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The effects of a non-uniform tcmperature grad ient and magnetic field on the onset of convection driven by surface ten­
sion in a horizontal laycr of Boussinesq Ilu id with suspended particles confined between an upper free / adiabatic boundary 
and a lower rigid / isothermal boundary have been considercd. A linear stabi lity analysis is performed. The microrotation is 
assumed to van ish at the boundaries. The Galerkin tcchnique is uscd to obtain the eigenvalucs. The inlluence of various pa­
rameters on the onset of convecti on has been ana lyscd. Six different non-uniform temperature profi les are considered and 
their comparative inlluence on onset is di sc ussed. It is observed that the electrical ly conducting iluid layer with suspended 
panicles heated from below is more stable compared to the classical electrically conducting iluid without suspended parti­
cles. The critica l wave numbcr is found to bc insensitive to thc changcs in the parametcrs but scnsitive to the changes in the 
Chandrasekhar number. The problem has poss ible appl ica tions in microgravity space situations. 

Recently there has been great interest in the theory 
and modelling of materials processing in the micro­
gravity environment. The development of convection 
and corresponding heat transfer are examples of the 
physical phenomena to be encountered in these types 
of problems. Among the effects to be considered here 
are those of surface tension, crystalline anisotropy, 
non-equilibrium solidification and convection in the 
melt. These are relevant to the growth of large single 
crystals, the manufacture of semi-conductor devices 
and metallurgical process ing. The resu lts of space 
exploration, particularly the mechanism of prevention 
of buoyancy driven convection, are useful in under­
standing the physical processes in volved in manufac­
turing these materi als. Even though the micrograv ity 
env ironment in space is known to reduce the convec­
tion driven by buoyancy force, Marangoni convect ion 
wi II be generated due to the variation of surface ten­
sion with temperature. Simulating the micrograv ity 
environment in the laboratory to prevent altogether 
the buoyancy driven convecti on is difficult. 

The Rayleigh-Benard situation in Eri ngen's l-6 mi­
cropolar fluid s has been investigated by many 
authors7

-
14. The main results fro m all these studies is 

that fo r heati ng from below stati onary convecti on is 
the preferred mode. But it is a well known fac t that 
the onset of convection in Benard's experiments is 

*For correspondence. 

prod uced not si mply by buoyancy force but primarily 
by vari ation of surface tension with the temperature. 
The latter effect is genera ll y referred to as Marangoni 
instabili ty . Pearson 15 was the first person to make an 
analyt ical study of thi s effect. Accordi ng to Pear­
son'sl5 theory fo r a critical value of the Marangoni 
number, the layer di splays a short-wave pattern of 
stationary cellu lar convec tion. The effect of a uniform 
vertical magnetic field on the thermocapillary in. ta­
bility of a Newtonian layer of electrically conducting 
fluid (Marangoni magneto-convection) was first con­
sidered by Nield l6 and later by Rudraiah e( al. 17

.
18 

Subsequently, Maekawa and Tanasawal9 considered 
the same prob lem wi th incl ined magnetic field. All 
the above works are for a non-deformable surface. 
Sanna20, Kaddame and Lebon21 and Wilson22

.
23 stud­

ied Marangoni magneto-convecti on considering a de­
formab le free surface. Recently, Milandinova and 
SIavtchev24 made a weak non- linear analys is of Ma­
rangoni magneto-convection. 

The objecti ve of th is paper is to suggest additional 
mechanisms of contro lling convection using sus­
pended particles, applied magnetic fie ld and non­
uniform basic temperature gradients. The micropolar 
fl uid descri ption is used in the paper fo r the fluid with 
suspended particles. The single term Galerk in expan­
sion technique has been util ized to obtai n the critical 
Marangoni number. 
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Mathematical Formulation and Solution 
Consider an infinite horizontal layer of a Boussi­

nesquian electrically conducting micropolar fluid 
layer of depth 'h' permeated by an externally applied 
magnetic field Ho normal to the fluid. A cartesian co­
ordinate system is taken with the ori gin in the lower 
boundary and z-axis vertically upwards. The x-axis is 
along the lower plate. Let !J.T be the temperature dif­
fe rence between lower and upper boundaries of the 
fluid. The interface at the upper boundary has a tem­
perature dependent surface tension cr(T) . Expanding 
cr(T) by Taylor series about To, we get 

a(T)= cr(T ) + (T - To )[ dcr. ) 
o I! dT. 

