
Quantum Inf Process (2012) 11:685–710
DOI 10.1007/s11128-011-0280-8

Majorana representation of symmetric multiqubit states

A. R. Usha Devi · Sudha · A. K. Rajagopal

Received: 15 January 2011 / Accepted: 11 August 2011 / Published online: 27 August 2011
© Springer Science+Business Media, LLC 2011

Abstract As early as 1932, Majorana had proposed that a pure permutation
symmetric state of N spin- 1

2 particles can be represented by N spinors, which corre-
spond geometrically to N points on the Bloch sphere. Several decades after its con-
ception, the Majorana representation has recently attracted a great deal of attention in
connection with multiparticle entanglement. A novel use of this representation led to
the classification of entanglement families of permutation symmetric qubits—based
on the number of distinct spinors and their arrangement in constituting the multiqu-
bit state. An elegant approach to explore how correlation information of the whole
pure symmetric state gets imprinted in its parts is developed for specific entanglement
classes of symmetric states. Moreover, an elegant and simplified method to evaluate
geometric measure of entanglement in N -qubit states obeying exchange symmetry has
been developed based on the distribution of the constituent Majorana spionors over
the unit sphere. Multiparticle entanglement being a key resource in several quantum
information processing tasks, its deeper understanding is essential. In this review, we
present a detailed description of the Majorana representation of pure symmetric states
and its applicability in investigating various aspects of multiparticle entanglement.
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1 Introduction

Permutation symmetric multiqubit states, which remain invariant under exchange of
any pair of particles, form an important class among quantum states due to their
experimental significance and mathematical elegance [1–5]. The class of symmetric
states comprises of the well-known Greenberger–Horne–Zeilinger(GHZ) [6], W, and
Dicke states [7] etc. Mathematical simplicity in addressing N -qubit states obeying
permutation symmetry results because the states are confined to the N + 1 dimen-
sional subspace of the 2N dimensional Hilbert space. The N +1 dimensional subspace
is spanned by the Dicke states, {|N/2, N/2 − l〉, l = 0, 1, 2, . . . , N }, which are the
simultaneous eigenstates of the squared collective angular momentum operator J 2 and
its z-component Jz . An elegant geometrical representation for multiqubit symmetric
states in terms of N -points on the Bloch sphere S2 was proposed by Majorana [8]
as early as 1932. The representation of multiqubit states based on their characteris-
tic N -qubits (spinors), the so-called Majorana representation (MR) for symmetric
states [8–11] has been immensely useful in diverse branches of physics [9,12–15] in
general and in quantum information science [16–23] in particular. The significance of
MR in characterizing entanglement in multiqubit symmetric states has been realized in
recent years and the avenues appear to be expanding. While the SLOCC classification
of symmetric states in terms of the distinct spinors characterizing the state has been
accomplished using the MR [16,17], the reducibility/irreducibility features of multi-
party correlations in several important classes of states could well be captured [18,19]
using it. In fact, an ingenious use of this representation allows one to characterize how
the multiparty correlation is imprinted in its parts for a class of non-symmetric states
too, which is a generalized set of states related to a particular symmetric class [18].
Quantification of multiparty entanglement is another important aspect where the MR
finds its applicability. Geometric measure of entanglement [24,25]—a useful mea-
sure of entanglement for multiqubit pure states—has been realized to have a natural
interpretation [20,21] in terms of the arrangement of N -spinors on the Bloch sphere,
as given by MR. Identifying maximally entangled symmetric states for each N has
been possible utilizing this feature [20–23] and this has paved way for arriving at
some novel results while analyzing highly entangled states in the so-called platonic
solids [23]. This review aims at capturing the essence of MR and how it has been put
to use towards the understanding of multiqubit entanglement.

The organization of the article is as under: Sect. 2 gives a detailed description of
MR of symmetric multiqubit states, the Majorana spinors characterizing the state and
their geometric representation. The SLOCC classification of symmetric states based
on the number and arrangement of spinors constituting the state is given in Sect. 3. We
discuss the “whole and its parts” issue in the context of some specific SLOCC class
of symmetric states in Sect. 4. More specifically, we show that not all states that are
interconvertible into one another through SLOCC operations exhibit the same reduc-
ibility/irreducibility of correlations, with the help of an explicit three qubit example. We
also demonstrate that only two of the N − 1 qubit reduced density matrices uniquely
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Majorana representation of symmetric multiqubit states 687

determine the family of N qubit pure symmetric states, comprised of two distinct
Majorana spinors and also another related class of non-symmetric states. A brief
review on geometric measure of entanglement and how the geometric representation
of symmetric states given by Majorana leads to a quantification of their entanglement,
characterized through geometric measure, is given in Sect. 5. Section 6 contains a
brief summary.

2 Majorana representation

In his novel 1932 paper [8] (which had not received much attention at that time)
Ettore Majorana proposed that a pure spin j = N

2 quantum state can essentially be
represented as a symmetrized combination of N constituent spinors as follows:

|�sym〉 = N
∑

P

P̂ {|ε1, ε2, . . . εN 〉}, (1)

where

|εl〉 = cos(βl/2) e−iαl/2 |0〉 + sin(βl/2) eiαl/2 |1〉, l = 0, 1, 2, . . . , N , (2)

denote the spinors constituting the symmetric state |�sym〉; P̂ corresponds to the set
of all N ! permutations of the spinors (qubits) and N corresponds to an overall nor-
malization factor.

For example, two and three qubit symmetric pure states have the following repre-
sentations in terms of the Majorana spinors:

|�(2)sym〉 = N [|ε1, ε2〉 + |ε2, ε1〉] (3)

|�(3)sym〉 = N [|ε1, ε2, ε3〉 + |ε3, ε1, ε2〉 + |ε2, ε3, ε1〉
+|ε2, ε1, ε3〉 + |ε3, ε2, ε1〉 + |ε1, ε3, ε2〉] . (4)

Equation (1) corresponds to the Majorana representation of an arbitrary symmetric
state |�sym〉 of N qubits in terms of the constituent spinors |εl〉, l = 1, 2, . . . N .

On the other hand, states of N -qubits obeying exchange symmetry get restricted
to a (N + 1) dimensional Hilbert space spanned by the collective basis vectors{∣∣ N

2 , l − N
2

〉
, l = 0, 1, 2, . . . N

}
where,

∣∣∣∣
N

2
, l − N

2

〉
= 1√

N Cl

[| 0, 0, . . .︸ ︷︷ ︸
l

, 1, 1, . . .︸ ︷︷ ︸
N−l

〉 + Permutations ] (5)

are the N + 1 Dicke states—expressed in the standard qubit basis |0〉, |1〉 and N Cl =
N !

l! (N−l)! denotes the binomial coefficient. An arbitrary pure symmetric state of N
qubits obeying exchange symmetry may thus be expressed as,

|�sym〉 =
N∑

l=0

cl

∣∣∣∣
N

2
, l − N

2

〉
, (6)
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and is completely specified by the (N + 1) complex coefficients cl . Eliminating an
overall phase and normalizing the state implies that N complex parameters are required
to completely characterize a pure symmetric state (6) of N qubits.

While (6) offers a suitable parametrization of the symmetric multiqubit system in
terms of the the collective parameters cl , the MR (1) leads to an intrinsic geometric
picture of the system in terms of N -points on the unit sphere S2. (Note that the spinors
|εl〉, l = 1, 2, . . . , N of (2) correspond geometrically to N points on the so-called
Majorana sphere S2 [11,12,20–23])—with the pair of angles (αl , βl) determining the
orientation of each point on the sphere).

The equivalence between the parameters cl of the collective representation (6) and
that of the MR (1) can be established in an elegant manner [18] as detailed in the
following.

1. A symmetric pure state is transformed into another symmetric pure state under
identical rotations R ⊗ R ⊗ · · · ⊗ R on all the spinors of (1) (which corresponds
to an equivalent collective rotation R on the state (6) in the (N + 1) dimensional
symmetric sub-space).

