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Natural Convection Past Inclined 
Porous Layers 
This paper describes a study of combined Rayleigh-Benard convection and 
Tollmien-Schlichting type of instability of a fluid in an inclined layer bounded by 
two permeable beds. Several types of flows, depending on the value of the Prandtl 
number, Pr, are studied using a fast convergent power series technique. Two dif
ferent convective movements, longitudinal and transverse rolls, based on different 
Prandtl numbers, are reported. The effect of slip at the nominal surface is to 
augment the instability and change the critical Grashof number, Gr, and critical 
Rayleigh number, Ra, markedly for small permeability parameter a, being in
dependent of Gr and Rafor large a. The effect of inclination </> is to inhibit the onset 
of instability in the case of air and to augment it in the case of mercury. It is shown 
that at maximum inclination (i.e., <j> = ir/2), the instability sets in as transverse 
rolls, irrespective of the value ofPr. In the case of mercury, the transverse rolls exist 
for all <t>, whereas in the case of air, they are limited only to certain 4>- The cell 
pattern changes dramatically in the range <t> = ir/6-ir/4. 

1 Introduction 
The instability of an inclined layer of fluid bounded on 

both sides by permeable beds, due to combined thermal 
stratification and viscous shear is investigated in this paper 
because of its natural occurrence and its importance in the 
process of technology (for example, chemical engineering and 
some oil recovery techniques). It is also of interest in many 
geophysical problems (for example, the determination of 
reservoir characteristics in the geothermal region) and 
biomechanical problems (for example, blood flow in 
pulmonary alvelor sheet, see Fung and Tang [1, 2]) where the 
layer is bounded on both sides by porous material. In the 
geothermal region, the main mechanism of transfer of heat 
from the deep igneous rocks to shallow depths is buoyancy 
induced convection. Meteoric liquid percolating down to 
depth in a permeable formation is heated directly or indirectly 
by the intruded magma and is then driven buoyantly upward 
to the top of the aquifer where it can be trapped through drill 
holes. A viable geothermal reservoir usually consists of a 
sloping layer bounded on both sides by porous beds. 
Therefore, the criterion for the onset of convection in such a 
model considered in this paper may shed some insight on the 
study of transport processes in geothermal reservoirs. 

The instability of a layer of fluid due to thermal 
stratification (known as Rayleigh-Bernard problem, see 
Chandrasekhar [3]) or due to viscous shear (known as 
Tollmien-Schlichting type of oscillations, see Betchov and 
Criminal, Jr. [4]) has been extensively investigated when the 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months al'ler final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, April 1981; final revision, Spetember 
1981. 

layer is bounded by impermeable rigid boundaries. Much 
attention has also been given to the study of instability of an 
inclined layer of fluid bounded on both sides by rigid im
permeable plates (see Hart [5], Ruth [6], and Unny [7]). 
Natural convection in an inclined porous layer is also given 
considerable attention (see Bories and Combarnous [8], 
Kaneko, et al. [9], and Combarnous and Aziz [10]). However, 
we know relatively little about the instability of an inclined 
layer of fluid bounded on both sides by a porous material, 
which is considered in this paper. 

The core problem here is to specify the proper boundary 
conditions at the permeables boundaries, since the vertical 
transport of heat depends strongly on what happens near the 
boundaries. Until recently, it was assumed that the no-slip 
boundary conditions are valid at the permeable boundaries. 
However, Beavers and Joseph ([11], hereafter called BJ) have 
shown that this no-slip condition is no longer valid at the 
porous boundaries and postulated the slip boundary condition 
called the BJ slip condition and verified it experimentally. 
This BJ condition was later confirmed experimentally by 
others (Beavers et al. [12], Taylor [13], and Rajasekhara [14]). 
Recently Channabasappa and Ranganna [15] have established 
the existence of a slip even in the case of an inclined channel. 
This velocity slip not only causes skewing of the main flow 
velocity profile in the channel but also permits a nonzero, 
streamwise disturbance velocity at the walls. The existence of 
the slip at the permeable boundary is based on the assumption 
of laminar flow. Therefore it is of interest to determine the 
condition for the transition from conduction to convective 
flow, which is the object of this paper. Here, we study the 
linear stability of a laminar flow in a channel bounded on 
both sides by a permeable material and inclined at an angle 4> 
to the horizontal (Fig. 1). The novel feature of the linear 
stability problem considered here is the coupling between 
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Fig. 1 Physical mode! 