7" 

+(T -To?(d 2

a ] +-----. 
2! dT 2 

"0 
Since T-To IS quite small in our analys is, we may 
write 

where cr l =- [dcr ) and cr o =cr(TJ . 
dT T. o 

... (1) 

The form of a(T) in Eq. (1) was used by PearsonlS . 
The governing equations for the problem are 

V.q = 0 (2) 

Po[~; +(q.V)q] = - VP+ (2s +11)V 2q+ SVxw 

+~I/I (H.V)H 

aT +(q --~-V XW).VT=XV 2T ' at PoCv 

aH (- ) - ( - ) - 2 --+ q.V H = H.V q+YI/IV H , at 
V.H =0, 

.. , (3) 

(4) 

(5) 

(6) 

(7) 

where q is the velocity, OJ is the spin, T is the tem­

perature, H is the magnetic field, P = p +~.!!'... H~ IS 
2 

the hydromagnetic pressure, Po is the density of the 
fluid at a reference temperature T=To , s is the cou­
pling viscosity coefficient or vortex viscosi ty, 11 is the 
shear kinematic viscosity coefficient, ] is the moment 
of inertia , 'A' and 11' are the bulk and shear spin vis­
cosity coefficient, ~ is the micropolar heat conduction 
coefficient, Cv is the specific heat, X is the thermal 
conducti vity, a is the coefficient of thermal expansion 
and YIll = 1/~ lll a lll is the magnetic viscosity (crill : 

electrical conductivity and ~Ill : magnetic permeability). 
The Eqs. (2) - (7) are solved subject to containment 

conditions appropriate for a rigid and thermall y per­
fect conducting wall on the underside and a free sur­
face on the upper side. This free surface is adjacent to 
a non-conducting medium and subject to a constant 
heat flux (i.e. adiabatic). Further, the no-spin bound­
ary condition is assumed for micro-rotation. Since the 
shear stress for a non-cl ass ical fluid with suspended 
particles is no different from that of classical fluids, 
the boundary conditions for flat free boundaries used 
by Nield 16 in respect of Newtonian fluids are appro­
priate for micropolar fluids also. 

In the qu iescent state the veloci ty q, the spin w, 
the temperature T and the magnetic fie ld H have the 
follow ing solution: 

q =0, w=O, -~ (ITo = f (z) 
!J.T dz 

... (8) 
where f (z) is a non-dimensional basic temperature 
gradient satisfying the condition 

I 

f f (z) dz = 1. 
o 

... (9) 

The various non-uniform bas ic temperature gradi­
ents considered in this paper are presented in Table 1. 

Table I-Various non-uni form basic tempcrature gradients 

Model 

2 

3 

4 

5 

6 

Non-uniform 
temperature gradient 

Linear 
Heating from below 

Cooling fro m above 

Step fu nction 

Inverted parabolic 

Parabolic 

fe z) 

{£O
-I O:5z< £ 

£< z :5 1 

{
o 0 :5 z < I - £ 

£
-1 

1-£< z :5 1 

8(;: - £) 
2(1 - z) 
2z 
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This type of basic temperature gradients arise due 
to sudden heating or cooiing, radiation, through flow, 
etc. (see Lebon and Clooe\ 

We now suppose that the initial state is slightly 
disturbed. The linearized equations of motion allow 
the solution of a disturbance in the form 

[W, Q z' T, H.]=[W(z), G( z), T( z), H z(z)] 
exp[i(lx + my)] , 

... (10) 

where 1 and m are the horizontal component of the 
wave number a. We use this expression in the line­
arized version of the basic equations and non­
dimensionalise the resulting equations using the fol­
lowing definitions: 

( * * *)_ (x,y,z) _* _ 'q' _* _ &' 
x ,y ,z - h ,q - xl h ,W - xl h 2 ' 

.... (11) 

We assume the principle of exchange of stability to be 
valid and hence deal with only stationary convection 
which is governed by the following equations after 
using Eq. (11): 

(I+N I)(D2 -a2)W+NI(D2 -a2)G 

+Q Pr (D2 -a2)DH z =0 
Pm 

... (12) 

(13) 

(D 2 -a2)T+!(z)(W-NsG)=0, (14) 

d 
where D=- , a2 =1 2 +m2, 

dz 

N, = _S_ (Coupling Parameter), 
S+Y) 

N 3 = ( Y)') 2 (Couple Stress Parameter), 
S+Y)/z 

N s = ~ (Micropolar Heat Conduction Para-
POCvh2 

meter), 

Pr = S + Y) (Prandtl number), 
X 

Pm = t;; + Y) (Magnetic Prandtl number), 
YIlI 

ag I1T h3po 
R = (t;; + Y))x (Rayleigh number) and 

2h2 
Q = ~I/JH 0 (Chandrasekhar number). 

(t;; + Y))y1/J 

In writing Eqs. (12)-(15) the asterisks have been 
omitted . 