2. Under identical rotation through R−1(αs, βs, 0) ⊗ R−1(αs, βs, 0) ⊗ · · ·, where
αs, βs correspond to the orientation of any one of the spinors in (1), it may be
identified that

〈1, 1 . . . , 1|R−1(αs, βs, 0)⊗ R−1(αs, βs, 0)⊗ · · · |�sym〉 ≡ 0. (7)

This is because the rotation R−1
s ⊗ R−1

s · · · ⊗ R−1
s takes one of the spinors |εs〉

with orientation angles (αs, βs) to |0〉 i.e., it aligns the spinor |εs〉 in the positive
z-direction. Then, every term in the superposition (1) of the rotated state has atleast
one |0〉 and so, the projection 〈1, 1, . . . , 1 | R−1

s ⊗ R−1
s ⊗ . . . R−1

s |�(N )Sym〉 of the
rotated state in the ‘all-down’ direction vanishes.

3. Equation (7) holds good for collective rotations R−1
s = R−1

s ⊗ R−1
s ⊗ · · · ⊗

R−1
s , s = 1, 2, . . . , N , which orient any one of the constituent spinors |εs〉

in the positive z-direction. In other words, there exist N rotations R−1
s =

R−1(αs, βs, 0), s = 1, 2, . . . , N—in general—which lead to the same result (7).
4. In terms of the alternate representation (6) of the symmetric state |�sym〉, (7) leads

to
〈

N

2
,− N

2

∣∣∣R−1(αs, βs, 0)⊗ R−1(αs, βs, 0)⊗ · · · ⊗ R−1(αs, βs, 0)
∣∣∣�sym

〉
=0

⇒
〈

N

2
,− N

2

∣∣∣∣∣R
−1
s (αs, βs, 0)

{
N∑

l=0

cl

∣∣∣∣∣
N

2
, l − N

2

〉}
= 0

i.e.,
N∑

l=0

cl DN/2∗
l−N/2,−N/2(αs, βs, 0) = 0, (8)

where we have denoted R−1(αs, βs, 0)⊗ R−1(αs, βs, 0)⊗· · ·⊗ R−1(αs, βs, 0) =
R−1

s (αs, βs, 0) in the collective (N + 1) dimensional symmetric subspace of N
qubits and

DN/2†
−N/2, l−N/2 = 〈N/2,−N/2|R−1

l |N/2, l − N/2〉,
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represents the collective rotation in the Wigner-D representation [26]. Substituting
the explicit form of the D-matrix [26], i.e.,
[

DN/2†(α, β, 0)
]

−N/2, l−N/2
= DN/2∗

l−N/2,−N/2(α, β, 0)

=
√

N Cl

[
cos

(
β

2

)]N−l [
− sin

(
β

2

)]l

e
i
(

l− N
2

)
α
,

(9)

and on subsequent simplification we obtain,

A
N∑

l=0

(−1)l
√

N Cl cl zl = 0 (10)

where z = tan
(
β
2

)
ei α and the overall coefficient A = cosN

(
β
2

)
e−i N α

2 .

In other words, the N roots zl = tan
(
βl
2

)
ei αl , l = 1, 2, . . . N of the Majorana

polynomial P(z)

P(z) =
N∑

l=0

(−1)l
√

N Cl cl zl (11)

determine the orientations (αl , βl) of the spinors constituting the N -qubit sym-
metric state, in terms of the collective parameters cl .

It may be noted that the orientations of all the N constituent spinors may not be deter-
mined in the cases where the Majorana Polynomial P(z) is of degree r < N (i.e., when
some of the coefficients cl , r < l ≤ N are zero). To see this, let us consider the exam-
ple of Dicke states (5). We have only one of the coefficients non-zero i.e., cl = δl,r .
The corresponding Majorana polynomial P(z) reduces to P(z) = (−1)r

√
N Cr zr .

The r -fold degenerate root z = 0 of the polynomial leads to the specification of the
spinor orientation angles βl = 0, αl = arbitrary, l = 1, 2, . . . , r – leading to the
identification |εl〉 ∼ |0〉, l = 1, 2, . . . , r (up to an overall phase) of the constituent
spinors. There is no further information about the remaining N − r spinors constitut-
ing the state in terms of the Majorana Polynomial (11). It is convenient to recast the

polynomial in terms of z′ = 1
z = cot

(
βl
2

)
e−iαl and following the same procedure

outlined above, we obtain

A′
N∑

l=0

(−1)l
√

N Cl c N
2 −l z′N−l = 0, (12)

where A′ = sinN
(
βl
2

)
eiαl N/2.

We thus obtain,

P(z′) =
N∑

l=0

(−1)N−l
√

N Cl c N
2 −l z′N−l . (13)
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690 A.R.U. Devi et al.

The N − r roots of the polynomial (13) determine the orientations of the remaining
N − r spinors |εl〉, l = r + 1, r + 2, . . . , N , constituting the state |�sym〉. In par-
ticular, for Dicke states

∣∣ N
2 , r − N

2

〉
, it is easy to see that (13) leads to (N − r)-fold

degenerate root z′ = 0 which in turn corresponds to βl = π/2, αl = arbitrary i.e.,
|εl〉 ≡ |1〉, l = r +1, r +2, . . . , N . It may be readily seen that except for the all-up (all
down) N -qubit Dicke states

∣∣ N
2 ,

N
2

〉 ≡ |0, 0, . . . , 0〉 (
∣∣ N

2 ,− N
2 =〉 ≡ |1, 1, . . . , 1〉),

for which the Majorana Polynomial P(z) = (−1)N zN ( P(z′) = (−1)N z′N ) results
in N -fold degenerate root, all the other Dicke states

∣∣ N
2 , l − N

2

〉
, l �= 0, N are charac-

terized by two distinct spinors, |0〉, |1〉 each occurring r and N − r times respectively.
The GHZ state 1√

2

[∣∣ N
2 ,

N
2

〉 + ∣∣ N
2 ,− N

2

〉]
of N qubits satisfy the polynomial equa-

tion 1 + (−1)N zN = 0, solutions of which are N th roots of unity (when N is odd)

zl = e
2π i l

N ; l = 0, 1, 2, . . . N−1 (when N=even, we have zl = e
2π i

N (l− 1
2 )). The associ-

ated Majorana spinors are given by, |εl〉 =
√

zl
2 [|0〉 + zl |1〉] , l = 0, 1, 2, . . . , N − 1.

We list some examples of symmetric states of two and three qubits and the corre-
sponding constituent spinors in Table 1.

3 Entanglement classification of multiqubit symmetric states

Multiparticle entanglement can be of different kinds [27]. Two multiparty states have
the same kind of entanglement if they can be obtained from each other via stochastic
local operations and classical communication (SLOCC) with nonzero probability. It is
well-known that three qubit GHZ and W states are inequivalent under SLOCC and are
representatives of inequivalent three party entanglement. Understanding inequivalent
classes of multiparticle entanglement, which are not interconvertible into each other
under SLOCC operations is of fundamental importance [27–29,16]. It has been identi-
fied that the number of inequivalent multiparticle entanglement classes grows rapidly
with the increase of the number of parties [27,29,16]. This poses increasing algebraic
complexity in the identification of inequivalent entanglement classes as the number
of parties increase. However, when one restricts to the set of permutation symmetric
multiqubit states, the MR, discussed in Sect. 2, offers an elegant approach towards
the SLOCC classification of entanglement families—based entirely on the number
and arrangement of the independent spinors (qubits) constituting the pure symmetric
multiqubit state [16]. More recently, innovative experimental schemes have been pro-
posed to generate a large variety of symmetric multiqubit photonic states [30,31]. In
the following, we outline the approach of Bastin et al. [16] in identifying the SLOCC
classification of symmetric multiqubit pure states based on the MR.

