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The effects of a non-uniform temperature gradient and magnetic field on the onset of convection driven by surface ten-
sion in a horizontal layer of Boussinesq [uid with suspended particles confined between an upper Iree / adiabatie boundary
and a lower rigid / isothermal boundary have been considered. A linear stability analysis is performed. The microrotation is
assumed to vanish at the boundaries. The Galerkin technique is used to obtain the eigenvalues. The influence of various pa-
rumeters on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and
their comparative influence on onset is discussed. It is observed that the electrically conducting fluid layer with suspended
particles heated from below is more stable compared to the classical electrically conducting {luid without suspended parti-
cles. The critical wave number is found to be insensitive to the changes in the parameters but sensitive to the changes in the
Chandrasckhar number. The problem has possible applications in microgravity space situations.

Recently there has been great interest in the theory
and modelling of materials processing in the micro-
gravity environment. The development of convection
and corresponding heat transfer are examples of the
physical phenomena to be encountered in these types
of problems. Among the effects to be considered here
are those of surface tension, crystalline anisotropy,
non-equilibrium solidification and convection in the
melt. These are relevant to the growth of large single
crystals, the manufacture of semi-conductor devices
and metallurgical processing. The results of space
exploration, particularly the mechanism of prevention
of buoyancy driven convection, are useful in under-
standing the physical processes involved in manufac-
turing these materials. Even though the microgravity
environment in space is known to reduce the convec-
tion driven by buoyancy force, Marangoni convection
will be generated due to the variation of surface ten-
sion with temperature. Simulating the microgravity
environment in the laboratory to prevent altogether
the buoyancy driven convection is difficult.

The Rayleigh-Benard situation in Eringen’s'™ mi-
cropolar fluids has been investigated by many
authors”". The main results from all these studies is
that for heating from below stationary convection is
the preferred mode. But it is a well known fact that
the onset of convection in Benard’s experiments is

*For correspondence.

produced not simply by buoyancy force but primarily
by variation of surface tension with the temperature.
The latter effect is generally referred to as Marangoni
instability. Pearson" was the first person to make an
analytical study of this effect. According to Pear-
son’s" theory for a critical value of the Marangoni
number, the layer displays a short-wave pattern of
stationary cellular convection. The effect of a uniform
vertical magnetic field on the thermocapillary insta-
bility of a Newtonian layer of electrically conducting
fluid (Marangoni magneto-convection) was first con-
sidered by Nield"® and later by Rudraiah er al."™".
Subsequently, Maekawa and Tanasawa'” considered
the same problem with inclined magnetic field. All
the above works are for a non-deformable surface.
Sarma®, Kaddame and Lebon®' and Wilson>?* stud-
ied Marangoni magneto-convection considering a de-
formable free surface. Recently, Milandinova and
Slavtchev** made a weak non-linear analysis of Ma-
rangoni magneto-convection.

The objective of this paper is to suggest additional
mechanisms of controlling convection using sus-
pended particles, applied magnetic field and non-
uniform basic temperature gradients. The micropolar
fluid description is used in the paper for the fluid with
suspended particles. The single term Galerkin expan-
sion technique has been utilized to obtain the critical
Marangoni number.
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Mathematical Formulation and Solution

Consider an infinite horizontal layer of a Boussi-
nesquian electrically conducting micropolar fluid
layer of depth ‘i’ permeated by an externally applied
magnetic field A, normal to the fluid. A cartesian co-
ordinate system is taken with the origin in the lower
boundary and z-axis vertically upwards. The x-axis is
along the lower plate. Let AT be the temperature dif-
ference between lower and upper boundaries of the
fluid. The interface at the upper boundary has a tem-
perature dependent surface tension o(7). Expanding
o(7) by Taylor series about T, we get

o(r)=o(r, )+ (T_l—,r") [EL_

dr
+ (T - T{I )2 []:_0
2! dr?

Ty
Since T-T, is quite small in our analysis, we may
write

o(l')=0,~0,(T-T,) o (1)

where 0y = - -d—01 and 6, =o(T,).
d7 Ty

The form of o(T) in Eq. (1) was used by Pearson' .

The governing equations for the problem are
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where q is the velocity, @ is the spin, T is the tem-

perature, H is the magnetic field, P=p + o 15

E&Hz
2

the hydromagnetic pressure, Py is the density of the
fluid at a reference temperature 7=T, . C is the cou-
pling viscosity coefficient or vortex viscosity, 1 is the
shear kinematic viscosity coefficient, I is the moment
of inertia, A" and M" are the bulk and shear spin vis-
cosity coefficient, B is the micropolar heat conduction
coefficient, C, is the specific heat, % is the thermal
conductivity, o is the coefficient of thermal expansion
electrical conductivity and W, : magnetic permeability).

