Int. J. of Mathematical Sciences and Applications,
Vol. 1, No. 3, September 2011
Copyright (C) Mind Reader Publications
www.journalshub.com

RADIUS-VITAL EDGES IN A GRAPH

Medha Itagi Huilgol
Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560001
medha@bub.ernet.in

Abstract

: The graph resulting from contracting edge " e " is denoted as G/e and the graph resulting from deleting edge " e " is denoted as G-e. An edge " e " is radius-essential if $\operatorname{rad}(G / e)<\operatorname{rad}(G)$, radiusincreasing if $\operatorname{rad}(G-e)>\operatorname{rad}(G)$, and radius-vital if it is both radius-essential and radius-increasing. We partition the edges that are not radius-vital into three categories. In this paper, we study realizability questions relating to the number of edges that are not radius-vital in the three defined categories. A graph is radius-vital if all its edges are radius-vital. We give a structural characterization of radius-vital graphs.

Keywords: Radius-vital edges, radius-increasing edges, radius-essential edges

AMS Classification 2010: 05C12

1.Introduction:

The terminology used throughout this paper is based on Buckley and Harary [1], Harary[3].
Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$ with p and q representing order and size of G . The distance $d(u, v)$ between vertices u and v is the length of a shortest path joining u and v . The eccentricity $e(v)$ of v is the distance to a farthest vertex from v. The radius $\operatorname{rad}(G)$ and diameter $\operatorname{diam}(G)$ are minimum and maximum eccentricities, respectively. The center $C(G)$ and $P(G)$, periphery of a graph G consists of the sets of vertices of minimum and maximum eccentricity, respectively. Vertices in $C(G)$ are called central vertices and those in $P(G)$ are called the peripheral vertices. An elementary contraction of an edge $e=u v$ in G is obtained by removing u and v, inserting a new vertex w and inserting an edge between w and any vertex to which either u or v (or both) were adjacent and G / e denotes the resulting graph. The graph resulting from deleting edge e is denoted by $G-e$.

As in [1], the sequential join $G_{1}+G_{2}+G_{3}+\ldots \ldots+G_{k}$ of graphs $G_{1}, G_{2}, \ldots . G_{k}$ is the graph formed by taking one copy of each of the graphs $G_{1}, G_{2}, \ldots . . G_{k}$ and adding in additional edges from each vertex of G_{i} to each vertex in G_{i+1}, for $l \leq i$ $\leq k-1$.

An edge e is radius-essential if $\operatorname{rad}(G / e)<\operatorname{rad}(G)$ and radius-increasing if
$\operatorname{rad}(G-e)>\operatorname{rad}(G)$. We studied radius-essential edges in [9]. If every edge in a graph G is radius-increasing, then G is a radius-minimal graph. Gliviak [2] established various existence resutls for radius-minimal graphs.
Definition 1.1: An edge e is radius-vital if it is both radius-essential and radius-increasing; otherwise, it is radius-non-vital.

Thus, a radius-vital edge e has the property that contracting e decreases the radius and deleting e increases the radius.
An edge e is deletable if its deletion does not alter the radius, that is, $\operatorname{rad}(G-e)=\operatorname{rad}(G)$. (Gliviak [2] refers such edges superflous). An edge e is contractible if its contraction does not alter the radius, that is, $\operatorname{rad}(G / e)=\operatorname{rad}(G)$. In view of these definitions, we can partition $E(G)$ into four sets:

Medha Itagi Huilgol

radius-vital edges: $\quad E_{v}(G)=\{e: \operatorname{rad}(G / e)<\operatorname{rad}(G)$ and $\operatorname{rad}(G-e)>\operatorname{rad}(G)\}$,
contracible, radius-increasing edges: $E_{c}(G)=\{e: \operatorname{rad}(G / e)=\operatorname{rad}(G)$ and $\operatorname{rad}(G-e)>\operatorname{rad}(G)\}$,
deletable, radius-essential edges: $\quad E_{d}(G)=\{e: \operatorname{rad}(G-e)=\operatorname{rad}(G)$ and $\operatorname{rad}(G / e)<\operatorname{rad}(G)\}$,
and
contractible and deletable edges: $\quad E_{c d}(G)=\{e: \operatorname{rad}(G-e)=\operatorname{rad}(G)$ and $\operatorname{rad}(G / e)=\operatorname{rad}(G)\}$.

An edge e is radius-non-vital(non-vital), if $e \in E_{c}(G) \cup E_{d}(G) \cup E_{c d}(G)$.

In this paper, we shall study the vital and non-vital edges of graphs. After characterizing graphs for which every edge is vital, we examine realizability questions relating to the sizes of the sets $E_{c}(G), E_{d}(G)$ and $E_{c d}(G)$ and study which triples (x, y, z) of integers are realizable for $\left(\left|E_{c}(G)\right|,\left|E_{d}(G)\right|,\left|E_{c d}(G)\right|\right)$.