Eliminating Hz between Eqs. (12) and (15), we get 

(I+N I)(D 2 -a 2YW+N I(D 2 -a 2)G-QD 2W=0. 
... (16) 

Eqs. (13), (14) and (16) are solved subject to the 
following boundary conditions (see Nield 16 and Ru­
draiah and Siddheshwar26 

): 

W=DW=T=G=O 

W = D2W +a2MT=DT =G=O 

(17) 

at Z = O} 
at Z = 1 , 

crT I1T h. h M . b E where M = IS t e arangom num er. q. 
~X 

(17) indicates the use of rigid, isothermal lower 
boundary and upper, free, thermally insulating bound­
ary (with respect to the perturbation) . The condition 
on G is the spin-vanishing boundary condition. 

We now use the single-term Galerkin expansion 
technique to find the critical eigenvalue. Multiplying 
Eq.(16) by W, Eq.(l3) by G and Eq.(14) by T, inte­
grating the resulting equations by parts with respect to 
z fro m 0 to 1, using the boundary conditions (17) and 
using W = A WI. G = B G I , T = C TI in which A, B 
and C are constants and WI, G1 and TI are trial func­
tions, yield the followi ng eigenvalue equation: 



80 INDIAN J. ENG. MATER . SCI., APRIL 2001 

l( (DT, r ) +a 2 (7~ 2) J(C IC2 + N I
2
C; ) 

M= --'---,----'---,----:--'------'--------
(I+N , )a 2 DW,(I)T, (I)C4 ' 

... (18) 

where 

CI =N3((DC,r)+(N3a2 + 2N,)(CO, 

C2 =-(I+N,)[ ((D2wJ)+2a2( (D~? ) +a4 (wnl 
-Q( (DW;? ) 

In Eq.( 18), (- - ) denotes integration with respect to z 
between z=O and z= 1. 

M (z, WI, C I , TI) in Eq. (18) is a functional and 
Euler - Lagrange equations for the extremisation of M 
are Eqs (12)-(15). 

We select the trial functions 

such that they sati sfy all the boundary conditions (17) 
except the one given by D2W+a2MT = 0 at z = 1, but 
the residual from this is included in the residual from 
the differential equations. Substituting Eqs (19) in 
(18) and performing the integration, we can calculate 
the critical Marangoni number Me, wh ich attains its 

. . 2 
mllllmum at ae • 

Results and Discussion 
The effects of non-uniform bas ic temperature gra­

dient and magnetic field on the onset of Marangoni 
convection in an electrically conducting micropolar 
fluid have been studied. Six non-uniform temperature 
profiles are chosen for study. It is observed that for 
the critical Marangoni number, Me, the following ine­
quality holds for the six models under question 

i.e., the step function is the most destabilising basic 
temperature distribution and inverted parabolic is the 
most stabilising basic temperature distribution. In the 

case of piecewise linear and step function profiles, the 
critical Marangoni number Me depends on the thermal 
depth, E, in addition to depending on the parameters 
of the problem. In the case of piecewise linear profile 
heating from below, cooling from above and step 
function profiles the minimum value of Me is attained 
at E = 0.93, £ = 0.43 and E =0.74 respectively. 

Before embarking on a di scussion of the resu lts let 
us make some comments on the parameters NI, N3 and 
Ns arising due to the s u s pencl ~d particles. Assuming 
the Clausius-Duhem inequalit j Eringen4 presented 
certain thermodynami c restricti ons, \vhich lead to 
non-negativeness of N I, N3 and Ns. For S = 0 (N I= 0) 
it is clear that equation ( 12) for W becomes independ­
ent of C, i.e. it is uncoupled. As S ~ 00, we see that 
NI ~ 1 and N3 ~ O. This is the Stokesian descripti on 
of suspension. Thus, it is obv ious that couple stress 
comes into play only at small values of NJ• This sup­
ports the contention th at NI E [0, 1] and that NJ is 
small positive real number. Coming to Ns it has to be 
finite because the increasing of concentration has to 
prac ticall y stop somewhere and hence Ns has to be a 
positive, finite real number. 

The typical order of magnitudes of N I , NJ and Ns 
mentioned above apply to fluid systems encountered 
in materials process ing under microgravity in space. 
With the above background and with the motive 
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250 

200 
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Fig. I-Plot of critical Marangoni number Me versus coupling 
parameter N) for diffe rent non-uniform temperature grad ients. 
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Fig. 2-Plot of Me versus couple stress parameter N3 for different 
non-uniform temperature gradients. 

specified in the introduction we now discuss the re­
sults presented by the Figs 1-6. 