Rayleigh-Benard type of instability due to uniform heating 
from below and cooling from above and Tollmien-Schlichting 
wave-like instability due to shear. 

When the channel is horizontal and bounded on one side by 
a permeable bed, Sparrow, et al. [16] have investigated the 
linear stability using finite-difference technique. We note that 
the difficulty and the computer time required in solving the 
stability equation using finite difference technique has 
precluded a detailed study of the present problem. Hence the 
solution technique used in the present study is the classical 
power series method (Sparrow, et al. [17], and Ruth [6]) 
which is found to be a fast converging method. It is shown 
that the instability sets in at a lower Grashof number than that 
of the fluid in the channel bounded on both sides by rigid 
impermeable boundaries due to reduction in friction at the 
bounding surfaces. In particular, it is shown that there exists a 
fairly close analogy between convective motions in the present 
problem and in a fluid layer bounded by rigid boundaries. 

2 Mathematical Formulation 
The physical configuration of the problem under study is 

shown in Fig. 1. The fluid is contained between two parallel, 
porous layers of infinite extent, separated by a distance "h" 
apart and inclined at an angle 4> to the horizontal. The tem
perature difference between the layers is AT, the upper layer 
having temperature T0 - AT/2 and the lower T0 + AT/2. 
Cartesian coordinate system (x, y, z) is taken as shown in Fig. 
1, with corresponding velocity components (u, v, w). 

For this configuration, the governing equations of motion 
for a Boussinesq fluid, made dimensionless using h for length 
scale, v/h for velocity scale, AT for temperature, and pgh for 
pressure, are 

V-q = 0 (2a) 

9q 
— +(q»V)q=-r/V/7 + r)a-Gr(r-r0)a+V2q (2b) 
at 

dT 1 
— + (q«V)T = v2r (2c) 
dt Pr 

where q is the velocity, T the temperature, T0 the ambient 
temperature, p the pressure, p the density, a = 
cos 4>), the gravity vector, 

•q=ghi/v2 

Gr = rifiAT, the Grashof number, 

Cpfi 

(sin 4>, 0, 

Pr = 
K 

the Prandtl number 

g the gravitational acceleration, n the viscosity, v the 
kinematic viscosity, |3 the thermal expansion coefficient, Cp 

the constant pressure specific heat and K is the thermal 

conductivity. Equations (2a)-(2c) reduce to those given by 
Hart [5] when </> = 90-5 and with suitable dimensionless 
parameters. 

The boundary conditions are, 

du 1 
— = -aa(um - Q , ) a t z = -
dz 2 

du 

dz 
= aa(uB2~Q2)alz = 

y=w = 0 a t z = ± -
2 

1 1 
T- TQ ± - at z = ± -0 2 2 

p = 0atx = 0,z = 0 

(2d) 

(2e) 

(2/) 

(2g) 

(2/0 

where um and uB2 are the slip velocities at the upper and lower 
interfaces, respectively, and Qx and Q2 are the Darcy 
velocities at the edge of the boundary layers, i.e., z = ± 1/2 
± \/a (see Rudraiah and Veerbhadraiah [18] where they have 
shown that the boundary layer is of order \/a). 

The Darcy velocity in the bed is given by, 

e=-l[% + {l-TiT-T°)h+\ (2/) 
Gr 
— (T-
V 

where a = hi, yfk is the permeability parameter, k is the 
permeability of the porous material, and a is the slip 
parameter. This Darcy velocity is valid away from the 
nominal surface (see Rudraiah and Masuoka [19]). 

Conditions (2d) and (2e) are the BJ slip conditions and 
conditions (2g) imply that the boundaries are isothermal. The 
Darcy equation (20 is obtained under the assumption of the 
same pressure and temperature in the flows above and in the 
bed. 

