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Abstract. The problem of determining the force acting on a particle in a fluid
where the motion of the fluid and the particle is given has been considered in some
detail in the literature. In this work, we propose an example of a new class of prob-
lems where, the fluid is quiescent and the effect of an external periodic force on the
motion of the particle is determined at low non-zero Reynolds numbers. We present
an analysis of the dynamics of dilute suspensions of periodically forced prolate
spheroids in a quiescent Newtonian fluid at low Reynolds numbers including the
effects of both convective and unsteady inertia. The inclusion of both forms of
inertia leads to a nonlinear integro – differential equation which is solved numeri-
cally for the velocity and displacement of the individual particle. We show that
a ‘normal stress’ like parameter can be evaluated using standard techniques of
Batchelor. Hence this system allows for an experimentally accessible measurable
macroscopic parameter, analogous to the ‘normal stress’, which can be related to
the dynamics of individual particles. We note that this ‘normal stress’ arises from
the internal fluctuations induced by the periodic force. In addition, a preliminary
analysis leading to a possible application of separating particles by shape is pre-
sented. We feel that our results show possibilities of being technologically impor-
tant since the ‘normal stress’ depends strongly on the controllable parameters and
our results may lead to insights in the development of active dampeners and smart
fluids. Since we see complex behaviour even in this simple system, it is expected
that the macroscopic behaviour of such suspensions may be much more complex
in more complex flows.
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1. Introduction

Suspensions of solid particles are encountered both as raw materials and as intermediates
in a large number of industries such as printing and paper making, petroleum processing,
pharmaceuticals and food processing. In most situations, the particles tend to be non-spherical
or even irregularly shaped, the suspension rheology then being sensitive to the orientation
distribution of the suspended particles. The motion of non-spherical particles in shear flows
at vanishingly small Reynolds numbers has been studied theoretically for a long time and the
literature in this case is summarized by Leal (1980). It has, in fact been known since the work
of Jeffery (1922) and later Bretherton (1962), that in the absence of inertia, an axisymmetric
particle in a simple shear flow rotates periodically in one of an infinite single-parameter
family of closed ‘Jeffery’ orbits. The particular orbit adopted by the particle, in the absence of
hydrodynamic interactions, Brownian motion, etc. depends on the initial conditions, rendering
the inertialess limit indeterminate. Subramanian & Koch (2006) considered both particle and
fluid inertia as a possible mechanism acting to remove this indeterminancy. They developed
solutions for aspect ratios close to unity. Hence, their analysis captures the leading order effect
of the deviation from sphericity on the particle orientational motion. They found that for the
neutrally buoyant case, the inertia of the suspending fluid causes a prolate spheroid to drift
toward an axial spin about the vorticity axis of the ambient simple shear. This suggests that
inertial effects play a major role in the dynamics of a particle and hence forms one motivation
for our work.

It is also interesting to determine the dynamics and rheology of dipolar particles in the
presence of an external electric or magnetic field, which could lead to possible applica-
tions in electrorheological and magnetorheological fluids. Literature in this regard has been
compiled by Strand & Kim (1992). They have investigated the rheological and rheo-optical
properties of dilute suspensions of Brownian particles having permanent dipoles subject to
time-dependent shear and external fields. A wide range of demonstrated applications such as
separation processes, catalytic reactors, etc. have been compiled by Rosensweig (1985). Other
practical applications of the study of the dynamics of small dipolar particles in various linear
flows under the effect of alternating or rotating external fields include magnetofluidization
(Buevich et al 1984), magnetostriction of ferromagnetic particle suspensions (Ignatenko et al
1984), characterization of magneto rheological suspensions (Cebers 1993) and determining
the rheological properties of ferromagnetic colloids (Tsebers 1986).

In addition, a number of authors have considered the evaluation of the force acting on a
body whose motion is known at low non-zero Reynolds numbers (Lovalenti & Brady 1993a,
1995). Since the motion of the particle and fluid are known, the evaluation of the history term
is relatively elementary. There is also an indication that history forces are not negligible even
at large Reynolds numbers (Gondret et al 2002).

