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Abstract: 

   The graph resulting from contracting edge "e" is denoted as G/e and the graph resulting from 
deleting edge "e" is denoted as G-e. An edge "e" is radius-essential if rad(G/e) < rad(G), radius-
increasing if rad(G-e)>rad(G), and radius-vital if it is both radius-essential and radius-increasing. 
We partition the edges that are not radius-vital into three categories. In this paper, we study 
realizability questions relating to the number of edges that are not radius-vital in the three defined 
categories. A graph is radius-vital if all its edges are radius-vital. We give a structural 
characterization of radius-vital graphs. 

 

Keywords: Radius-vital edges, radius-increasing edges, radius-essential edges 

AMS Classification 2010: 05C12 

1.Introduction: 

      The terminology used throughout this paper is based on Buckley and Harary [1], Harary[3]. 

      Let G be a connected graph with vertex set V(G) and edge set E(G) with p and q representing order and size of G. 
The distance d(u,v) between vertices u and v is the length of a shortest path joining u and v. The eccentricity e(v) of v 
is the distance to a farthest vertex from v. The radius rad(G) and diameter diam(G) are minimum and maximum 
eccentricities, respectively. The center C(G) and P(G), periphery of a graph G consists of the sets of vertices of 
minimum and maximum eccentricity, respectively. Vertices in C(G) are called central vertices and those in P(G) are 
called the peripheral vertices. An elementary contraction of an edge e=uv in G is obtained by removing u and v, 
inserting a new vertex w and inserting an edge between w and any vertex to which either u or v (or both) were 
adjacent and G/e denotes the resulting graph. The graph resulting from deleting edge e is denoted by G-e.   

    As in [1], the sequential join G₁+G₂+G₃+......+Gk  of graphs G₁,G₂,....Gk is the graph formed by taking one copy of 
each of the graphs G₁,G₂,.....Gk and adding in additional edges from each vertex of Gi  to each vertex in Gi+1,  for 1≤ i 
≤ k-1. 

 An edge e is radius-essential if rad(G/e) < rad(G) and radius-increasing  if  

rad(G-e) > rad(G). We studied radius-essential edges in [9]. If every edge in a graph G is radius-increasing, then G is 
a radius-minimal graph. Gliviak [2] established various existence resutls for radius-minimal graphs. 
Definition 1.1: An edge e is radius-vital if it is both radius-essential and radius-increasing; otherwise, it is radius-
non-vital.     

Thus, a radius-vital edge e has the property that contracting e decreases the radius and deleting e increases the radius. 

    An edge e is deletable if its deletion does not alter the radius, that is, rad(G-e)= rad(G).            ( Gliviak [2] refers 
such edges superflous). An edge e is contractible if its contraction does not alter the radius, that is, rad(G/e)=rad(G). 
In view of these definitions, we can partition E(G) into four sets: 
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    radius-vital edges:    Ev(G)={e: rad(G/e) < rad(G) and rad(G-e) > rad(G)}, 

    contracible, radius-increasing edges:  Ec(G)={e: rad(G/e)=rad(G) and rad(G-e)>rad(G)}, 

    deletable, radius-essential edges:    Ed(G)={e: rad(G-e)=rad(G) and rad(G/e)<rad(G)}, 

    and 

    contractible and deletable edges:    Ecd(G)={e:  rad(G-e)= rad(G) and rad(G/e)= rad(G)}. 

     An edge e is radius-non-vital(non-vital), if e∈ Ec(G)∪ Ed(G)∪ Ecd(G).  

In this paper, we shall study the vital and non-vital edges of graphs. After characterizing graphs for which every edge 
is vital, we examine realizability questions relating to the sizes of the sets Ec(G), Ed(G) and Ecd(G) and study which 
triples (x, y ,z) of integers are realizable for (|Ec(G)|,|Ed(G) |,|Ecd(G)| ). 

    We mention that a similar study was done for 3-connectedness in graphs. Reid and Wu[6] studied edges "e" in 3-
connected graphs for which either deletion of "e" or the contraction of "e", but not both, alters the 3-connectedness of 
the graph. 

Definition 1.2: A graph G is radius-vital if all its edges are radius-vital. 

    We recall some results from Walikar, Buckley and Itagi[9]. Let σr(G) be the number of essential edges in G. That is, 

σr(G)=|{e∈ E(G): rad(G/e) < rad(G)}|. 

    Since an essential edge is not contractible, σr(G) =|Ev(G)|+|Ed(G) |. 

    Let p and q denote the number of vertices and edges, respectively, in G. We shall need the following. 

 

Proposition 1.3[2]: A non-trivial graph is radius minimal if and only if G is a tree. 

Proposition 1.4[9] :For a tree T , σr(G)=q, if and only if T is a path on even number of vertices. 

2.Results: 

            The following result characterizes radius-vital graphs. 

Proposition 2.1: Let G be a graph with rad(G)=r. Then G is radius-vital if and only if G is a path on even number of 
vertices. 