2.1 Basic Flow. The flow is due to an imbalance between 
the pressure and buoyancy forces when Gr ^ 0. At low Gr, 
this motion forms the base flow, in which the velocity u is 
only in the axial direction and is a function of z and in
clination 4> only. The corresponding temperature is a function 
of z only and pressure is a function of both x and z. Thus the 
required basic flow satisfying the boundary conditions 
(2d)-(2h) is, 

Gr sin </> 

6 [<•-(;•*] 
Gr sin 4> 

UBI — ~ UB\
 = —T̂  / 12 

Tb = T0~z 

/ Gr A 
, = — I z + —- z I cos </> —x sin <t> 

Gr sin <t> 
Q= ~^z 

Qi = -Qx 
Gr sin </> / 1 G4) 

<j + 6a r 12a "1 
/ = 1 + 

a(2 + aa) L a(6a + a) J 
where the sufffix b denotes the base flow. 

(2J) 

(2k) 

(21) 

(2m) 

(2ri) 

(2o) 

(2p) 

2.2 The Perturbation Equations. At sufficiently large Gr, 
the conduction base flow regime, discussed in Section 2.1, 
becomes unstable and suffers a transition to convection 
regime. Transitions resulting in transverse rolls with their axes 
in the ^-direction are considered in this paper. For this, we 
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Table 1 Critical a, Gr, and Ra for Pr = 0.025 and 0.71. 

Pr 

0.025 

0.71 

0.025 

0.71 

a 

00 

10,000 
2000 
1000 
250 
100 

00 

10,000 
2000 
1000 
250 
100 

00 

10,000 
2000 
1000 
250 
100 

00 

10,000 
2000 
1000 
250 
100 

ac 

2.889 
2.883 
2.861 
2.833 
2.663 
2.373 

3.095 
3.087 
3.073 
3.050 
2.943 
2.787 

2.783 
2.732 
2.709 
2.681 
2.508 
2.201 

2.868 
2.860 
2.833 
2.80 
2.601 
2.267 

<j> = lOdeg 

(Gr)c. 

31100.413 
30869.604 
29988.052 
28973.359 
24460.890 
20016.291 

2527.4172 
2511.0511 
2449.1400 
2378.9218 
2072.4968 
1749.1672 

(/> = 50 deg 
9449.1286 
9374.8320 
9089.9037 
8760.0795 
7286.0908 
5866.5191 

7644.4398 
7599.8691 
7334.8705 
7056.1279 
5861.8610 
4777.4387 

(Ra)c 

777.5103 
771.7401 
749.7013 
724.3340 
611.5223 
501.5323 

1794.4662 
1782.8462 
1738.8894 
1689.0344 
1471.4727 
1241.9087 

236.2282 
234.3708 
227.2476 
219.002 
182.1523 
146.663 

5427.5523 
5381.7070 
5207.7580 
5009.8508 
4161.9231 
3391.9814 

ac 
2.773 
2.767 
2.744 
2.715 
2.542 
2.237 

2.822 
2.816 
2.793 
2.766 
2.622 
2.388 

2.702 
2.695 
2.674 
2.646 
2.471 
2.164 

2.810 
2.803 
2.780 
2.749 
2.557 
2.219 

(/> = 30 deg 

(Gr), 

13661.636 
13555.529 

113149.011 
12679.048 
10581.099 
8551.1534 

5596.4447 
5521.6223 
5248.7324 
4958.8829 
3925.1275 
3181.1417 

<t> = 90 deg 
7657.120 
7596.1617 
7362.1555 
7090.8989 
5877.2908 
4713.9528 

8037.5955 
7973.2631 
7726.7036 
7441.6597 
6176.4118 
4981.0913 

(Ra)f 

341.5409 
338.8882 
328.7253 
316.9762 
264.5473 
213.7788 

3973.4757 
3920.3518 
3726.60 
3520.8068 
2786.8405 
2258.6109 

191.428 
189.9040 
184.0539 
177.2725 
146.9323 
117.8488 

5706.6928 
5661.0168 
5485.9595 
5283.5783 
4385.2523 
3536.5748 

superimpose on the flow a small symmetrical disturbance of 
the form 

u = ub(z)+u' (x,y,z, t) 

v = v' (x,z, 0, w=w'(x,z, 0 

T=Tb(z) + T'(x,z,t) (2<7) 

p=pb(x,z)+p'(x, z, t) 

where the primes denote the perturbed quantities which are 
assumed to be very small compared to the base flow. Sub
stituting (2q) into the equations (2a) - (2c), linearizing and 
assuming that all the perturbed quantities vary in the form 