The Egs. (2) — (7) are solved subject to containment
conditions appropriate for a rigid and thermally per-
fect conducting wall on the underside and a free sur-
face on the upper side. This free surface is adjacent to
a non-conducting medium and subject to a constant
heat flux (i.e. adiabatic). Further, the no-spin bound-
ary condition is assumed for micro-rotation. Since the
shear stress for a non-classical fluid with suspended
particles is no different from that of classical fluids,
the boundary conditions for flat free boundaries used
by Nield' in respect of Newtonian fluids are appro-
priate for micropolar fluids also.

In the quiescent state the velocity ¢, the spin ©,

the temperature 7" and the magnetic field H have the
following solution:

" - ~ IT,

5=0, H=Hef, =21 (3)

q=0,
AT dz

. (8)
where f (z) is a non-dimensional basic temperature
gradient satisfying the condition

}f (z)dz=1. o (D)
0

The various non-uniform basic temperature gradi-
ents considered in this paper are presented in Table 1.

Table 1—Various non-uniform basic temperature gradients

Model Non-uniform f(z)
temperature gradient

1 Linear 1

2 Heating from below t_u] 0% 58
0 <zl

3 Cooling from above 0 0<rel—g
e 1-e<zsl

4 Step function 5(: _ E)

5 Inverted parabolic 2(1 = z)

6 Parabolic 2z
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This type of basic temperature gradients arise due
to sudden heating or cooling, radiation, through flow,
etc. (see Lebon and Cloot™).

We now suppose that the initial state is slightly
disturbed. The linearized equations of motion allow
the solution of a disturbance in the form

Ww,Q.,7, H,]=W(2), G(2), T(2), H,(2)]
exp[f'(f.r+ my)]

... (10)

where [ and m are the horizontal component of the
wave number a. We use this expression in the line-
arized version of the basic equations and non-
dimensionalise the resulting equations using the fol-
lowing definitions:

==}
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AT H,

We assume the principle of exchange of stability to be
valid and hence deal with only stationary convection
which is governed by the following equations after
using Eq. (11):

1+n,)(D*-a2fw+n,(D? -a?)G

Pr A . (2)
Q- (p?-a?)DH, =0

N, (D2 -=a2) W - N, (D? -a®) G+2N,G =0,
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(D2 -a?)r+ F()W - NsG)=0, .. (14)
2 2 P?n
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where DEi , a*=1*+m*,
dz

N, = (Coupling Parameter),
C+m

N1=‘_TI"“‘~."
(SR &

(Couple Stress Parameter),

B

P,C,h
meter),
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(Micropolar Heat Conduction Para-

2

Pr= C“P_‘l (Prandtl number),

4
Pm= Sl (Magnetic Prandtl number),
AT b?
g8t T (Rayleigh number) and
C+nk
HZh?
0= ., fo (Chandrasekhar number).

€+,

In writing Egs. (12)-(15) the asterisks have been
omitted.

Eliminating H, between Egs. (12) and (15), we get

(1+N,)(D* -a*f W + N, (D? -a*) G- 0D*W =0.
.. (16)

Egs. (13), (14) and (16) are solved subject to the
following boundary conditions (see Nield'® and Ru-
draiah and Siddheshwar®® ):

W=DW=T=G=0 at z=0

W=DW+a*MT=DT=G=0 at z=1

(17)

where M = Spalh is the Marangoni number. Eq.
X

(17) indicates the use of rigid, isothermal lower
boundary and upper, free, thermally insulating bound-
ary (with respect to the perturbation). The condition
on G is the spin-vanishing boundary condition.

We now use the single-term Galerkin expansion
technique to find the critical eigenvalue. Multiplying
Eq.(16) by W, Eq.(13) by G and Eq.(14) by T, inte-
grating the resulting equations by parts with respect to
z from O to 1, using the boundary conditions (17) and
using W=A W,,G=B G, T=C T, in which A, B
and C are constants and W,, G, and T are trial func-
tions, yield the following eigenvalue equation:
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where
¢, = N;((0G, ) )+ (Na? + 2N, {GF),

C,=—(1+N, )[ ((wal )> + zu'-‘( (bW, )3> + a*(wf)]
-0{ (ow)’)

C, =((DG,)(DW, )) +a*(W,G,) and

¥

Cy ={f(QW,T,)C, = NsN,(f(2)T,G,)C;

In Eq.(18), (— *) denotes integration with respect to z
between z=0 and z=1.

M (z, Wy, Gy, T}) in Eq. (18) is a functional and
Euler — Lagrange equations for the extremisation of M
are Eqgs (12)-(15).