We mention that a similar study was done for 3-connectedness in graphs. Reid and $\mathrm{Wu}[6]$ studied edges " e " in 3connected graphs for which either deletion of " e " or the contraction of " e ", but not both, alters the 3 -connectedness of the graph.

Definition 1.2: A graph G is radius-vital if all its edges are radius-vital.
We recall some results from Walikar, Buckley and Itagi[9]. Let $\sigma_{r}(G)$ be the number of essential edges in G. That is,

$$
\sigma_{r}(G)=|\{e \in E(G): \operatorname{rad}(G / e)<\operatorname{rad}(G)\}| .
$$

Since an essential edge is not contractible, $\sigma_{r}(G)=\left|E_{v}(G)\right|+\left|E_{d}(G)\right|$.
Let p and q denote the number of vertices and edges, respectively, in G. We shall need the following.

Proposition 1.3[2]: A non-trivial graph is radius minimal if and only if G is a tree.
Proposition 1.4[9]:For a tree $T, \sigma_{r}(G)=q$, if and only if T is a path on even number of vertices.

2.Results:

The following result characterizes radius-vital graphs.
Proposition 2.1: Let G be a graph with $\operatorname{rad}(G)=r$. Then G is radius-vital if and only if G is a path on even number of vertices.

Proof: A non-trivial graph G is radius-minimal if and only if G is a tree, by Proposition 1.1[2]. By Proposition 1.2[9], $\overline{\sigma_{r}(T)=q}$ if and only if T is a path on even number of vertices. Combining the two results the proof follows

We now focus on the non-vital edges of a graph. We begin with a definition and several preliminary observations.
Definition 2.2: For any three non-negative integers x, y, z, a graph G is said to be an (x, y, z)-graph, if $\left|E_{c}(G)\right|=x$, $\overline{\left|E_{d}(G)\right|=y \text { and }}\left|E_{c d}(G)\right|=z$, and the triple (x, y, z) is realizable if there exists an (x, y, z)-graph G.

By Proposition 2.1, it is clear that only $(0,0,0)$ graphs are paths on even number of vertices.

RADIUS-VITAL EDGES IN A GRAPH

Remark 2.3: If $\sigma_{r}(G)=0$, then all edges are contractible no matter whether they are deletable or not. Hence G contains no vital edges. Therefore, if G is an (x, y, z) - graph with $\sigma_{r}(G)=0$, we have $y=0$ and $x+z=q$.

A graph G is a radius-edge-invariant graph (r.e.i. graph) iffor each $e \in E(G), \operatorname{rad}(G-e)=\operatorname{rad}(G)$, that is, every
edge of G is deletable. Refer Walikar, Buckley and Itagi [8] for detailed study of these graphs.
Remark 2.4: If $\sigma_{r}(G)=q$, then no edge of G is contractible. Hence $x=z=0$ and $y \leq q$. If $y=q$, then G is radius-edge-invariant, otherwise, there exists at least one vital edge in G.

Remark 2.5: If G is radius-edge-invariant graph then every edge is deletable, so there are no vital edges in G. Thus, for a r.e.i. graph , $x=0$ and $y+z=q$.

Remark 2.6: If G is radius-minimal then no edge is deletable. Hence $y=z=0$ and $x \leq q$. Thus for a diameter minimal graph G, if $\sigma_{r}(G)=0$, then $x=q$ and if $\sigma_{r}(G)>0$, there exists at least one vital edge.

Next we consider realizability of triple of integers.
Lemma 2.7: The triple ($0,1,0$) is not realizable.

Proof: On the contrary assume that $(0,1,0)$ is realizabe. Then there exists a graph G, containing only one edge, say $e \in$
$E_{d}(G)$. Then (i) $\operatorname{rad}(G-e)=\operatorname{rad}(G)$ and $($ ii $) \operatorname{rad}(G / e)<\operatorname{rad}(G)$ hold. And all other edges e^{\prime} in G are vital, hence ($\left.\mathrm{i}^{\prime}\right)$ $\operatorname{rad}\left(G-e^{\prime}\right)>\operatorname{rad}(G)$ and $\left(\mathrm{ii}^{\prime}\right) \operatorname{rad}\left(G / e^{\prime}\right)<\operatorname{rad}(G)$. From (ii) and (ii') it follows that $\sigma_{r}(G)=q$. Hence, for e, there exists a radius-preserving spanning tree which avoids e. But this edge can be contracted too without altering the radius of G, a contradiction to the fact that $\sigma_{r}(G)=q \cdot$.