3.1 SLOCC classification of symmetric multiqubit pure states

Any two N -party pure states |φ〉, |ψ〉 are interconvertible, with non-zero probability
of success, by means of SLOCC if and only if there exists an invertible local operation
(ILO) [27] A1 ⊗A2 ⊗· · ·⊗AN such that |φ〉 = (A1 ⊗A2 ⊗· · ·⊗AN )|ψ〉.Restricting
ourselves to the set of permutation symmetric multiqubit states, it suffices to consider
transformations of the form A⊗N = A ⊗ A ⊗ · · · ⊗ A, comprising only identical
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)

N
=

2

|1,
1〉+

|1,
−1

〉
√ 2

1
+

z2
=

0,

z 1
,2

=
e±i

π 2
,
β

1,
2

=
π 2
,
α

1,
2

=
±
π 2

|ε 1
〉=

e−i
π 4

√ 2
(|0

〉+
i|1

〉 )
|ε 2

〉=
ei
π 4 √ 2
(|0

〉−
i|1

〉 )
|0,

0〉+
|1,

1〉
√ 2

|1,
1〉−

|1,
−1

〉
√ 2

z2
−

1
=

0,

z 1
,2

=
±1
,
β

1,
2

=
π 2
,

α
1,

2
=

0

|ε 1
〉=

1 √ 2
(|0

〉+
|1〉
)

|ε 2
〉=

1 √ 2
(|0

〉−
|1〉
)

|0,
0〉−

|1,
1〉

√ 2

|1,
0〉

z
=

0,
z−

1
=

1

z 1
=

0,
z 2

=
z−

1
=

1

β
1,

2
=

0,
π
,
α

1,
2

=
ar

bi
tr

ar
y

|ε 1
〉=

|0〉
|ε 2

〉=
|1〉

|0,
1〉+

|1,
0〉

√ 2

N
=

3
∣ ∣ ∣3 2
,

3 2

〉 +∣ ∣ ∣3 2
,−

3 2

〉

√ 2

1
−

z3
=

0,

z r
=

e
2π

ir 3
,

β
r

=
π 2
,
α

r
=

2π
r

3
,
r

=
0,

1,
2.

|ε r
〉=

√
z r 2
(|0

〉+
z r

|1〉
)
,

r
=

0,
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2

|0,
0,

0〉+
|1,

1,
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,
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〉 −∣ ∣ ∣3 2
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〉

√ 2
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+
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=
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3
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1 2
)
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π 2
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α
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=
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1 2
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=
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√
z r 2
(|0

〉+
z r

|1〉
)
,
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=
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2

|0,
0,

0〉−
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,
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〉

√ 2

z2
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=
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=
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=
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β
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±
π 2
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1
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=
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β
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π
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(|0
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[|0
,
0,

1〉
+
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=
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+
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+
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ILOs on all the qubits to verify the SLOCC equivalence [16,32]. This identification is
significant in that MR [8] of symmetric states offers itself to recognize how different
entanglement families emerge.

As we have noted in Sect. 2, the roots of the Majorana polynomial (11) (and (13))
could be degenerate and hence not all the N constituent spinors of a pure symmetric
N qubit state are distinct. Let |ε1〉, |ε2〉, . . . , |εd〉, d ≤ N be the number of distinct
spinors, in a N qubit pure symmetric state (1). Then, the list of numbers

{n1, n2, . . . , nd ; n1 ≥ n2 ≥ · · · ≥ nd; n1 + n2 + · · · + nd = N }

corresponds respectively to the number of times the independent spinors |εi 〉,
(i = 1, 2, . . . , d ≤ N ) appear in the symmetric state (1) under consider-
ation. The number d ≤ N , called the diversity degree and the list of numbers{

n1, n2, . . . , nd ; n1 ≥ n2 ≥ · · · nd ,
∑d

i=1 ni = N
}

, called the degeneracy config-

uration, form the key elements in the classification of pure symmetric states [16]. The
different classes (based on the number of distinct spinors and their arrangement in a
given N -qubit symmetric state) are denoted by {Dn1,n2,...,nd }. An identical ILO A⊗N

transforms a symmetric state belonging to the class {Dn1, n2,...,nd } to another state of
the same class. More explicitly, we have

|Dn1,n2...,nd 〉 ILO−→ |D′
n1, n2...,nd

〉 = A⊗N |Dn1,n2...,nd 〉 (14)

with the constituent spinors transforming as |ε′i 〉 = A |εi 〉, i = 1, 2, . . . , d. This
forms the main basis of the SLOCC classification of symmetric pure states [16].

1. {DN }: When all the N solutions of the Majorana polynomial are identically equal,
the corresponding class of symmetric states is given by

|DN 〉 = |ε, ε, . . . , ε〉, (15)

where the diversity degree d = 1; the states belonging to this family of separable
symmetric states is denoted by |DN 〉.

2. {Dn1,n2; n1 = N − k, n2 = k = 1, 2, . . . , [N/2]}: The states with two distinct
spinors have the form,

|DN−k,k〉 = N [| ε1, ε1, . . . ε1︸ ︷︷ ︸
N−k

, ε2, ε2, . . . ε2︸ ︷︷ ︸
k

〉 + Permutations ] (16)

where k = 1, 2, . . . [N/2].
Dicke states

∣∣ N
2 , k − N

2

〉
are the representative states of the entanglement class

{DN−k,k} with two independent spinors and clearly, they are all inequiva-
lent under SLOCC (as the degeneracy classification is different for each k =
1, 2, . . . , [N/2]).

3. {D1,1,...,1}: When the N roots of the Majorana Polynomial (1) are all distinct, the
pure symmetric states constitute the class {D1,1,1,...,1} with diversity degree d = N .
Clearly, the N qubit GHZ state is a representative of this entanglement class.

123



Majorana representation of symmetric multiqubit states 693

The number of SLOCC classes grows with the increase in the number of qubits:
For N = 2, there are only 2 entanglement families given by D2 (the separable class)
and D1, 1; for N = 3 there are 3 SLOCC classes given by D3,D2, 1 and D1, 1, 1
etc. In general, the number of entanglement families for a symmetric N -qubit state
grows [16], based entirely on the partition of the number N in the arrangement{

n1, n2, . . . , nd ; n1 ≥ n2 ≥ · · · ≥ nd ; ∑d
i=1 ni = N

}
. However, the Majorana clas-

ses with diversity degree d ≥ 4 contain a continuous range of SLOCC classes, depend-
ing on a continuous parameter and the states with different value of this continuous
parameter are not SLOCC convertible into each other [16]. More recently Bastin et
al. [17] have also extended the entanglement classification scheme for mixed symmet-
ric multiqubit systems, based on the hierarchical families of different SLOCC classes,
successively embedded into each other.

4 Determining the whole pure state from its parts

One among the basic issues of interest in quantum information theory is to learn about
how much of the whole quantum state can be known from its subsystems [33–40].
The importance of knowing if higher order correlations in a multipartite system follow
entirely from lower order ones involving few parties has been of interest in many body
physics [41]. Construction of the many electron state with the knowledge of its two
particle reduced density matrices has been discussed in a series of papers [42–46].
While it has been shown by Linden et al [47,48] that N -party entanglement cannot, in
general, be reversibly transformed into entanglement of two parties, Linden, Popescu
and Wootters [34,35] proved a striking result that reduced states of a smaller fraction
of the parties specify most of the generic multiparty pure states uniquely. Walck and
Lyons [37,38] showed that the N party GHZ states and their local unitary equivalents
are the only exceptions to this result and the correlations in a multi-qubit GHZ state are
irreducible. Preeti Parashar and Swapan Rana have shown that N qubit W class states
can be uniquely determined by their bipartite marginals [39]. Generalized Dicke-class
states is another class of symmetric as well as non-symmetric states that is shown to
possess reducible correlations [40]. In this section we discuss determining the whole
pure symmetric N qubit state of a specific SLOCC class from its N − 1 party reduced
states [18,19].

4.1 Irreducibility features of three qubit symmetric states of the class {D1,1,1} with
all distinct Majorana spinors

While the equivalence of quantum states under SLOCC is known to indicate that states
belonging to the same equivalence class can be used to implement similar quantum
information tasks [27], here, we address the question “Do SLOCC interconvertible
states possess similar irreducibility features?” by considering specific examples of
three qubit symmetric states belonging to the same SLOCC class {D1,1,1}. With the
help of this example, we demonstrate explicitly that the states of the same Major-
ana class could exhibit contrasting irreducibility features. GHZ state and its local
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unitary equivalent states are the only ones of the Majorana class {D1,1,1}, which are
undetermined by their two qubit reduced systems [34,37,38].