Fig. 1 is the plot of Me versus the coupling pa­
rameter N J for different non-uniform temperature gra­
dients. Clearly Me increases with Nt. Increase in NJ 
indicates the increase in the concentration of micro­
elements. These clements consume the greater part of 
the energy of the system in developing the gyrational 
velocities of the fluid and as a result the onset of con­
vection is delayed. Therefore, the increase in NJ is to 
stabilise the system. 

Fig. 2 is the plot of Me versus the couple stress pa­
rameter N" for different non-uniform temperature pro­
files . Clearly Me decreases with the increase in N3 and 
ultimately levels off to the Newtonian value. Increase 
in N3, decreases llle couple stress of the flui d which 

335 
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315 

305 
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295 

Me 

72 

68 

55 

47 

45 

Fig. 3-Plot of Me versus micropolar heat conduction parameter 
Ns for different non- uniform temperature gradients. 

causes a decrease in microrotation and hence makes 
the system more unstable. 

Fig. 3 is the plot of Me versus the micropolar heat 
conduction parameter Ns for different non-uniform 
temperature profiles. When Ns increases, the heat in­
duced into the fluid due to these microelements also 
increases, thus reducing the heat transfer from bottom 
to top. The decrease in heat transfer is responsible for 
delaying the onset of instability. This result can also 
be anticipated because Eg. (5) clearly shows that the 
effect of the suspended particles is to deduct from the 
velocity . Thus, increase in Ns is to stabilise the sys­
tem. 
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Fig. 4-Plot of Me versus Chandrasckhar number Q for different 
non-uniform temperature gradients and N1• 
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Fig. 5-Plot of Me versus Q for different non-uniform temperature 
gradients and N). 

Table 2-The values of critical wave number Q; for various values of N1, N), N5 and Q for f (z ) = I 

Q=O.O Q= 10.0 
NI N) N5 2 

Qc 
NI N] 

0.1 2.0 1.0 5.91 0.1 2.0 
0.5 2.0 1.0 5.89 0.5 2.0 
1.0 6.0 0.5 5.78 1.0 6.0 
0.1 10.0 1.0 5.91 0.1 10.0 
0.1 2.0 1.5 5.91 0. 1 2.0 

5.91 
5.91 
5.91 
5.91 

Fig. 4 is the plot of Me versus Chandrasekhar num 
ber Q for different non-uniform temperature gradients 
and two values of N,. It is observed that as Q in­
creases Me also increases. It is also observed that as 
N, increases, Me also increases for small values of Q. 
However, for very large val ues of Q, the critical Me is 
less than the Newtonian value. This result may possi­
bly suggest a value of Q upto which the present theo-

N5 

1.0 
1.0 
0.5 
1.0 
1.5 

Q = 1000.0 
2 

Q e 
NI N3 N5 2 

Qe 

6.47 0.1 2.0 1.0 9.89 
6.31 0.5 2.0 1.0 9.02 
6.08 1.0 6.0 0.5 8.[ 9 
6.47 0.1 10.0 1.0 9.89 
6.47 0.1 2.0 1.5 9.89 
6.47 9.89 
6.47 9.89 
6.47 9.89 
6.47 9.89 

retical study app lies . Thus, the increase in the con­
centration of suspended particles is to stabi lise the 
system along with the magnetic field. 

Fig. 5 is the plot of Me versus Q for different non­
uniform temperature gradients and two values of N3 . 

The increase in Q increases Me thus reiterating an 
earlier observation . From the figure, we see that the 
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Fig. 6-Plot of Me versus Q for different non-uniform temperature 
gradients and N5. 

effect of N3 on the system is very small compared to 
the effects of the other micropolar parameters. 

Fig. 6 is the plot of Me versus Q for different non­
uniform temperature gradients and two values of Ns. 
In the figure the contribution of micropolar heat con­
duction is clearly brought out. We observe that mi­
cropolar heat conduction leads to delayed convection, 
a result which as we noted earlier is only to be antici­
pated. 

It has also been found that the critical wave number 
is, in general, insensitive to the changes in the micro­
polar parameters but is influenced by the magnetic 
field. A strong magnetic field succeeds in inducing 

only the coupling number NI into influencing a;. 
These are shown in Table 2. 

The above results indicate that the externally ap­
plied magnetic field is an effective means of control­
ling Marangoni convection in electrically conducting 

micropolar fluids. The results suggest that Marangoni 
convection in Newtonian fluids may be delayed by 
adding micron sized electrically inert suspended par­
ticles. Further, by creating conditions for an appropri­
ate basic temperature gradient we can also make an a 
priori decision on advancing or delaying convection. 
In the limit NI ~ 0, we recover the results of Ru­
draiah et at 17 from the present study and those of Ru­

draiah and Siddheshwar26 in the limit Q ~ 0. 
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