We select the trial functions
Wi=2(1-2).Gi=z(1-2), Ti=2(2-2) ... (19)
such that they satisfy all the boundary conditions (17)
except the one given by D*W+a°MT =0 at z = 1, but
the residual from this is included in the residual from
the differential equations. Substituting Egs (19) in
(18) and performing the integration, we can calculate
the critical Marangoni number M., which attains its

L] 9
minimum at ﬂl'.' .

Results and Discussion

The effects of non-uniform basic temperature gra-
dient and magnetic field on the onset of Marangoni
convection in an electrically conducting micropolar
fluid have been studied. Six non-uniform temperature
profiles are chosen for study. It is observed that for
the critical Marangoni number, M., the following ine-
quality holds for the six models under question

My <Ma <M <Ma<M,y<Ms,

i.e., the step function is the most destabilising basic
temperature distribution and inverted parabolic is the
most stabilising basic temperature distribution. In the

case of piecewise linear and step function profiles, the
critical Marangoni number M. depends on the thermal
depth, &, in addition to depending on the parameters
of the problem. In the case of piecewise linear profile
heating from below, cooling from above and step
function profiles the minimum value of M. is attained
at£=0.93, £ = 0.43 and € =0.74 respectively.

Before embarking on a discussion of the results let
us make some comments on the parameters Ny, N5 and
Ns arising due to the suspended particles. Assuming
the Clausius-Duhem inequality Eringen® presented
certain thermodynamic restrictions, which lead to
non-negativeness of Ny, N3 and Ns. For L =0 (N,;=0)
it is clear that equation (12) for W becomes independ-
ent of G, i.e. it is uncoupled. As € — <=, we see that
N, — 1 and N3 — 0. This is the Stokesian description
of suspension. Thus, it is obvious that couple stress
comes into play only at small values of N;. This sup-
ports the contention that Ny € [0,1] and that N is
small positive real number. Coming to Ns it has to be
finite because the increasing of concentration has to
practically stop somewhere and hence Ns has to be a
positive, finite real number.

The typical order of magnitudes of N,, Ny and Ns
mentioned above apply to fluid systems encountered
in materials processing under microgravity in space.
With the above background and with the motive
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Fig. 1—Plot of critical Marangoni number M, versus coupling
parameter N, for different non-uniform temperature gradients.
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Fig. 2—Plot of M, versus couple stress parameter Nj for different
non-uniform temperature gradients.

specified in the introduction we now discuss the re-
sults presented by the Figs 1-6.

Fig. 1 is the plot of M, versus the coupling pa-
rameter N, for different non-uniform temperature gra-
dients. Clearly M, increases with N|. Increase in N,
indicates the increase in the concentration of micro-
elements. These clements consume the greater part of
the energy of the system in developing the gyrational
velocities of the fluid and as a result the onset of con-
vection is delayed. Therefore, the increase in N is to
stabilise the system.

Fig. 2 is the plot of M, versus the couple stress pa-
rameter N; for different non-uniform temperature pro-
files. Clearly M. decreases with the increase in N5 and
ultimately levels off to the Newtonian value. Increase
in Ns, decreases the couple stress of the fluid which
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Fig. 3—Plot of M, versus micropolar heat conduction parameter
Njs for different non- uniform temperature gradients.

causes a decrease in microrotation and hence makes
the system more unstable.

Fig. 3 is the plot of M. versus the micropolar heat
conduction parameter Ns for different non-uniform
temperature profiles. When Ns increases, the heat in-
duced into the fluid due to these microelements also
increases, thus reducing the heat transfer from bottom
to top. The decrease in heat transfer is responsible for
delaying the onset of instability. This result can also
be anticipated because Eq. (5) clearly shows that the
cffect of the suspended particles is to deduct from the
velocity. Thus, increase in Ns is to stabilise the sys-
tem.
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Fig. 4—Plot of M, versus Chandrasekhar number Q for different
non-uniform temperature gradients and N,.
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Fig. 5—Plot of M versus Q for different non-uniform temperature
gradients and Nj.

Table 2—The values of critical wave number ﬂf for various values of Ny, N3, Ns and Q for f(z) = |

0=00 Q=100
N N N; 2 N N N;
a.
0.1 20 10 591 0.1 2.0 1.0
05 20 10 589 05 20 1.0
10 60 05 578 10 60 05
0.1 100 1.0 591 0.l 100 1.0
01 20 15 591 0.l 2.0 1.5
591
591
591
591

Q = 1000.0

af Ni Ns Ns af

6.47 0.1 2.0 1.0 9.89
6.31 0.5 2.0 1.0 9.02
6.08 1.0 6.0 0.5 8.19
6.47 0.1 10.0 1.0 9.89
6.47 0.1 2.0 1.5 9.89
6.47 9.89
6.47 9.89
6.47 9.89
6.47 9.89

Fig. 4 is the plot of M. versus Chandrasekhar num
ber Q for different non-uniform temperature gradients
and two values of N,. It is observed that as Q in-
creases M, also increases. It is also observed that as
N, increases, M. also increases for small values of Q.
However, for very large values of Q, the critical M. is
less than the Newtonian value. This result may possi-
bly suggest a value of Q0 upto which the present theo-

retical study applies. Thus, the increase in the con-
centration of suspended particles is to stabilise the
system along with the magnetic field.