We consider two specific examples of the SLOCC family {D1,1,1}, the first being
the three qubit GHZ state,

|GHZ〉 = 1√
2

[|0, 0, 0〉 + |1, 1, 1〉]. (17)

The Majorana polynomial equation (1) for this state has a simple structure 1− z3 = 0,
solutions of which are cube roots of unity ω,ω2, ω3 = 1 and the corresponding spi-
nors constituting the state are readily identified to be |ε1〉 = 1√

2
[|0〉 + ω |1〉], |ε2〉 =

1√
2
[|0〉 +ω2 |1〉], |ε3〉 = 1√

2
[|0〉 + |1〉]. GHZ state is fragile under the loss of a qubit,

with vanishing pairwise concurrence [49,50] for any pairs of two qubit reduced density
matrices; but it exhibits genuine three-party entanglement [27,51] with the maximum
tangle [52] τ = 1. The state exhibits irreducible three party correlations which can
not be determined by its reduced states [34,37,38].

We consider another three qubit state which belong to the same SLOCC class
{D1,1,1} of three distinct Majorana spinors:

|η〉 = 1√
2
[|W〉 + |W̄〉]. (18)

This is a superposition of the three qubit W state |W〉 = 1√
3
[|0, 0, 1〉 + |0, 1, 0〉 +

|1, 0, 0〉] and its obverse state |W̄〉 = 1√
3
[|1, 1, 0〉 + |1, 0, 1〉 + |0, 1, 1〉]. The state

|η〉 has genuine three party entanglement, quantified in terms of the tangle τ = 1/3,
and it is also robust under the loss of qubits—as reflected through the concurrence
C = 1/3 for any pairs of two qubits. The three qubit symmetric state |η〉 given by
(18) satisfies the Majorana polynomial equation z(z − 1) = 0 and the corresponding
spinors constituting the state are |ε′1〉 = |1〉, |ε′2〉 = 1√

2
[|0〉 + |1〉], |ε′3〉 = |0〉.

The states |GHZ〉 and the W superposition state |η〉 can be locally converted from
one another, with the help of an identical ILO i.e., |GHZ〉 = A ⊗ A ⊗ A |η〉, where

A =
(

1 ω

1 ω2

)
. The corresponding Majorana spinors of the states |η〉 and |GHZ〉 are

related to each other up to an overall factor: A |ε′1〉 = √
2ω |ε1〉, A |ε′2〉 = −ω2 |ε2〉,

and A |ε′3〉 = √
2 |ε3〉.

We now explicitly show that the higher order correlation in the W superposition
state |η〉 is imprinted in its two qubit reduced states. We follow the approach of Linden
et al. [34] in demonstrating this feature of the three qubit W superposition state.

Let us suppose that a mixed three qubit state γ too has the same two-qubit reduced
system �12, as that of the W superposition state |η〉. Denoting the pure state |�〉 to be
containing the three qubits and the environment such that

TrE [|�〉〈�|] = γ,
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the two party reduced state �12 can be expressed as

�12 = Tr3,E [|�〉〈�|].

The two qubit reduced system �12 of the pure state |η〉 is a rank-2 state given by,

�12 = |χ0〉〈χ0| + |χ1〉〈χ1|, (19)

where

|χ0〉 = 1√
6
[|1, 0〉 + |0, 1〉 + |1, 1〉],

|χ1〉 = 1√
6
[|0, 0〉 + |0, 1〉 + |1, 0〉].

Given that the two party reduced state �12 also belongs to the extended pure state |�〉
(and in turn to the mixed state γ ) of the three qubits and the environment, we must have

|�〉 = |χ0〉|E0〉 + |χ1〉|E1〉, (20)

〈Ei |E j 〉 = δi, j . (21)

In terms of the basis states of qubit 3, the states of the environment |E0〉, |E1〉 are
given by

|E0〉 = |0〉 |e00〉 + |1〉 |e01〉,
|E1〉 = |0〉 |e10〉 + |1〉 |e11〉. (22)

Thus, (20) takes the following form:

|�〉 = 1√
6
[(|11, 02, 03〉 + |01, 12, 03〉 + |11, 12, 03〉)|e00〉 + (|11, 02, 13〉

+|01, 12, 13〉 + |11, 12, 13〉)|e01〉 + (|01, 02, 03〉 + |01, 12, 03〉
+|11, 02, 03〉)|e10〉 + (|01, 02, 13〉 + |01, 12, 13〉 + |11, 02, 13〉)|e11〉]

(23)

Now, demanding that the reduced system �13 of |η〉 is also shared by |�〉 leads to
further constraints.

1. First we compare 〈0, 1|�13|0, 1〉, from the states (18) and (20): We have,
〈0, 1|Tr2 [|η〉〈η|] |0, 1〉 = 1

3 and 〈0, 1|Tr2,E [|�〉〈�|] |0, 1〉 = 1
6 〈e01|e01〉 +

1
3 〈e11|e11〉 leading to 〈e01|e01〉 + 2〈e11|e11〉 = 2.

2. Next, we compare 〈1, 1|�13|1, 1〉 evaluated from the states |η〉 and |�〉: We get,
〈1, 1|Tr2,E [|�〉〈�|] |1, 1〉 = 1

3 〈e01|e01〉+ 1
6 〈e11|e11〉 and 〈1, 1|Tr2 [|η〉〈η|| |1, 1〉 =

1
6 implying, 2〈e01|e01〉+〈e11|e11〉 = 1. From these relations we obtain 〈e11|e11〉 =
1, 〈e01|e01〉 = 0 (or |e01〉 ≡ 0). Further, from the orthonormality (21) it follows
that 〈e00|e00〉 = 1, and |e10〉 ≡ 0.
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3. Finally, a comparison of the matrix elements 〈0, 0|Tr2,E [|�〉〈�|] |0, 1〉 =
1
6 〈e00|e11〉 and 〈0, 0|Tr2 [|η〉〈η|] |0, 1〉 = 1

6 lead to 〈e00|e11〉 = 1 or |e11〉 ≡ |e00〉.
Thus, the extended pure state (20) should take the form |�〉 ≡ |η〉 |e00〉.

In other words, the three qubit pure state |η〉 is uniquely determined by its two-qubit
reduced systems and is therefore, reducible.

This illustrative example of three qubits supports ( with the help of an independent
and non-trivial proof) the already existing general result [37,38] that only the N qubit
GHZ state and its local unitarily equivalents remain undetermined by their reduced
density matrices. Moreover, this clearly projects out the contrasting irreducibility fea-
tures of two SLOCC interconvertible states (17) and (18) of the same entanglement
family {D1,1,1}.

4.2 Determining {DN−k,k} SLOCC class of pure symmetric N qubit states from its
N − 1 qubit reduced density matrices

While it has been proved [37] that except for the N qubit GHZ states and their unitary
equivalents all other pure states are uniquely determined by their N − 1 party margin-
als, how many N −1 party marginals are required to uniquely specify a given N -qubit
state–not unitarily equivalent to GHZ state-was not known.

Let us consider the example of 4-qubit pure states considered by Ref. [37]: |χ1〉 =
1√
3
(|0000〉 + |0001〉 + |1111〉) and |χ2〉 = 1√

3
(|0000〉 + |0001〉 − |1111〉). These

two states are not unitarily equivalent to the 4-qubit GHZ state; they both share the
same 3-qubit reduced density matrices, when partial trace over first, second and third
qubits are taken—whereas the partial trace over 4th qubit leads to distinct 3-qubit
marginals. In other words, all the four 3-qubit reduced density matrices are required
to uniquely specify each of them. Examples of N qubit states determined by smaller
numbers of N − 1 qubit reduced density matrices are therefore of interest.

It may be mentioned here that Preeti Parashar and Swapan Rana [40] focussed on
identifying the class of states which can be uniquely determined by reduced density
matrices of smaller than N − 1 parties. The present authors [18] showed that the
{DN−k,k} SLOCC class of pure symmetric N qubit states containing two distinct Ma-
jorana spinors and another related class of non-symmetric states can be determined
with the help of only two of their N − 1 qubit marginals. We outline the approach of
Ref. [18] in the following.

