*}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{F}\right) \\
& +6 \bar{N}(r, F)+N_{1}\left(r, \frac{1}{G}\right)+S(r, F) \tag{3.13}
\end{align*}
$$

that is

$$
\begin{aligned}
m T(r, f) & \leq N_{2}\left(r, \frac{1}{f^{m}}\right)+N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{f^{m}}\right) \\
& +6 \bar{N}\left(r, \frac{1}{f^{m}}\right)+N_{1}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f) .
\end{aligned}
$$

By Lemma 2.1 for $p=2$ and for $p=1$ respectively, we get

$$
m T(r, f) \leq(2 k+8) \bar{N}\left(r, \frac{1}{f}\right)+(2 k+7) \bar{N}(r, f)
$$

So

$$
(2 k+7) \Theta(\infty, f)+(2 k+8) \Theta(0, f) \leq 4 k+15-m
$$

which contradicts with (1.9).
Case 2. Let $H \equiv 0$.
on integration we get from (2.1)

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{C}{G-1}+D \tag{3.14}
\end{equation*}
$$

where C, D are constants and $C \neq 0$. we will prove that $D=0$.
Sub case 2.1. Suppose $D \neq 0$. If z_{0} be a pole of f with multiplicity p such that $a\left(z_{0}\right) \neq 0, \infty$, then it is a pole of G with multiplicity $n p+k$ respectively. This contradicts (3.14). It follows that $N(r, f)=S(r, f)$ and hence $\Theta(\infty, f)=1$. Also it is clear that $\bar{N}(r, f)=\bar{N}(r, G)=S(r, f)$. From (1.7)-(1.9) we know respectively

$$
\begin{gather*}
(k+5) \Theta(0, f)>k+5-m \tag{3.15}\\
\left(k+\frac{11}{2}\right) \Theta(0, f)>k+\frac{11}{2}-m \tag{3.16}
\end{gather*}
$$

and

$$
\begin{equation*}
(2 k+8) \Theta(0, f)>2 k+8-m \tag{3.17}
\end{equation*}
$$

Since $D \neq 0$, from (3.14) we get

$$
\bar{N}\left(r, \frac{1}{F-\left(1+\frac{1}{D}\right)}\right)=\bar{N}(r, G)=S(r, f)
$$

Suppose $D \neq-1$.
Using the second fundamental theorem for F we get

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-\left(1+\frac{1}{D}\right)}\right) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
i . e ., & \\
m T(r, F) & \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq m T(r, f)+S(r, f)
\end{aligned}
$$

So, we have $m T(r, f)=\bar{N}\left(r, \frac{1}{f}\right)$ and so $\Theta(0, f)=1-m$. Which contradicts (3.15)(3.17).

If $D=-1$, then

$$
\begin{equation*}
\frac{F}{F-1} \equiv C \frac{1}{G-1} \tag{3.18}
\end{equation*}
$$

and from which we know $\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}(r, G)=S(r, f)$ and hence, $\bar{N}\left(r, \frac{1}{F}\right)=S(r, f)$. If $C \neq-1$,
we know from (3.18) that

$$
\bar{N}\left(r, \frac{1}{G-(1+C)}\right)=\bar{N}(r, F)=S(r, f)
$$

So from Lemma 2.1 and the Second fundamental theorem we get

$$
\begin{aligned}
T\left(r,\left(f^{n}\right)^{(k)}\right) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-(1+C)}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f) \\
m T(r, f) & \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

which is absurd. So $C=-1$ and we get from (3.18) that $F G \equiv 1$, which implies $\left[\frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right]=\frac{a^{2}}{f^{n+m}}$.
In view of the first fundamental theorem, we get from above

$$
(n+m) T(r, f) \leq k\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f)=S(r, f)
$$

which is impossible.
Sub case 2.2. $D=0$ and so from (3.14) we get

$$
G-1 \equiv C(F-1)
$$

If $C \neq 1$, then

$$
\begin{array}{r}
G \equiv C\left(F-1+\frac{1}{C}\right) \\
\text { and } \bar{N}\left(r, \frac{1}{G}\right)=\bar{N}\left(r, \frac{1}{F-\left(1-\frac{1}{C}\right)}\right)
\end{array}
$$

By the second fundamental theorem and Lemma 2.1 for $p=1$ and Lemma 2.3 we have

$$
\begin{aligned}
m T(r, f) & +S(r, f)=T(r, F) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\left(r, \frac{1}{F-\left(1-\frac{1}{C}\right)}\right)+S(r, G) \\
& \leq \bar{N}\left(r, f^{m}\right)+\bar{N}\left(r, \frac{1}{f^{m}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+(k+1) \bar{N}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq(k+2) \bar{N}\left(r, \frac{1}{f}\right)+(k+1) \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

Hence

$$
(k+1) \Theta(\infty, f)+(k+2) \Theta(0, f) \leq 2 k+3-m
$$

So, it follows that

$$
\begin{aligned}
&(k+4) \Theta(\infty, f)+(k+5) \Theta(0, f) \leq 3 \Theta(\infty, f)+(k+1) \Theta(\infty, f) \\
&+(k+3) \Theta(0, f)+2 \Theta(0, f) \\
& \leq 2 k+9-m \\
&\left(k+\frac{9}{2}\right) \Theta(\infty, f)+\left(k+\frac{11}{2}\right) \Theta(0, f) \leq 2 k+10-m
\end{aligned}
$$

and

$$
(2 k+7) \Theta(\infty, f)+(2 k+8) \Theta(0, f) \leq 4 k+15-m .
$$

This contradicts $(1.7)-(1.9)$. Hence $C=1$ and so $F \equiv G$, that is $f^{m} \equiv\left(f^{n}\right)^{(k)}$. This completes the proof of the theorem.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford (1964).
[2] L. Yang, Distribution Theory, Springer Verlag, Berlin (1993).
[3] I.Lahiri, Weighted sharing and uniqueness of meromorphic function, Nagoya Math. J., 161, 193-206(2001).
[4] R.Bruck, On entire functions which share one value CM with their first derivative, Result. Math. 30, 21-24(1996).
[5] L.Z.Yang, Solution of a differential equation and its applications, Kodai. Math. J. 22, 458464(1999).
[6] K.W.Yu, On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure Appl. Math. 4(1)(2003) Art.21(Online:http://jipam.vu.edu.au/).
[7] L.P.Liu and Y.X.Gu, Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai. Math. J. 27, 272-279(2004).
[8] I.Lahiri and A.Sarkar, Uniqueness of meromorphic function and its derivative, J. Inequal. Pure Appl. Math. 5(1)(2004) Art. 20 (Online:http://jipam.vu.edu.au/).
[9] Q.C. Zhang, Meromorphic function that shares one small function with their derivatives, J. Inequal. Pure. Appl. Math. 6(4)(2005) Art. 116 (Online:http://jipam.vu.edu.au/).
[10] Jin-Dong Li and Guang-Xin Huang, On meromorphic functions that share one small function with their derivatives, Palestine Journal of Mathematics, Vol. 4(1) (2015), 91-96.
[11] A.Z. Mohon'ko, On the Nevanlinna charecteristics of some meromorphic functions, Theory of Functions, Funct. Anal. Appl. 14 (1971), 83-87.

HARINA P.WAGHAMORE
Department of Mathematics, Central College Campus, Bangalore University, Bangalore560 001, INDIA

E-mail address: harinapw@gmail.com
RAJESHWARI S.
Department of Mathematics, Central College Campus, Bangalore University, Bangalore560 001, INDIA

E-mail address: rajeshwaripreetham@gmail.com