Proof: A non-trivial graph G is radius-minimal if and only if G is a tree, by Proposition 1.1[2]. By Proposition 1.2[9], 
σr(T)=q if and only if T is a path on even number of vertices. Combining the two results the proof follows.■ 

    We now focus on the non-vital edges of a graph. We begin with a definition and several preliminary observations. 

Definition 2.2: For any three non-negative integers x ,y, z, a graph G is said to be an (x, y, z)-graph, if |Ec(G)|= x, 
|Ed(G)|= y and |Ecd(G)|= z, and the triple (x, y, z) is realizable if there exists an (x, y, z)-graph G. 

    By Proposition 2.1, it is clear that only (0, 0, 0) graphs are paths on even number of vertices. 
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Remark 2.3: If σr(G)=0,then all edges are contractible no matter whether they are deletable or not. Hence G contains 
no vital edges. Therefore, if G is an (x, y, z)- graph with σr(G)=0 , we have y = 0 and x + z= q. 

    A graph G is a radius-edge-invariant graph (r.e.i. graph) if for each e∈ E(G), rad(G-e) = rad(G), that is, every 

edge of G is deletable. Refer Walikar, Buckley and Itagi [8] for detailed study of these graphs. 

Remark 2.4: If σr(G)= q, then no edge of G is contractible. Hence x = z = 0 and  y ≤ q. If  y = q, then G is radius-
edge-invariant, otherwise, there exists at least one vital edge in G. 

Remark 2.5: If G is radius-edge-invariant graph then every edge is deletable, so there are no vital edges in G. Thus, 
for a r.e.i. graph , x = 0 and  y + z = q. 

Remark 2.6: If G is radius-minimal then no edge is deletable. Hence y = z = 0 and x ≤ q. Thus for a diameter 
minimal graph G, if σr(G) = 0,then x = q and if σr(G) > 0, there exists at least one vital edge. 

 

    Next we consider realizability of triple of integers. 

Lemma 2.7: The triple (0,1,0) is not realizable. 

Proof: On the contrary assume that (0,1 ,0) is realizabe. Then there exists a graph G, containing only one edge, say e∈ 

Ed(G). Then (i) rad(G-e) = rad(G)and (ii) rad(G/e) < rad(G) hold. And all other edges e′ in G are vital, hence (i′) 
rad(G-e′) > rad(G) and (ii′) rad(G/e′) < rad(G). From (ii) and (ii′) it follows that σr(G)= q. Hence, for e, there exists a 
radius-preserving spanning tree which avoids e. But this edge can be contracted too without altering the radius of G, a 
contradiction to the fact that σr(G) = q.■ 

Lemma 2.8: The triple (x, 0, 0) is realizable, for all x ≥ 0. 

Proof:  If x = 0, then by Proposition 2.1, G is a path on even number of vertices. For x ≥ 1, consider a graph G, 
obtained by joining x pendent edges to any one of the central vertices of path P2n, n ≥ 3.Clearly, this graph has x edges 
belonging to Ec(G) and rest all vital. Hence the result.■ 

Lemma 2.9: The triple (x,1,0) is not realizable for all values of x ≥ 0. 

Proof:  On the contrary assume that the triple is realizable. Hence there exists a graph G containing one edge, say e, e 

∈ Ed(G) and "x"  edges belonging to Ec(G), that is, σr(G) = q-x. For e, there exists a radius-preserving spanning tree, 

which does not contain e, as rad(G-e) = rad(G). By contraction of this edge radius remains unaltered contradicting the 
fact that the edge 

 e ∈ Ed(G), proving the result.■ 
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Lemma 2.10: The triple (0,y,0) is realizable for y = 2m, m ≥ 2, or y = 2k + mn, k ≥ 2, m ≥ 2,n ≥1 or  y = mn ,m ≥ 2,n 
≥ 1. 

Proof:  To show that (0,y,0) is realizable, it is sufficient to show the existence of a graph for values given in the 

hypothesis. For y = 0, the realizability follows from Proposition 2.1. It is clear that an edge e ∈ Ed(G) edge lies on a 

block of G. Since x = z = 0, all other edges of G must be vital. For different values of "y", we have different structure 

of blocks containing "y"  edges. If y is even i.e. y ≥ 2m, m ≥ 2, consider a graph 1 1 1mG K K K= + + , m ≥ 2, as in 

Figure 1. 

 

  

Figure 1 

For the graph of Figure 2, all 2m edges belong to Ed(G). Hence G₁ is a (0, y, 0) graph. 

For y = mn, m ≥ 2, n ≥ 1, consider a graph 2 1 1m mG K K F K K= + +� � , where F denotes the one factor between 

mK  and mK  as in Figure 2. 

 

 

Figure 2 

G₂ is an (0, y, 0) graph as all 3m edges are deletable, radius-increasing. 