Let us consider a representative symmetric state (16) of the entanglement family
{DN−k,k}

|DN−k,k〉 = N
∑

P

P̂

⎧
⎨

⎩| ε1, ε1, . . . , ε1︸ ︷︷ ︸
N−k

; ε2, ε2, . . . , ε2︸ ︷︷ ︸
k

〉
⎫
⎬

⎭

= N R⊗N
1

∑

P

P̂

⎧
⎪⎨

⎪⎩
| 0, 0, . . . , 0︸ ︷︷ ︸

N−k

; ε′2, ε′2, . . . , ε′
2︸ ︷︷ ︸

k

〉

⎫
⎪⎬

⎪⎭
, (24)

123



Majorana representation of symmetric multiqubit states 697

where ε1 = R1|0〉 and ε2 = R2|0〉, and

|ε′2〉 = R−1
1 R2|0〉 = d0 |0〉 + d1 |1〉, |d0|2 + |d1|2 = 1, d1 �= 0. (25)

Substituting (25) in (24) and upon simplification, we obtain,

|DN−k,k〉 = R⊗N
1

k∑

r=0

√
N Cr αr

∣∣∣∣
N

2
,

N

2
− r

〉
,

where αr = N (N − r)!
(N − k)!(k − r)! dk−r

0 dr
1 . (26)

In other words, all symmetric states |DN−k,k〉, constituted by two distinct Majorana
spinors are equivalent (under local unitary transformations) to

|D′
N−k,k〉 = R−1 ⊗N

1 |DN−k,k〉 =
k∑

r=0

√
N Cr αr

∣∣∣∣
N

2
,

N

2
− r

〉
. (27)

As d1 �= 0 (see Eq. (25), the coefficients αr , (r = 0, 1, 2, . . . , k) are non-zero, except
when d1 = 1, d0 = 0—in which case the state |D′

N−k,k〉 reduces to the Dicke state∣∣ N
2 ,

N
2 − k

〉
itself and then we have, αr = δk,r . We proceed to show that only two of the

N − 1 qubit reduced density matrices determine the whole state |D′
N−k,k〉, following

an analogous procedure as in Ref [34].
We express the state |D′

N−k,k〉 in the qubit basis as

|D′
N−k,k〉 = α0 |01, 02, . . . , 0N 〉 + α1

∑

P

P̂{|11, 02 . . . , 0N−1, 0N 〉}

+α2

∑

P

P̂{|11, 12, 03 . . . , 0N 〉} + · · · · · ·

+αk

∑

P

P̂{|11, 12, . . . , 1k, 0k+1, . . . , 0N 〉}

= |φ0〉 |0N 〉 + |φ1〉 |1N 〉 (28)

where

|φ0〉 = α0|01, 02, . . . , 0N−1〉 + α1

∑

P

P̂{|11, 02, . . . , 0N−1〉}

+α2

∑

P

P̂{|11, 12, 03, . . . , 0N−1〉}

+ · · · + αk

∑

P

P̂{|11, 12, 13, . . . , 1k, 0k+1, . . . , 0N−1〉} (29)
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|φ1〉 = α1|01, 02, . . . , 0N−1〉 + α2

∑

P

P̂{|11, 02, . . . , 0N−1〉}

+α3

∑

P

P̂{|11, 12, 03, . . . , 0N−1〉}

+ · · · · · · + αk

∑

P

P̂{|11, 12, 13, . . . , 1k−1, 0k, . . . , 0N−1〉}. (30)

It is not difficult to see that the N − 1 qubit reduced density matrix ρ1, 2,...,N−1,
obtained by tracing out the N th qubit from the state |D′

N−k,k〉, is a rank-2 mixed state
given by,

ρ1,2,...,N−1 = TrN [|D′
N−k,k〉〈D′

N−k,k |] = |φ0〉〈φ0| + |φ1〉〈φ1|. (31)

On supposing that a mixed N qubit state ωN too shares the same N − 1 qubit
reduced system ρ1,2,...,N−1 one has

ρ1,2,...,N−1 = TrN [|D′
N−k,k〉〈D′

N−k,k |] = TrN [ωN ]
= |φ0〉〈φ0| + |φ1〉〈φ1|. (32)

Considering the purification of the mixed state ωN , i.e., considering ωN as a reduced
system of an extended pure state |�N E 〉 consisting of N qubits and an environment
E , one has

TrE [|�N E 〉〈�N E |] = ωN . (33)

In order that the pure state |�N E 〉 (or the mixed state ωN ) too shares the same N − 1
qubit reduced density matrix ρ1,2,...,N−1, one must have

|�N E 〉 = |φ0〉|E0〉 + |φ1〉|E1〉, (34)

〈Ei |E j 〉 = δi, j . (35)

Here, the states |E0〉, |E1〉 are the ones containing the qubit labelled N , and the
environment E . Expanding |E0〉, |E1〉 in the basis states of the qubit N as,

|E0〉 = |0N 〉 |e00〉 + |1N 〉 |e01〉
|E1〉 = |0N 〉 |e10〉 + |1N 〉 |e11〉, (36)

the state |�N E 〉 can be re-expressed using (34), (36) as

|�N E 〉 = |φ0〉|0N 〉 |e00〉 + |φ0〉|1N 〉 |e01〉 + |φ1〉|0N 〉 |e10〉 + |φ1〉|1N 〉 |e11〉. (37)

The states |ei j 〉, i, j = 0, 1 correspond to those of the environment and they are not
assumed to be orthonormal apriori.
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As both |D′
N−k,k〉 and |�N E 〉 are sharing a common reduced density matrix

ρ1,2,...,N−1, we wish to check the form of |�N E 〉 so that it shares another reduced
density matrix ρ2,3,...,N of |D′

N−k,k〉.
1. We first compare the matrix elements of ρ2,...,N = Tr1|D′

N−k,k〉〈D′
N−k,k | with

Tr1,E [|�N E 〉〈�N E |] to find that

〈02, 03 . . . , 0N−k−1, 1N−k, . . . , 1N |Tr1,E [|�N E 〉〈�N E |]|02, 03 . . . ,

0N−k−1, 1N−k, . . . , 1N 〉 = |αk |2〈e01|e01〉
〈02, 03 . . . , 0N−k−1, 1N−k, . . . , 1N |Tr1[|D′

N−k,k〉〈D′
N−k,k |]|02, 03 . . . ,

0N−k−1, 1N−k, . . . , 1N 〉 = 0 (38)

As αk �= 0 for the states |D′
N−k,k〉, we must have |e01〉 ≡ 0. The simpler form of

|�N E 〉 obtained on putting |e01〉 ≡ 0 in (37) is given by

|�N E 〉 = |φ0〉|0N 〉|e00〉 + |φ1〉 [|0N 〉|e10〉 + |1N 〉|e11〉] (39)

On making use of the orthonormality relations 〈E0|E0〉 = 1, 〈E0|E1〉 = 0, we get

〈e00|e00〉 = 1, 〈e00|e10〉 = 0. (40)

2. We now equate another matrix element of ρ2,...,N obtained from both the states
|D′

N−k,k〉 and |�N E 〉:

〈02, 03 . . . , 0N−k, 1N−k+1, . . . , 1N |Tr1,E [|�N E 〉〈�N E |]|12, . . . ,

1k+1, 0k+2, 03 . . . , 0N 〉 = |αk |2〈e11|e00〉, (41)

〈02, 03 . . . , 0N−k, 1N−k+1, . . . , 1N |Tr1[|D′
N−k,k〉〈D′

N−k,k |]|12, . . . ,

1k+1, 0k+2, 03 . . . , 0N 〉 = |αk |2. (42)

This leads to the identification, 〈e11|e00〉 = 1, as αk �= 0. In view of (40), we
obtain |e11〉 = |e00〉 + |e⊥

00〉. Substituting this in the orthonormality condition
〈E1|E1〉 = 1, we readily obtain

〈e10|e10〉 + 〈e⊥
00|e⊥

00〉 = 0 ⇒ |e10〉 = 0, |e⊥
00〉 = 0

which in turn implies that

|e11〉 ≡ |e00〉.

Thus, we obtain

|�N E 〉 = (|φ0〉 |0N 〉 + |φ1〉 |1N 〉) |e00〉
= |D′

N−k, k〉 |e00〉. (43)
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This implies that the state |D′
N−k, k〉 is the unique whole pure state that is consistent

with its N − 1 qubit reduced density matrices. We have employed only two of the
N − 1 reduced density matrices ρ1, 2,...,N−1, ρ2, 3,...,N to arrive at this result. It may
also be noted here that any other choice of the second N − 1 qubit reduced density
matrix (obtained by tracing over any of one the qubits) would have led us to the same
result, though with appropriate choices of matrix elements in (38), (41).