(D2-a2)Q = 0 (3a) 

The solution of this equation satisfying the condition (2a) is 9 
= 0. 
That is, the temperature perturbation vanishes and the in
stability is strictly due to shearing. In this case, equation (2s) 
using equation (2j), takes the form 

(D2 - a2)2 W+ [ l^- [z'-{\ + / ) z] + iaG'r : W 

iaGr 

we get, 

(D2-a2 

and 

(function of z) Exp (iax + ct) 

- c) (D2 - a2) W-a2Gr cos </>9 - ia Gr sin 4>DQ 

+ (ia3 ub + ia D2 ub) W- iaubD
2 W= 0 

(2r) 

(2s) 

(20 (D2 - a2 - Pr c) 9 + Pr W- Pr iaub 9 = 0 

where Wis the velocity, 9 the temperature, c( = cr + ici) the 
wave velocity, a the horizontal wave number, and D = d/dz. 
The corresponding boundary conditions are, 

1 , 1 
Q=W=DW± —D2W=0atz=±~ 

ao 2 
(2u) 

We note that when uB = 0 (i.e., quiescent state) and <t> = 0 
equations (2s) and (2t) tend to the usual Rayleigh-Benard 
equations given by Chandrasekhar [3]. 

3 Marginal Stability Analysis 
Since there are no external constraints like magnetic field, 

rotation, or salinity gradient on the motion, we assume that 
the marginal state is valid immediately after transition so that 
c = 0 in equations (2s) and (2t). 

We shall consider the cases: 

(i) Pr = 0 (Pure Tollmien-Schlichting instability) 
(;7) Pro, <j) = 0 (Rayleigh-Benard Problem) 
(Hi) Pr ?* 0 (combined Rayleigh Benard and Tollmien-
Schlichting instability) 

3.1 The Case When Pr = 0. In this case shear would be 
dominant and it corresponds to thermally perfectly con
ducting fluids. Then equation (20 becomes, 

[z2-(1-+f)z\)D
21V=0 (3b) 

where Gr = Gr sin <j>-
We note that, since Gr scales with sin 4>, a solution for one 
particular angle will provide stability condition for all angles. 
A solution of equation (3b) is obtained in Section 4 using the 
power series method. 

3.2 The case when cf> = 0, This is the usual Rayleigh-
Be"nard problem with porous boundaries. In this case 
equations (2*) and (20 take the form, 

C D 2 - a 2 ) 2 ^ - a 2 G r 9 = 0 (3c) 

and 

(D2-a2)Q + PrW=0 (3d) 

These simplify to the form 

(D2~a2)iW+a2RaW=0 (3e) 

where Ra = Pr«Gr, is the Rayleigh number and Pr does not 
appear explicitly. The eigenvalues of equation (3e) are 
determined using the power series method as explained in 
Section 4. 

3.3 The Case When Pr ?± 0. Here we have the coupling 
between Tollmien-Schlichting wave-like instability due to 
shear and Rayleigh-Benard type of instability due to uniform 
heating from below and cooling from above. Equations (2^) 
and (20 using equation (2j) take the form, 

(D2 -a2)2 W-a2Qx cos <£9-ia Gr sin 0Z>e 

+ -w 3 Grs in</ ) | z 3 - (- +f)z\ + w Gr sin </>z W 

- - ia Gr sin </>[z3 - ( - +/)Z\D2 W=0 (3f) 
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and 

(Dz-a2)Q + Pr ^ - - w P r G r s i n ^ k 3 - (- + / ) z ] e = 0 

(3g) 

4 The Power Series Solution 
In this section, the power series solution for equations (3/) 

and (3g) are obtained for Pr ^ 0. The solutions for Pr = 0 
and 0 = 0 can be obtained as particular cases. ' 

A general solution of equations (if) and (3g) can be con
structed in the form 

mz) = £ bkz
k-

k = \ 

oo 

Q(z)= £<***-' 

(4a) 