In this paper, we present the inverse problem, namely the effect of a periodic force on the
motion of a dilute suspension of prolate spheroidal particles in a quiescent Newtonian fluid
at low non-zero Reynolds numbers. We hope to isolate the effects of particle shape on the
dynamics of the particle at low non-zero Reynolds number in the simplest possible case. We
also calculate a ‘Normal stress’ like macroscopic experimentally accessible parameter using
standard techniques following Batchelor (1970). This experimentally accessible parameter
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can be related to the dynamics of individual particles and hence this system could be considered
as a system wherein macroscopic behaviour can be related to microscopic behaviour. This
class of problems is one of the simplest physically realizable fluid dynamical systems that can
show nonlinear behaviour at the level of the individual particle. There is a nonlinear coupling
between the scale of the individual particle and the scale of the macroscopic parameter
through the time dependent force. This system is thus an ideal system to probe the statistical
mechanics of systems consisting of a large number of periodically driven oscillators with
a fading memory. It has been shown that there exists a chaotic parametric regime, in the
dynamics of periodically forced spheroidal particles in a simple shear flow (Kumar et al
1995). This chaotic dynamics can be controlled by controlling system parameters (Kumar &
Ramamohan 1998). These results restricted to zero Reynolds numbers and simple shear flows
have been summarized by Asokan et al (2005).

Recently, Ramamohan et al (2009) have studied the dynamics of a dilute suspension of
neutrally buoyant periodically forced spherical particles in a quiescent Newtonian fluid at low
Reynolds numbers. This represents the first step to extend the results summarized by Asokan
et al (2005), to the low Reynolds number regime. In this paper, we extend these results to
prolate spheroidal particle suspensions as a prelude to a study of more complex suspensions.

2. The hydrodynamic force expression for an arbitrary shaped particle

Lovalenti & Brady (1993) have given the expression for the required hydrodynamic force on
an arbitrary shaped particle, in the long time limit at low Reynolds numbers. The reciprocal
theorem has been used to obtain the following expression. The details of the derivation can
be found in Lovalenti & Brady (1993).
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Here,UUUs = UUUp−UUU∞ is the slip velocity of the fluid.UUUp is the velocity of the particle.UUUs has
been non-dimensionalized by Uc. The acceleration terms U̇̇U̇Us and U̇̇U̇U∞ are non-dimensionalized
by ωUc, where 1/ω is the characteristic timescale. UUU∞ is the velocity of the fluid as r → ∞.
Re is the Reynolds number, defined as Re = Uca/ν based on a characteristic particle slip
velocity, Uc, ‘a’ denotes the characteristic particle dimension, in our case the semi-major axis
and ν is the kinematic viscosity of the fluid. FH
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Table 1. Computed values of the diagonal matrix
representing the acceleration reaction term.

Aspect ratio Ixx Iyy Izz

2 4·62 9·2 9·2
3 6·45 17·0 17·0
4 8·50 25·0 25·0
5 10·34 33·05 33·05
6 11·73 38·05 38·05
7 12·30 40·5 40·5
8 14·85 47·0 47·0
9 19·25 59·5 59·5

10 19·30 61·5 61·5

p = Ys(t)−Ys(s)

|Ys(t)−Ys(s)|p = Ys(t)−Ys(s)

|Ys(t)−Ys(s)|p = Ys(t)−Ys(s)

|Ys(t)−Ys(s)| , here YYY s(t) − YYY s(s) is the integrated displacement of the particle relative to

the fluid from time s to the current time t . FFFH is scaled by μaUc. Sl is the Strouhal number
and ‘AAA’ is given by

A = Re

2

(
t − s

ReSl

)1/2 (
Ys(t) − Ys(s)

t − s

)
.