4.3 Unique determination of a general class of non-symmetric N qubit states
through its parts

The method illustrated for symmetric states |DN−k, k〉 suggests a natural extension to
a generalized family DG

N−k,k of non-symmetric states. This family consists of states

|DG
N−k,k〉 which are a superpositions of the so-called generalized Dicke states

∑

i

a(r)i

[
|1P(i1)

, 1P(i2)
, . . . , 1P(ir ) , 0P(ir+1)

. . . , 0P(iN )
〉
]

obtained on associating an arbitrary coefficient a(r)i with each term of the Dicke state
(5).

As we have shown in the previous section that the states |DN−k,k〉 are local unitarily
equivalent to the state

|D′
N−k,k〉 =

k∑

r=0

√
N Cr αr

∣∣∣∣
N

2
,

N

2
− r

〉
,

we construct the generalized non-symmetric N qubit pure states from the state
|D′

N−k,k〉 as follows:

|DG
N−k,k〉 = α0 a(0)0 |01, 02, . . . , 0N 〉

+
k∑

r=1

αr

⎧
⎨

⎩

N Cr∑

i=1

a(r)i

[
|1P(i1)

, 1P(i2)
, . . . , 1P(ir ) , 0P(ir+1)

. . . , 0P(iN )
〉
]
⎫
⎬

⎭

= α0 a(0)0 |01, 02, . . . , 0N 〉 + α1

{
a(1)1 |11, 02, . . . , 0N 〉

+a(1)2 |01, 12, . . . , 0N 〉 + · · · + a(1)N |01, 02, . . . , 0N−1, 1N 〉
}

+α2

{
a(2)1 |11, 12, 03, . . . , 0N 〉 + a(2)2 |11, 02, 13, 04, . . . , 0N 〉

+ · · · + a(2)(N−1)(N−2)
2

|01, . . . , 0N−3, 1N−2, 1N−1, 0N 〉
+a(2)(N−1)(N−2)

2 +1
|11, 02, 03, . . . , 0N−1, 1N 〉 + · · ·

+a(2)N (N−1)
2

|01, 02, . . . , 0N−2, 1N−1, 1N 〉
}

+ · · ·
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+αk

{
a(k)1 |11, 12, . . . , 1k, 0k+1, . . . , 0N 〉 + · · ·

+a(k)N−1Ck
|01, . . . , 0N−k−1, 1N−k, 1N−k+1, . . . , 1N−1, 0N 〉

+a(k)N−1Ck+1
|11, 12 . . . , 1k−1, 0k, . . . , 0N−1, 1N 〉 + · · ·

+a(k)N Ck
|01, . . . , 0N−k, 1N−k+1, . . . , 1N 〉

}
. (44)

Hereα′
r s are as given in (26) and

∑
i a(r)i

[
|1P(i1)

, 1P(i2)
, . . . , 1P(ir ) , 0P(ir+1)

. . . , 0P(iN )
〉
]

are the generalized Dicke states. We show that no other (pure or mixed) N qubit state,
can share the same N − 1 qubit subsystem density matrices as that of |DG

N−k,k〉. The
procedure adopted for this purpose is same as that employed in the Sect. 4.2.

The state |DG
N−k,k〉 can be expressed as

|DG
N−k,k〉 = |φG

0 〉|0〉N + |φG
1 〉|1〉N , (45)

where

|φG
0 〉 = α0 a(0)0 |01, 02, . . . , 0N−1〉

+
k∑

r=1

αr

⎧
⎨

⎩

N−1Cr∑

i=1

a(r)i

[
|1P(i1)

, 1P(i2)
, . . . , 1P(ir ) , 0P(ir+1)

. . . , 0P(iN−1)
〉
]
⎫
⎬

⎭

= α0 a(0)0 |01, 02, . . . , 0N−1〉 + α1

{
a(1)1 |11, 02, . . . , 0N−1〉 + · · ·

+a(1)N−1|01, . . . , 0N−2, 1N−1〉
}

+α2

{
a(2)1 |11, 12, 03, . . . , 0N−1〉 + a(2)2 |11, 02, 13, 04, . . . , 0N−1〉 + · · ·

+a(2)(N−1)(N−2)
2

|01, . . . , 0N−3, 1N−2, 1N−1〉
}

+ · · ·

+αk

{
a(k)1 |11, 12, . . . , 1k, 0k+1, . . . , 0N−1〉

+a(k)2 |11, 12, . . . , 1k−1, 0k, 1k+1, 0k+2, . . . , 0N−1〉
+a(k)3 |11, 12, . . . , 1k−2, 0k−1, 1k, 1k+1, 0k+2 . . . , 0N−1〉 + · · ·
+a(k)k |01, 12, . . . , 1k+1, 0k+2 · · · , 0N−1〉 + · · ·
+a(k)N−1Ck

|01, . . . , 0N−k−1, 1N−k, . . . , 1N−1〉
}
, (46)

and

|φG
1 〉 =

k−1∑

r=0

αr+1

⎧
⎨

⎩

N Cr+1∑

i=N−1Cr+1+1

a(r+1)
i

[
|1P(i1)

, 1P(i2)
, . . . , 1P(ir ) , 0P(ir+1)

. . . , 0P(iN−1)
〉
]
⎫
⎬

⎭

= α1a(1)N |01, 02, . . . , 0N−1〉 + α2

{
a(2)(N−1)(N−2)

2 +1
|11, 02, 03, . . . , 0N−1〉 + · · ·
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+ a(2)N (N−1)
2

|01, 02, . . . , 0N−2, 1N−1〉
}

+ · · ·

+αk

{
a(k)N−1Ck+1

|11, 12 . . . , 1k−1, 0k , . . . , 0N−1〉
+ · · · + a(k)N Ck

|01, . . . , 0N−k , 1N−k+1, . . . , 1N−1〉
}
. (47)

It is to be noticed that the coefficients a(r)i in (44) are labeled such that a(r)i , i =
1, 2, . . .N−1 Cr are associated with the states that have their r spin-down qubits |1〉,
permuted in the first N − 1 positions, leaving the N th position to |0〉. The remaining
coefficients a(r)i ′ , i ′ = N−1Cr + 1, N−1Cr + 2, . . .N Cr are associated with the states

having their N th position occupied by |1〉. Thus, |φG
0 〉 contains coefficients a(r)i , i =

1, 2, . . .N−1 Cr whereas |φG
1 〉 contains coefficients a(r)i ′ , i ′ =N−1 Cr + 1, N−1Cr +

2, . . .N Cr .led such that a(r)i , i = 1, 2, . . .N−1 Cr are associated with the states that
have their r spin-down qubits |1〉, permuted in the first N −1 positions, leaving the N th
position to |0〉. The remaining coefficients a(r)i ′ , i ′ = N−1Cr +1, N−1Cr +2, . . .N Cr

are associated with the states having their N th position occupied by |1〉. Thus, |φG
0 〉

contains coefficients a(r)i , i = 1, 2, . . .N−1 Cr whereas |φG
1 〉 contains coefficients

a(r)i ′ , i ′ =N−1 Cr + 1, N−1Cr + 2, . . .N Cr .
From (45), it can be readily seen that the N − 1 qubit reduced density matrix

ρG
1,2,··· ,N−1 of the state |DG

N−k,k〉 has the form

ρG
1,2,...,N−1 = |φG

0 〉〈φG
0 | + |φG

1 〉〈φG
1 |. (48)

where |φG
0 〉, φG

1 〉 are as given in (46), (47) respectively. If we demand that an N qubit
mixed state ωG

N possesses the same N − 1 qubit reduced state (48) then, there should
exist an extended pure state |�G

N E 〉 of N qubits, appended with an environment E in
such a way that TrE [|�G

N E 〉〈�G
N E |] = ωG

N and

|�G
N E 〉 = |φG

0 〉|EG
0 〉 + |φG

1 〉|EG
1 〉. (49)

The states |EG
0 〉, |EG

1 〉 are comprised of the N th qubit and the environment

|EG
0 〉 = |0N 〉 |eG

00〉 + |1N 〉 |eG
01〉

|EG
1 〉 = |0N 〉 |eG

10〉 + |1N 〉 |eG
11〉

and they obey the orthonormality relations,

〈EG
i |EG

j 〉 = δi, j . (50)

The extended pure state (49) takes the following form:

|�G
N E 〉=|φG

0 〉|0N 〉 |eG
00〉+|φG

0 〉|1N 〉 |eG
01〉+|φG

1 〉|0N 〉 |eG
10〉+|φG

1 〉|1N 〉 |eG
11〉. (51)
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Having ascertained that |DG
N−k,k〉 and ωG

N possess a common reduced density matrix

ρG
1,2,...,N−1, we now impose that another N − 1 qubit reduced density matrix ρ2,3,...,N

of |DG
N−k,k〉 too is shared by ωG

N , or equivalently on |�G
N E 〉. To verify the restric-

tions on ωG
N , or on |�G

N E 〉 due to this, we compare the matrix elements of ρ2,3,...,N =
Tr1 [|DG

N−k,k〉〈DG
N−k,k〉|] with that obtained by tracing the 1st qubit, environment from

|�G
N E 〉.