(4b) 

where bk and ck are arbitrary constants. These constants are 
determined by substituting equations (4a) and (4b) into 
equations (3/) and (3g). 
Assuming, 

bk = Sbk„G„,ck = Sckn G„ (4c) 

where 

G„ = (bl,b2,b},b4,cl,c2) (4d) 

is the general solution vector Sbkn and Sckn are particular 
solution vectors, we obtain 

Sbkn = (5ks, 5k2, 5k3,8k4,0, 0) for 1 s £ < 4 

Sck„ = (0, 0, 0, 0, 5*,, 8„) for 1 < k < 2 

where 5ki is the Kronecker delta. 
For k > 4, 

Sbk„ = 
1 

[2a2(k-l)(k-4)Sbk„2<„ 
(k-l)(k-2)(k-3)(k-4) 

~-a4Sbk^4i„ +a2Gr cos<t>Sck_4>nAlJ(^4 

+ /«Gr sin</)(Ar-4)ScA._3i„Aj A._3 

-Grsin</>[- /a 3S^_ 7 ,„AU-7 - Q " ? 3 ( ^ + / ) 

-ia+-ia(k-6)(k-7))sbk^„Alik_5 

+ \ia(l- + / ) (*-4)(*-5)Sfe t_3 , f l j] (4e) 

and for k > 2, 

1 
Set,, = a2Sci. 

*" (k-\)(k-2) V k 
,-PiSbk 

1 

(4/) 

where 

+ - /a Pr Gr sm<j>Sck_5<n A, Ar_5 
o 

• Pr Gr sin4>(- + / ) Sc*_3 i„AU-3] 

A„,„=0, m < « 

A„,„ = l , m > « 

Since G„ is arbitrary and nonzero when the solution is 
nontrivial, it has been removed from the preceding equations. 
The constants bt (i = 1-4) and Cj (J = 1,2) must be chosen 
to satisfy the boundary conditions (2«). The condition for the 
nontrivial solution of these constants leads to the charac
teristic equation, 

34 

3-2 

30 

28 

26 

2.4 

22 

20 1 1 

f-o-

10° 

30° 

• V 

90° 

I 

3-8 

3-7 

3 6 

3-5 

a: 3-4 

-J 3 - 3 

3-2 

3-1 

3-0 

where 

10' 10J 10" 

Fig. 2 Effect of a on (Ra)c for Pr = 0.025 

10" 10J 10" 

(4*) 

Fig. 3 Effect of a on (Ra)c for Pr = 0.71 

\Amn\=0 

Aln=Sbkn(0.5)k-1 

A2„=Sbk„(-0.5)k-1 

Ay, =Sbkn \(k- 1)(0.5)*-2 + — (k- l)(A:-2)(0.5)*-3l 
L aa J 

^ 4 „ = S ^ „ [ ( * - l ) ( - 0 . 5 ) * - 2 

- - ( A : - l ) ( A : - 2 ) ( - 0 . 5 ) * - 3 l 
<xo J 

^ 5 „=&,„ (0 .5 )* - ' 

A6„=Sckn(-0.5)k-> 

where k ranges from l-oo. 
The required eigenvalues are determined using the 

following numerical procedure. For a particular value of a, 
Gr is given a guess value and \Amn I is calculated. Using an 
appropriate iteration technique Gr is varied until \A„,„ I = 0 
up to a certain approximation. To find the critical value of 
Gr, its value is calculated for a range of values of a. The 
minimum value of Gr is taken as Grc and the corresponding a, 

(Ah) 

Journal of Applied Mechanics JUNE 1982, Vol. 49/269 

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



L-a 

2.6 

2-4 

2.2 

7(1 

4-0 

3 9 
U 

i2 3-8 

en 
o 

- • 3 - 7 

3-6 

3 .5 
10' 10J 10" 

Fig. 4 Effect on a on (G' r)c and a c for Pr = 0 

The same procedure is adopted to find the eigenvalues in 
the particular cases for Pr = 0 and 0 = 0 and the results are 
discussed in the following section. 