The first term on the right hand side of the differential expression is due to an accelera-
ting reference frame. The second is the pseudo-steady Stokes drag. The third is called the
acceleration reaction, similar to the added mass. The fourth term represents the unsteady
Oseen correction, which replaces the ‘Basset memory integral’ in the long time limit at finite
Reynolds number. The last integral contributes a lift force, i.e. a force perpendicular to the
slip velocity. We note that the expression is valid up to order Re and order ReSl.

The acceleration reaction term (Ixx in table 1) is computed using the expressions given by
Pozrikidis (1992) and Chwang & Wu (1975). The expression for the Stokes resistance tensor
(φφφ) in its dimensionless form is given by

φφφ = 8e

3
(a)(a)(a). (2)

Here, e is the eccentricity of the spheroid and aaa is a tensor depending on the geometry of the
particle given by
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Figure 1. Schematic representation of an external force acting on a prolate spheroidal particle along
the x-axis.

In the current work as a preliminary, we deal only with a one-dimensional motion of the
particle. The translation is along the major axis of the spheroid and hence is symmetric with
respect to the particle. Therefore, we must neglect the lift force term as it contributes only to
a force in the perpendicular direction and is zero in this case. This has been verified in our
computations. We note that the lift force typically manifests itself in the motion of particles
near a wall or when there is more than one direction in the problem.

3. Solving the differential equation

After obtaining suitable values of the remaining integrals in (1) for different aspect ratios,
we determined the dynamics of the spheroidal particle. From the motion of the particle, we
determined the macroscopic parameters using standard expressions.

3.1 Formulation of the problem

We consider the force equation (1) given by Lovalenti and Brady for an arbitrary shaped
particle undergoing an arbitrary time-dependent motion at low Reynolds numbers, in the long
time limit. In our case we consider a neutrally buoyant prolate spheroid in an infinite body of
quiescent fluid and consider the effects of an external periodic force acting on the spheroid
along the x-axis as shown in figure 1.

We use equation (1) to obtain the governing expression for the unidirectional motion of a
spheroid in a quiescent fluid medium, starting with zero velocity and displacement at time
t = 0, with UUUs = UUUp − UUU∞ where UUUp is the velocity of the particle, scaled with respect to
the size of the particle a′ (see figure 1) and the frequency of the external periodic force, ω,
i.e. we take Uc = a′ω and UUU∞ = 0.
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We note that there exists a singularity at the point s = t . In order to avoid this singularity,
we evaluated the integral in the interval [0, t −εεε], where εεε is chosen to be a very small number.
We note that in the limit s → t , the integral converges to a finite limit and hence the value
of the integral in the range s = t − εεε to s = t is negligible. Under these conditions, equation
(1) reduces to

FHFHFH(t) = −6π(cof )Up(t) − ReSl(Ixx)U̇s(t)U̇s(t)U̇s(t) + 3
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Here, cof = 8
3ea11 and Ixx is the computed acceleration reaction term (see table 1).

The equation of motion for a neutrally buoyant particle immersed in a liquid is given by

mpU̇p(t)U̇p(t)U̇p(t)

μa2ω
= F ext(t) + FH(t)F ext(t) + FH(t)F ext(t) + FH(t). (4)