1. We first compare the following matrix elements:

〈02, 03, . . . , 0N−k−1, 1N−k, . . . 1N |Tr1,E [|�G
N E 〉〈�G

N E |]|02, 03, . . . ,

0N−k−1, 1N−k, . . . 1N 〉 = |αk |2|a(k)(N−1)Ck
|2〈eG

01|eG
01〉,

〈02, 03, . . . , 0N−k−1, 1N−k, . . . 1N |Tr1 [|DG
N−k,k〉〈DG

N−k,k〉|]|02, 03, . . . ,

0N−k−1, 1N−k, . . . 1N 〉 = 0. (52)

Let us suppose that the coefficient |a(k)(N−1)Ck
| is non-zero. We may then deduce

that |eG
01〉 ≡ 0 (note that αk �= 0). The orthonormality relations 〈EG

0 |EG
0 〉 =

1, 〈EG
0 |EG

1 〉 = 0 would then lead to

〈eG
00|eG

00〉 = 1, 〈eG
00|eG

10〉 = 0. (53)

2. Comparing yet another matrix element of ρ2,3,...,N from both the pure states
|DG

N−k,k〉 and |�G
N E 〉 (see Eqs. (44)–(47), (51)), we obtain,

〈02, 03, . . . , 0N−k, 1N−k+1, . . . 1N |Tr1,E [|�G
N E 〉〉〈�G |]|02, 03 . . . ,

0N−k−1, 1N−k, . . . , 1N−1, 0N 〉 = |αk |2a(k)N Ck
a(k)∗N−1Ck

〈eG
11|eG

00〉,
〈02, 03, . . . , 0N−k, 1N−k+1, . . . 1N |Tr1 [|DG

N−k,k〉〉〈DG
N−k,k |]|02, 03, . . . ,

0N−k−1, 1N−k, . . . , 1N−1, 0N 〉 = |αk |2a(k)N Ck
a(k)∗N−1Ck

. (54)

As |a(k)(N−1)Ck
| �= 0, and assuming that a(k)N Ck

�= 0, (54) results in the condition,

〈eG
11|eG

00〉 = 1. (55)

This, together with the relation 〈eG
00|eG

00〉 = 1 yields

|eG
11〉 ≡ |eG

00〉. (56)
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It is not difficult to see that

〈EG
1 |EG

1 〉 = 1 ⇒ 〈eG
10|eG

10〉 + 〈eG
11|eG

11〉 = 1

⇒ 〈eG
10|eG

10〉 + 〈eG
00|eG

00〉 = 1

⇒ 〈eG
10|eG

10〉 = 0 (as 〈eG
00|eG

00〉 = 1)

⇒ |eG
10〉 = 0. (57)

Finally, on substituting |eG
01〉 ≡ |eG

10〉 = 0, |eG
00〉 ≡ |eG

11〉 = 1 in (51), we get the
explicit form of the state |�G

N E 〉 as,

|�G
N E 〉 = |φG

0 〉|0N 〉 |eG
00〉 + |φG

1 〉|1N 〉 |eG
00〉

= |DG
N−k, k〉 |eG

00〉 (58)

with |DG
N−k,k〉 = |φG

0 〉|0〉N + |φG
1 〉|1〉N (see (45)).

We thus come to the conclusion, by employing only two of the N −1 qubit reduced
density matrices, that the generalized states |DG

N−k, k〉 are uniquely determined by
their N − 1 party marginals.

It is important to note here that while the above result perfectly holds good for
the class of states {|DG

N−k, k〉} of Eq. (44) when all the coefficients αr , a(r)i , i =
0, 1, 2, . . . ,N Cr , r = 0, 1, . . . , k are non-zero, it is valid if at least the coefficients
a(k)N Ck

and a(k)N−1 Ck
, in Eq. (44) are non-zero (because the matrix elements of N − 1

qubit reduced states given in Eqs. (52), (54) vanish if the coefficients a(k)N Ck
and a(k)N−1 Ck

are zero and therefore the inferences drawn from the Eqs. (52), (54) do not hold good
in such cases). Based on the possibility of different choices of N − 1 qubit reduced
matrix elements to arrive at the same result (58), we arrive at the conclusion that a
unique specification of the generalized class of states {DG

N−k, k}—using only two of
their N − 1 qubit marginals—is possible provided both the conditions given below
are satisfied:

• among the set of coefficients {a(k)s , s = 1, 2, . . .N−1 Ck} (see Eq. (44)) for a given
k=0,1,2…,[N/2], at least one coefficient—which does not contain |1〉 in the first
qubit position—is non zero.

• among the remaining coefficients in {a(k)s′ }, s′ =N−1 Ck + 1, N−1Ck + 2 . . .N Ck

at least one coefficient—with its first qubit position not occupied by |1〉—is non-
vanishing.

Excluding the class of states not obeying the above two conditions, all other states
belonging to the generalized class of states {DG

N−k,k} belong uniquely to their N − 1
party marginals. It is illuminating to note that in spite of the generality of this class of
non-symmetric states, only two of the N − 1 qubit marginals suffice for their unique
determination.
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5 Geometric measure of entanglement

Quantification of multiparty entanglement forms one of the central themes underlying
quantum information theory. Several entanglement measures have been proposed in
this context [53,54], though they suffer because of the optimization involved in their
evaluation. Natural strategy towards this end has been to restrict to certain class of
states obeying specific symmetries in order to carry out such optimization procedures.

Let us consider the widely employed geometric measure of entanglement [24,25]
associated with a multiparty pure state |ψ〉:

EG(|ψ〉) = 1 − max
{|εprod〉}

|〈εprod|ψ〉|2 (59)

where {|εprod〉} is the set of all pure separable (product) states. Another equivalent
quantification of the geometric measure [21] is given by,

EG(ψ) = −log2

[
max

{|εprod〉}
|〈εprod|ψ〉|2

]
. (60)

For N qubit GHZ states |GHZ〉 = 1√
2
[|0, 0, . . . , 0〉 + |1, 1, . . . , 1〉] the geometric

measure EG(|GHZ〉) = 1
2 and the logarithmic geometric measure EG(|GHZ〉) = 1—

independent of the number of qubits [25]. The geometric measure for the Dicke states
(5) is found to be [25]

EG

(∣∣∣∣
N

2
,

N

2
− l

〉)
= 1 −N Cl

(
l

N

)l (N − l

N

)N−l

, (61)

which takes its maximum value when l is closest to N/2.
The optimization procedure in evaluating the geometric measure (59) is non-trivial

in the case of general multiparty states. In this connection, a great deal of attention has
been drawn to address the question: “Is the closest separable state of an arbitrary sym-
metric multiparty state |ψsym〉 itself a symmetric product state?” [25,55–57]. It is only
very recently [58] that it has been established that the optimal state (closest separable
state) maximizing the geometric measure EG(|ψ〉) of (59) is necessarily symmetric
for three or more party states obeying exchange symmetry [57]. This identification
amounts to considerable simplification in the evaluation of the geometric measure of
entanglement of pure permutation symmetric multiqubit states.