5 Discussions 
The stability of flow in an inclined channel bounded on 

both sides by porous layers with uniform heating from below 
and cooling from above has been studied for various in
clinations 4>, when Pr = 0 (absence of buoyancy force, i.e., 
pure shear), 0.025 (mercury), and 0.71 (air), for different 
values of a, using a simple, fast convergent power series 
technique. Gr is iterated on using Newton-Raphson method 
up to an accuracy of 10~8. The accuracy of the results 
depends on the number of terms used in the power series. It 
has been found that convergence in Gr to 8 figures accuracy 
requires 70 terms. 

5.1 The Case When Pr ^ 0. In Table 1, we have the critical 
Rayleigh numbers (Ra)c and critical wave numbers, ac, for 
different inclinations 4> and various values of a when Pr = 
0.025 and 0.71, with shear dominating in the former case and 
thermal gradient predominant in the latter case. The critical 
Rayleigh numbers are plotted against different a's in Figs. 2 
and 3. We note that there is a considerable decrease in (Ra)c 

for values of a between 100 and 400 due to the slip at the bed, 
with no appreciable change for large values of a. For large 
values of a the (Ra)c tends to the values of fluid layer bounded 
by impermeable boundaries considered by Ruth [6]. It is 
interesting to note that with increase in <f> (Ra)c decreases for 
Pr = 0.025 and increases for Pr = 0.71. This is because of 
different nature of buoyancy force phenomena in mercury 
and air. In the case of mercury (small Pr = 0.025) the control 
of convection is due to the tangential component of buoyancy 
which decreases with a decrease in inclination from the 
vertical. Hence convection sets in at a higher critical Rayleigh 
number as evident from Fig. 2. In the case of air, however, the 
normal component of buoyancy force is dominating and a 
very different kind of flow drive arises. This sets up a 
secondary flow in addition to the base flow. Hence the system 
becomes more unstable and a reverse phenomena to that in 
mercury occurs (see Fig. 3). 

4-6 

4-4 

4-2 

4-0 

3-8 

36 

3-4 
U 

ra 

2 3.2 

Ol 

o 
J 3 - 0 

2-8 

2-6 

2-4 

22 

20 

Longitudinal ro l ls 

Transverse rol ls 

Longitudinal roll regime 

,4 

Fig. 5 Critical Ra for ff = 102 ,103 and104 

Fig. 6 Critical Ra for a = 250, 2 x 1 0 
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Table 2 

a 

Critical a and Gr ( = 

ac 

Gr sin 0) for Pr = = 0 

(Gf)c. 

Table 4 Comparison of critical Gr for Pr = 0.71 

10,000 
2000 
1000 
250 
100 

2.688 
2.682 
2.661 
2.633 
2.456 
2.145 

7930.055 
7867.1273 
7625.4095 
7345.0095 
6090.8115 
4900.4230 

Table 3 Critical a, Gr, and Ra, </> = 0 

ac 
(Gr)c (Ra)c 

10,000 
2000 
1000 
250 
100 

3.117 
3.112 
3.095 
3.076 
2.971 
2.824 

2405.2982 
2390.0779 
2332.4242 
2266.8695 
1978.7683 
1670.5023 

1707.7617 
1696.9553 
1656.0211 
1609.4773 
1404.9254 
1186.0566 

5.2 The Case When Pr = 0. As Gr scales with sin 4> in this 
case, (Gr),, the critical Gf( = Gr sin 4>) for various values of a 
have been calculated and are given along with the critical wave 
numbers in Table 2. These provide the stability conditions for 
all angles. 
For examples: 

7930.055 
VJ »<-" " " 

(/'/') for a = 

and 

(Hi) for a = 

"> V u l / c — 

104,(Gr)c 

102,(Gr)c 

sin 4> 

7867.1273 

sin 4> 

4900.4230 

sin <t> 

(5a) 

(5b) 

(5c) 

Figure 4 shows the variation of (Gr)c and ac with respect to a. 
As in Section 5.1, we note that (Gr)c decreases considerably 
for small values of a and tends to a constant value for large a 
because of the existence of the slip. From equations (5a)-(5c), 
it is clear that (Gr)c is minimum for <j> = 90 deg and these 
equations are not valid for <j> = 0. The case <f> = 0 is treated 
separately in the following section. 