Lemma 2.8: The triple $(x, 0,0)$ is realizable, for all $x \geq 0$.
Proof: If $x=0$, then by Proposition 2.1, G is a path on even number of vertices. For $x \geq 1$, consider a graph G, obtained by joining x pendent edges to any one of the central vertices of path $P_{2 n,} n \geq 3$. Clearly, this graph has x edges belonging to $E_{c}(G)$ and rest all vital. Hence the result.

Lemma 2.9: The triple ($x, 1,0$) is not realizable for all values of $x \geq 0$.
Proof: On the contrary assume that the triple is realizable. Hence there exists a graph G containing one edge, say e, e
$\in E_{d}(G)$ and " x " edges belonging to $E_{c}(G)$, that is, $\sigma_{r}(G)=q-x$. For e, there exists a radius-preserving spanning tree,
which does not contain e, as $\operatorname{rad}(G-e)=\operatorname{rad}(G)$. By contraction of this edge radius remains unaltered contradicting the fact that the edge

```
\(e \in E_{d}(G)\), proving the result.■
```


Medha Itagi Huilgol

Lemma 2.10: The triple ($0, y, 0$) is realizable for $y=2 m, m \geq 2$, or $y=2 k+m n, k \geq 2, m \geq 2, n \geq 1$ or $y=m n, m \geq 2, n$ ≥ 1.

Proof: To show that $(0, y, 0)$ is realizable, it is sufficient to show the existence of a graph for values given in the
hypothesis. For $y=0$, the realizability follows from Proposition 2.1. It is clear that an edge $e \in E_{d}(G)$ edge lies on a
block of G. Since $x=z=0$, all other edges of G must be vital. For different values of " y ", we have different structure of blocks containing " y " edges. If y is even i.e. $y \geq 2 m, m \geq 2$, consider a graph $G_{1}=K_{1}+\overline{K_{m}}+K_{1}, m \geq 2$, as in Figure 1.

Figure 1
For the graph of Figure 2, all $2 m$ edges belong to $E_{d}(G)$. Hence G_{1} is a $(0, y, 0)$ graph.
For $y=m n, m \geq 2, n \geq 1$, consider a graph $G_{2}=K_{1}+\overline{K_{m}} \square F \overline{K_{m}}+K_{1}$, where F denotes the one factor between $\overline{K_{m}}$ and $\overline{K_{m}}$ as in Figure 2.

Figure 2
G_{2} is an $(0, y, 0)$ graph as all $3 m$ edges are deletable, radius-increasing.
Next consider a graph $G_{3}=K_{1}+\overline{K_{m}} \square F \overline{K_{m}} \square F \square \square \square \overline{K_{m}}+K_{1}$, where F denotes one factor between two consecutive $\overline{K_{m}}$'s, as in Figure 3.

RADIUS-VITAL EDGES IN A GRAPH

Figure 3
Clearly G_{3} is an $(0, \mathrm{y}, 0)$-graph for $y=m n, m \geq 2, n \geq 2$, as all $m n$ edges of G_{3} belong to $E_{d}(G)$. Hence any combination of the above discussed values of " y " can be realized for $(0, y, 0)$. So the realizing graph will be as shown in Figure 4.

Figure 4.
Lemma 2.11: The triple $(x, y, 0)$ is realizable for $x \geq 0 ; y=2 m$, or $y=2 k+m n, k \geq 2, m \geq 2$,
$n \geq 1$, or $y=m n, m \geq 2, n \geq 1$.
Proof: Consider the graph G of Figure 1. Join " x " pendent edges at any one of the vertices of degree m, to get an $G_{1}{ }^{\prime}=(x, y, 0)$ - graph for $y \geq 2 m, m \geq 2$. Clearly, contraction of these pendent " x " edges does not alter radius of $G_{1}{ }^{\prime}$. Similarly, to each of G_{2}, G_{3}, G_{4} of above Lemma 2.10, we can join " x " pendent edges at any vertex whose degree is not equal to two, to get graphs $G_{2}^{\prime}, G_{3}{ }^{\prime}, G_{4}{ }^{\prime}$ which are ($x, y, 0$) graphs for different values of " y ". We note that G_{2} ' is $(x, 3 m, 0)$-graph, $G_{3}{ }^{\prime}$ is $(x, m n, 0)$-graph and $G_{4}{ }^{\prime}$ is $(x, 2 k+m n, 0)$ - graph.

Lemma 2.12: The triple $(0,0,1)$ is not realizable.
Proof: Suppose, $(0,0,1)$ is realizable, let G be the realizing graph. In G, let " e " be the only edge such that $\operatorname{rad}(G-e)=$ $\operatorname{rad}(G)=\operatorname{rad}(G / e) . G$ cannot contain only one edge as K_{2} is neither deletable nor contractible. Hence all other edges of G must be vital. Since, $\operatorname{rad}(G / e)=\operatorname{rad}(G)$, for some central vertex, say u, there are at least two eccentric vertices say u_{1} and u_{2}, joined by disjoint paths. Hence if " e " lies on any one path, say u - u_{1} path, then any other edge of $u-u_{2}$ path can also be contracted without altering the radius of G. This contradicts the fact that G contains only one radius-vital edge and hence the result.