Fig. 5 is the plot of M, versus Q for different non-
uniform temperature gradients and two values of Nj.
The increase in Q increases M. thus reiterating an
earlier observation. From the figure, we see that the
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Fig. 6—Plot of M, versus Q for different non-uniform temperature
gradients and N,

effect of N3 on the system is very small compared to
the effects of the other micropolar parameters.

Fig. 6 is the plot of M, versus Q for different non-
uniform temperature gradients and two values of Ns.
In the figure the contribution of micropolar heat con-
duction is clearly brought out. We observe that mi-
cropolar heat conduction leads to delayed convection,
a result which as we noted earlier is only to be antici-
pated.

It has also been found that the critical wave number
is, in general, insensitive to the changes in the micro-
polar parameters but is influenced by the magnetic
field. A strong magnetic field succeeds in inducing

only the coupling number N, into influencing a’.
These are shown in Table 2.
The above results indicate that the externally ap-

plied magnetic field is an effective means of control-
ling Marangoni convection in electrically conducting

micropolar fluids. The results suggest that Marangoni
convection in Newtonian fluids may be delayed by
adding micron sized electrically inert suspended par-
ticles. Further, by creating conditions for an appropri-
ate basic temperature gradient we can also make an a
priori decision on advancing or delaying convection.
In the limit N; — 0, we recover the results of Ru-
draiah ef al 7 from the present study and those of Ru-
draiah and Siddheshwar® in the limit Q — 0.

Acknowledgment

The work was supported by the UGC-DSA and
ISRO (Project 10/2/262) programs being implemented
at the Department of Mathematics, Bangalore Univer-
sity, India. The one of the authors (SP) would like to
acknowledge the support of the Christ College ad-
ministration in deputing him to the Ph.D. program.
The authors are grateful to the referees for useful
comments on the paper.

References

Eringen A C, Inr J Eng Sci, 2 (1964) 205.

Eringen A C, Int J Eng Sci, 7 (1969) 115.

Eringen A C, Int J Eng Sci, 18 (1980) 5.

Eringen A C, J Math Anal Appl, 38 (1972) 480.

Eringen A C, Int J Eng Sci, 28 (1990) 133,

Eringen A C, Int J Eng Sci, 29 (1991) 1515.

Datta A B & Sastry V U K, Int J Eng Sci, 14 (1976) 631.

Bhattacharya S P & Jena S K, Int J Eng Sci, 23 (1984) 13.

Payne L E & Straughan B, Int J Eng Sci, 27 (1989) 827.

Siddheshwar P G & Pranesh S, Int J Eng Sei, 36 (1998)

1173.

1l Siddheshwar P G & Pranesh S, Int J Eng Sci, 36 (1998)
1183.

12 Siddheshwar P G & Pranesh S, JMMM, 192 (1999) 159.

13 Siddheshwar P G & Pranesh S, JMMM, 219 (2000) L153.

14 Siddheshwar P G & Pranesh S, Acta Mech, (2001) (In Press).

15 PearsonJ R A, J. Fluid Mech, 4 (1958) 489.

16 Nield D A, ZAMM, 17 (1966) 131.

17 Rudraiah N, Ramachandramurthy V & Chandna O P, Int J
Hear Mass Transfer, 28 (8) (1985) 1621.

18 Rudraiah N, Chandna O P & Garg M R, Ind J Technol , 24
(1986) 285.

19 Maekawa T & Tanasawa 1, Int J Heat Mass Transfer, 31
(1988) 285.

20 Sarma G S R, PCH Physico Chemical Hydrodynamics, 6
(1985) 283.

21  Kaddame A & Lebon G, Microgravity Q, 3 (1993) 1.

22 Wilson S K, Q J Mech Appl Math, 46 (1993) 211.

23 Wilson S K, Phys Fluids A, 6 (1994) 3591.

24 Milandinova S P & Slavichev S G, ZAMM, 78 (1998) 345.

25 Lebon G & Cloot A, J. Non-Equilib. Thermody, 6 (1981) 15.

26 Rudraiah N & Siddheshwar P G, Int J Aerospace Technol,
France, 4 (2000) 517.

o 00 =]l A B —

]