The closest product state associated with the Dicke states (5) leading to optimization
of the geometric measure is found to be [55]

|εprod
N ,l 〉 =

(√
N − l

N
|0〉 +

√
l

N
|1〉

)⊗N

. (62)

and this yields the amount of geometric entanglement given by (61).
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The MR (1) of symmetric multiqubit states is very useful to obtain a simplified
structure for the geometric measure of entanglement. Substituting Eq. (1) into (59)
and considering that the maximization is only required over the set of symmetric
separable states |ε, ε, . . . , ε〉 leads to

EG(|�sym〉) = 1 − N 2 N !2 max{|ε〉}

N∏

i=1

|〈ε|εi 〉|2 (63)

We recall that MR maps every permutation symmetric state |�sym〉 to N points
on the unit sphere ( these points are referred to as the Majorana points (MP) [21]).
The point on the Majorana sphere corresponding to the state |ε〉 which optimizes the
geometric measure EG(|�sym〉) in (63) is called the closest product point (CPP) [21].

Aulbach et al. [21] evaluated the geometric measure of entanglement for some
well-known two and three qubit symmetric states by making use of the MR as fol-
lows: Any identical local unitary operation on each spinor of the two qubit state
|�sym〉 = N [|ε1, ε2〉 + |ε2, ε1〉] is equivalent to a rotation of MPs about a com-
mon axis on the Majorana sphere. Making use of identical local unitary transfor-
mation, a given distribution of two MPs can be rotated on the Majorana sphere in
such a way that both the points lie in the positive hemisphere. In other words, the
two spinors constituting a two-qubit symmetric state can be rotated so as to obtain
|ε′1〉 = |0〉 and |ε′2〉 = cos θ2 |0〉 + sin θ

2 |1〉, 0 ≤ θ ≤ π . The closest separable state
of the two qubit symmetric state constituted by the spinors |ε′1〉, |ε′2〉 is identified as
|ε〉 = cos θ4 |0〉 + sin θ

4 |1〉. (i) When θ = 0, one gets the separable state |0, 0〉 and
the geometric measure (see (63) vanishes. (ii) Choosing θ = π , one obtains the Bell
state |�+〉 = 1√

2
(|0, 1〉 + |1, 0〉)〉. The corresponding closest separable state is given

by, |ε〉 = 1√
2
[|0〉 + |1〉] (note that the entire set of states |0〉 + eiφ |1〉, which form

a continuous ring around the equator on the Majorana sphere correspond to closest
separable states of the Bell state |�+〉) and the geometric measure of entanglement is
given by EG(|�+〉) = 1

2 (the logarithmic geometric measure EG(|�+〉) = 1).
The Majorana spinors constituting the 3 qubit GHZ state are given by (see Table 1)

|ε1〉 = 1√
2
(|0〉 + |1〉), |ε2〉 = 1√

2
(|0〉 + e2iπ/3|1〉), |ε3〉 = 1√

2
(|0〉 + e4iπ/3|1〉) (upto

an overall phase); the CPP states are identified [21] to be |0〉, |1〉. Thus, the geomet-
ric measure of entanglement is readily evaluated to obtain EG(|GHZ〉) = 1

2 and the
associated logarithmic measure (see (60) EG(|GHZ〉) = 1.

The Majorana spinors associated with the 3-qubit W state |W〉 = 1√
3
[|0, 0, 1〉 +

|0, 1, 0〉+|1, 0, 0〉] are given by (see Table 1) |ε1〉 = |0〉, |ε2〉 = ε3| = |1〉 and the CPP

state is given by |ε〉 =
√

2
3 |0〉+

√
1
3 |1〉. A continuous ring given by

√
2
3 |0〉+eiφ

√
1
3 |1〉

forms a set of CPP states [21] of the three qubit W state, entanglement of which is
therefore found to be EG(|W 〉) = 5

9 .

An approach to evaluate the geometric measure of entanglement of symmetric
multiqubit states (by identifying CPP states geometrically) and to identify maximally
entangled symmetric states—by exploiting the symmetries of the MP distribution—
has been discussed in detail in Ref. [21]. Further, an improved asymptotic trend of
the geometric measure of maximally entangled symmetric states (compared to that of
highly entangled Dicke states (5) with l = [N/2]) has also been identified [22].
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Instead of identifying CPP states geometrically [21], we propose to use the collective
representation of the symmetric states as follows: The set of all symmetric N -qubit
product states {|φprod

sym 〉 = |ε, ε, . . . , ε〉} can be collectively represented as the spin
coherent states [59] i.e.,

|φprod
sym 〉 ≡ |α, β〉 = eτ J+−τ∗ J−

∣∣∣∣
N

2
,− N

2

〉

=
N∑

r=0

√
N Cr

(
cos

β

2

)r (
sin

β

2

)N−r

e−i (N−r) α
∣∣∣∣

N

2
,

N

2
− r

〉
. (64)

where τ = β
2 eiα, 0 ≤ α ≤ 2π, 0 ≤ β ≤ π ; J± = 1

2

∑N
i=1 σi± are the collec-

tive spin ladder operators, and σi± = σi x ± σiy denote the Pauli operators of the i th
qubit. Employing this collective spin coherent state representation of symmetric prod-
uct states, we may express the geometric measure of entanglement for permutation
symmetric states (6) as,

EG(|�sym〉) = 1 − max{α,β} F(α, β), (65)

F(α, β) =
∣∣∣∣∣
∑

l

cl

〈
α, β

∣∣∣∣
N

2
,

N

2
− l

〉∣∣∣∣
2

. (66)

Here, the optimization is done over the set of angles α, β of the collective spin coherent
states (64)—thus offering a novel method for evaluating the geometric entanglement
of symmetric states.

For example, let us consider the Dicke states Eq. (5): We simplify the maximum
value of F(α, β) as follows:

max{α,β} F(α, β) = max{α,β}

∣∣∣∣〈α, β| N

2
,

N

2
− l〉

∣∣∣∣
2

= max{β} FN ,l(β) = max{β}

[
N Cl

(
cos

β

2

)2l (
sin

β

2

)2(N−l)
]
. (67)

In order to obtain the maximum value of the function FN ,l(β) in Eq. (67) we consider

log [FN ,l(β) and set d log[FN ,l (β)]
dβ

∣∣∣
βM

= 0. We obtain,

d log[FN ,l(β)]
dβ

∣∣∣∣
βM

= −l tan
βM

2
+ (N − l) cot

βM

2
= 0

⇒ tan
βM

2
= ±

√
N − l

l
. (68)
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We thus obtain,

FN ,l(βM )] =N Cl

(
l

N

)l (N − l

N

)N−l

(69)

which readily leads to the geometric measure of entanglement (61) of Dicke states
and also to the identification of their closest product states (62).

For the N -qubit GHZ state

|GHZ〉 = 1√
2

[∣∣∣∣
N

2
,

N

2

〉
+
∣∣∣∣

N

2
,− N

2

〉]
(70)

we obtain

max{α,β} FGHZ(α, β) = max{α,β} |〈α, β|GHZ〉|2 = 1

2

[(
sin

β

2

)2N

+
(

cos
β

2

)2N

+2

(
cos

β

2
sin

β

2

)N

cos(Nα)

]
. (71)

Optimal value of the function FGHZ(α, β) is obtained for αM = arbitrary, βM = 0
leading to FGHZ(αM , βM ) = 1

2 —in agreement with the earlier result [25]. Note that
the geometric measure of entanglement of GHZ state is less than that of the Dicke
state (5)) with l = [N/2], indicating different hierarchies of multiparticle entangle-
ment (depending on the nature of the measure employed). It would be interesting to
explore expansions of N -particle symmetric states in terms of p-particle constitu-
ents [60] (in particular, those with p = 2 are called geminal expansions) in order to
recognize genuine multiparticle entanglement in a physically significant manner.

6 Summary

This article presents a detailed description of the Majorana geometrical representation
of symmetric multiqubit states. With the help of the MR, the SLOCC entanglement
classification of pure symmetric states in terms of the number and arrangement of
the distinct Majorana spinors constituting them is elucidated. Further, uniqueness
of the whole pure symmetric N -qubit states belonging to the two distinct spinor
family—and also, another related class of non-symmetric states—to their N −1 qubit
reduced density matrices is established (by employing only two of the reduced states).
Quantification of multiqubit entanglement of permutation symmetric states in terms of
geometric measure of entanglement (where the MR has been employed extensively)
is detailed.
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