5.3 The Case When 0 = 0. The critical Rayleigh numbers 
and critical wave numbers, in this case, are computed and are 
shown in Table 3. The critical Rayleigh numbers are denoted 
as (Ra)co. Following Birikh, et al. [20], stability condition for 
longitudinal rolls is derived in the form 

(Ra)c = 
cos 4> 

(5d) 

where (Ra),^ = (Ra) when <j> = 0. 
Transverse rolls will occur only if their (Ra)c is less than the 

(Ra)c in equation (5d). Figures 5 and 6 show the regimes 
where transverse and longitudinal rolls occur for various Pr 
and a. For </> = 90 deg, the instability results in transverse 
rolls irrespective of Pr. For Pr = 0.025, the transverse rolls 
occur for all inclinations. For Pr = 0.71, the regions where 
the transverse rolls occur are limited. The physical ex
planation for the existance of longitudinal rolls for most 
angles (< 70 deg) in the case of Pr = 0.71 (air) and for the 
existence of transverse rolls for all angles in the case of Pr = 
0.025 (mercury) is the same as the different nature of com
ponents of buoyancy force phenomena explained in Section 
5.1. It is interesting to note that although the effect of porous 
boundaries is to lower the critical Rayleigh numbers, the 
inclinations for transverse rolls to occur are almost unaffected 
by a when Pr = 0.71. 

5.4 The Critical Wave Number, ac. It is found that, in 
general, (Gr)c had to be calculated to 8 figure accuracy in 
order to find ac to 4 figure accuracy. The effect of Pr and a on 
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the critical wave number ac for various inclinations are shown 
in Figs. 7 and 8. As a decreases ac also decreases. We see that 
in Fig. 7, the difference in ac for a = 102 and a = 103 is quite 
large. So, as a decreases, the wave lengths are increased. 
Thus, for smaller values of a, the convection cells are 
elongated. Also, there is a notable change in ac between q> = 
30 and </> = 40 for Pr = 0.71, a = 100,250. For these values 
of a, ac decreases in this region whereas for higher values of a, 
ac increases between <j> = 30 deg and <j> = 40 deg. We note 
that at Pr = 0.025, the shear would be very important and the 
indirect convective instability exhibiting transverse rolls with 
low wave numbers prevail. At Pr = 0.71 instability results in 
the form of longitudinals rolls having larger wave numbers. 

Comparison of the results for a — oo with those for other 
values of a reported in Tables 1-3 reveals that the effect of 
decrease in a is to make the system less stable because of the 
reduction in friction at the boundaries. It is also of interest to 
compare our results with those of Hart [5] and Ruth [6] for a 
— oo. This is done in Table 4 for Pr = 0.71. In this table, we 
have not reported the results of Unny [7] since they do not 
agree well with our results. Although agreement with Unny [7] 
is not obtained, the good agreement with Hart [5] and Ruth 
[6] can be interpreted as validation of the power series method 
employed in this paper. 

6 Conclusion 
The power series method employed in this paper to study 

convection in an inclined channel bounded on both sides by 
porous beds reveals a close analogy between the results of the 
present problem and those of a fluid layer studied by Hart [5] 
and Ruth [6]. Two main conclusions are as follows: 

(/) The convective movements in the case of mercury (Pr = 
0.025) are in the form of transverse rolls for all angles. In the 
case of air (Pr = 0.71), however, the convective movements 
are in the form of longitudinal rolls for the range of in
clination 0 deg < 4> < 70 deg and transverse rolls exist only in 
the narrow region of 70 deg < </> < 90 deg. The physical 
explanation for the existence of these different convective 
movements is given based on the dominant role of the 
components of buoyancy force. 

(if) The effect of porous boundaries is to make the system 
less stable due to the existence of the slip at the nominal 
surfaces. Further, the critical Grashof, Rayleigh, and wave 
numbers vary considerably with the porous parameter a, 
decreasing with decreasing a because of the reduction in 
friction at the porous boundaries. In the case of air, two 
different behaviors of critical numbers ac are observed (Figs. 
7 and 8). For 30 deg < <t> < 40 deg, and for a = 100,250, ac 

decreases in this region and the convection cells are elongated. 
For higher values of a, however, ac increases for 30 deg < </> 
< 40 deg. 
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