Lemma 2.13: The triple $(0,0, z)$ is realizable except for $z=1$.
Proof: From Proposition 2.1, $(0,0,0)$ is realizable. From above lemma, $(0,0,1)$ is not realizable. For $z \geq 2$, consider a graph G obtained by identification of each end vertex of a path P_{n} with each one central vertex of a path $P_{2 n-4}$. The graph so obtained is as in Figure 5.

Figure 5
Label the vertices of G as in Figure 5. So $\operatorname{rad}(G)=n-2$. Clearly, the edges of the form $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1,}, \quad l \leq i \leq 2 n-4$, are vital. Edges of the form $v_{i} v_{i+1}, v_{1} u_{n-2}, v_{n-2} u_{n-1}$, belong to $E_{c d}(G)$ and there is no edge belonging to $E_{c}(G)$ and $E_{d}(G)$. Hence by taking $z=n-1$, the triple $(0,0, z)$ is realizable, for $\quad z \geq 2 . ■$

Lemma 2.14: The triple $(x, 0, z)$ is realizable for all $x \geq 0, z \geq 0$.
Proof: For $x=z=0$, the realizability of $(x, 0, z)$-graph is ensured by Proposition 2.1. For $x=0$, the graph constructed in the above lemma serves the purpose for $z \geq 2$. For $x \geq 1$, consider a $\quad(0,0, z)$-graph constructed in above lemma. Join " x " pendent edges at either u_{n-2} or u_{n-1} of G of Figure 5. Clearly these " x " edges belong to $E_{c}(G)$ and there is no edge belonging to $E_{d}(G)$. Hence, $(x, 0, z)$ is realizable, $x \geq 0, z \geq 2$. For $z=1$, the graph of the Figure 6 is the realizer.

Figure 6.
Clearly, the edge $u_{1} u_{2}$ is the only edge of $E_{c d}(G)$ and rest all belong to $E_{c}(G)$. Hence this is $\quad(x, 0,1)$-graph.■
Theorem 2.15: The triple (x, y, z) is realizable if $x \geq 0 ; y=2 m, m \geq 2$, or $y=2 k+m n, k \geq 2, \quad m \geq 2, n \geq 1$, or $y=$ $m n, m \geq 2, n \geq 1 ; z \neq 1$.

Proof: Proof follows from Lemma 2.1 to Lemma 2.14. The realizing graph G is as in Figure 7.

Figure 7.

RADIUS-VITAL EDGES IN A GRAPH

Clearly, edges of the form $u u_{i}^{l}, u_{i}^{j} u_{i+1}^{j}, u_{i}^{n} v_{1}, l \leq i \leq m, l \leq j \leq n ; v_{2 n-4} x_{i}, x x_{i}, l \leq i \leq l$ belong to $E_{d}(G)$. Edges of the form $v_{n-2} y_{i}, 1 \leq i \leq x$, belong to $E_{c}(G)$ and edges of the form $v_{n-2} w_{1}, \quad v_{n-1} w_{n-2}, w_{i} w_{i+1} ; 2 \leq i \leq n-3$, belong to $E_{c d}(G)$, rest all edges are vital. Hence G is an (x, y, z)-graph for the values given in the hypothesis.

REFERENCES:

1. F. Buckley and F. Harary, "Distance in Graphs", Addison -- Wesley Publishing Co., (1990).
2. F. Gliviak, "On radially critical graphs", in Recent advances in Graph Theory, Proc. Sympos, Prague, Academia Praha, Prague (1975) 207-221.
3. F. Harary, "Graph Theory", Addison-Wesley, Reading Mass. (1969).
4. J.G. Oxley and H. Wu, "The 3-connected graphs with three non-essential edges". (Preprint).
5. W.T. Tutte, " A theory of 3 - connected graphs", Nederl. Akad. Wetensch. Proc.Ser.A.64, 441455 (1961).
6. T.J. Reid and Haidong Wu, "On Non-Essential Edges in 3 -- connected Graphs", Graphs and Combinatorics (2000) 16:337-- 354.
7. H.B.Walikar, Fred Buckley, M.K.Itagi, " Diameter-essential edges in a graph ", Discrete Mathematics, 259(2002) 211-225.
8. H.B.Walikar, Fred Buckley, M.K.Itagi, "Radius-edge-invariant and diameter-edge-invariant graphs", Discrete Mathematics, 272 (2003) 119-126.
9. H.B.Walikar, Fred Buckley, M.K.Itagi, " Radius-essential edges in a graph ", Journal of Combinatorial Mathematics and Combinatorial Computing, 53 (2005) 209-220.