Next consider a graph 3 1 1m m mG K K F K F F K K= + +� � � ��� � ,where F denotes one factor between two 

consecutive mK ′s, as in Figure 3.   
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Figure 3 

          Clearly G₃ is an (0, y, 0)-graph for y = mn, m ≥ 2, n ≥ 2, as all mn edges of G₃ belong to Ed(G). Hence any 
combination of the above discussed values of "y"  can be realized for (0, y, 0). So the realizing graph will be as shown 
in Figure 4.  

 

 

                                                                    Figure 4.                                                                                      ■ 

Lemma 2.11:  The triple (x, y, 0) is realizable for x ≥ 0; y = 2m, or y = 2k + mn, k ≥ 2, m ≥ 2,  

n ≥ 1, or y = mn, m ≥ 2, n ≥ 1. 

Proof:  Consider the graph G of Figure 1. Join "x"  pendent edges at any one of the vertices of degree m, to get an 
G₁′=(x, y, 0)- graph for y ≥ 2m, m ≥ 2. Clearly, contraction of these pendent "x"  edges does not alter radius of G₁′. 
Similarly, to each of G₂,G₃,G₄ of above Lemma 2.10, we can join "x"  pendent edges at any vertex whose degree is not 
equal to two, to get graphs G₂′,G₃′,G₄′  which are (x,y,0) graphs for different values of "y" . We note that G₂′ is 
(x,3m,0)-graph, G₃′ is (x,mn,0)-graph and G₄′ is (x,2k+mn,0)- graph.■ 

Lemma 2.12: The triple (0,0,1) is not realizable. 

Proof: Suppose, (0,0 ,1) is realizable, let G be the realizing graph. In G, let "e" be the only edge such that rad(G-e) = 
rad(G) = rad(G/e). G cannot contain only one edge as K₂ is neither deletable nor contractible. Hence all other edges of 
G must be vital. Since, rad(G/e) = rad(G), for some central vertex, say u, there are at least two eccentric vertices say 
u1 and u₂, joined by disjoint paths. Hence if "e" lies on any one path, say u-u₁ path, then any other edge of u-u₂ path 
can also be contracted without altering the radius of G. This contradicts the fact that G contains only one radius-vital 
edge and hence the result.■ 

Lemma 2.13:  The triple (0, 0, z) is realizable except for z = 1. 

Proof: From Proposition 2.1, (0, 0, 0) is realizable. From above lemma, (0, 0, 1) is not realizable. For z ≥ 2, consider a 
graph G obtained by identification of each end vertex of a path Pn with each one central vertex of a path P2n-4. The 
graph so obtained is as in Figure 5. 
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                                                            Figure 5 

Label the vertices of G as in Figure 5. So rad(G) = n-2. Clearly, the edges of the form uiui+1,          1 ≤ i ≤ 2n-4, are vital. 
Edges of the form vivi+1,  v₁un-2,  vn-2un-1, belong to Ecd(G) and there is no edge belonging to Ec(G) and Ed(G). Hence by 
taking z=n-1, the triple (0, 0, z) is realizable, for    z ≥ 2.■ 

Lemma 2.14:  The triple (x, 0, z) is realizable for all x ≥ 0, z ≥ 0. 

Proof:  For x = z = 0, the realizability of (x, 0, z)-graph is ensured by Proposition 2.1. For x = 0, the graph constructed 
in the above lemma serves the purpose for z ≥ 2. For x ≥ 1, consider a     (0, 0, z)-graph constructed in above lemma. 
Join "x" pendent edges at either un-2 or  un-1 of G of Figure 5. Clearly these "x" edges belong to Ec(G) and there is no 
edge belonging to Ed(G). Hence, (x ,0, z) is realizable, x ≥ 0, z ≥ 2. For z =1, the graph of the Figure 6 is the realizer. 

 

v 1 

u u

v x-2  v3  v2  

u  

 

Figure 6. 

Clearly, the edge u₁u₂ is the only edge of Ecd(G) and rest all belong to Ec(G). Hence this is         (x, 0, 1) -graph.■ 

Theorem 2.15: The triple (x, y, z) is realizable if x ≥ 0; y = 2m, m ≥ 2, or y = 2k + mn, k ≥ 2,    m ≥ 2, n ≥ 1, or y = 
mn,  m ≥ 2, n ≥ 1; z ≠ 1. 

Proof: Proof follows from Lemma 2.1 to Lemma 2.14. The realizing graph G is as in Figure 7. 

 

 

                                                      Figure 7. 
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Clearly, edges of the form u ui¹,  ui
j ui+1

j,  uiⁿv₁, 1 ≤ i ≤ m, 1 ≤ j ≤ n;  v2n-4xi,  xxi, 1 ≤ i ≤ 1 belong to Ed(G). Edges of the 
form vn-2yi, 1 ≤ i ≤ x, belong to Ec(G) and edges of the form vn-2w₁,          vn-1wn-2,  wiwi+1;  2 ≤ i ≤ n-3, belong to Ecd(G), 
rest all edges are vital. Hence G is an (x, y, z)-graph for the values given in the hypothesis. ■ 
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