We use the periodic force F ext(t) = F0 sin(t), where time has been scaled with respect to the
frequency of the external periodic force. We get the following equations for the x component
of the displacement and velocity of the particle using the Newton’s second law of motion.
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Here, a′ is the characteristic particle dimension, ρ is the density of the particle and μ is the
fluid viscosity.
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We developed software using Numerical Recipes in FORTRAN 77 (Press et al 1992) to
solve the differential equations using an embedded Runge–Kutta method with adaptive step
size. The integral in the equation (6) was evaluated at each time step by Romberg extrapolation.
The function with respect to ‘AAA’ was defined by a user supplied function subprogram. We used
the ODEINT, RKQS, RKCK subroutines from Numerical Recipes to implement the Runge–
Kutta method. The Romberg extrapolation was performed using the QROMB subroutine. The
integral was evaluated using TRAPZD and the interpolation during the numerical quadrature
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was performed by POLINT. The tolerance for both the Romberg extrapolation and the Runge–
Kutta solver was taken as 10−5. Further reduction of the tolerance did not result in any
significant change in our results. The entire program was written in double precision. The
initial conditions for both the velocity and the position of the particle were taken as zero. ε was
taken as 0·04; smaller values of ε did not significantly change the results. The software was
tested for consistency by compiling the program with two compilers namely, Intel Fortran and
F90. We generated 5000 data points taken at an interval of π/400 in both the dimensionless
velocity and dimensionless position. Further increase in the resolution did not yield any
difference in our results.

3.2 Tests

We performed several tests in order to validate the results obtained. They are listed below.

3.2a Test 1-perturbation analysis: We obtained perturbation solutions in order to validate
our results for small Re. We used a Taylor series expansion for the nonlinear integral term
and included only the first linear term. One important aspect to be noted is that the expression
given for an arbitrary shaped particle (prolate spheroid in our case) is correct up to O(ReSl).

The perturbation parameter was chosen as Re1/2. The hydrodynamic force expression for
an arbitrary shaped particle given by Lovalenti and Brady is valid up to O(Re).

Hence, we express our perturbed solution up to O(Re) as follows.
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The displacement is calculated by numerically integrating the interpolated data of the velocity.
MATLAB was used for computing the above expressions. The integrals were evaluated

using the trapezoidal rule through the trapz function, while the cubic interpolation technique
was employed for displacement calculations. We found that for low values of Re, typically
up to Re = 0·05, both the perturbed and the numerical solutions agreed well. Figure 2 shows
a comparison between the plots obtained by both the methods for aspect ratios 2, 6 and 10,
Re = 0·03 and ReF = 0·1.

Here, we observe that as aspect ratio increases, the effect of inertia decreases and hence the
perturbation solution is closer to the numerical solution. This is due to the fact that we include
only the linearized form of the convective inertia term in the calculation of the perturbation
solution.
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Figure 2. The comparison of the numerical solution with the perturbation solution for
Re = 0·03, ReF = 0·1, aspect ratio = 2, 6 and 10. We see that the match is good with the increase in
aspect ratio owing to reduced inertial effects at higher aspect ratios and hence reduced nonlinearity.

3.2b Test 2: We reproduced the curve obtained by Lovalenti and Brady for the sedimentation
problem of a spherical particle (the result is shown in figure 3).

3.2c Test 3: When the initial direction of the motion was reversed, namely by replacing
ReF with – ReF , the phase space plot was reflected about the zero velocity axis. That is,
a reflection of the phase space attractor about the zero velocity axis when the direction of the
first motion is reversed was obtained, which can be considered as an important result which
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Figure 3. Comparison of the curves obtained for the sedimentation problem of a spherical particle
by Lovalenti and Brady and the present work as a test for our numerical procedure adopted. In this
case, Re = 0·3.

demonstrates the correctness of the results. The results showed a preferred direction in the
solution. Since the only physical direction in our present problem is the initial direction of
the external force, a reversal of that direction should result in a reversal of direction in the
solution, which was indeed the case.

3.2d Test 4: When the initial condition of YP was changed, we observed a shift in the position
of the attractor, i.e. there was merely a shift in the position about which the particle was found
to oscillate. Changing YP at t = 0 shifts the attractors without affecting the physics of the
problem and this was verified by our test. The tests performed gave considerable confidence
in our results.
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4. Results and discussions

We have four variable parameters in the system; the Reynolds number Re, the Strouhal number
Sl, the aspect ratio and the amplitude of the periodic force ReF . It is essential to determine
the effect of these parameters on the system as well as on the ‘normal stress’. Typical phase
space plots (plots of particle velocity vs. position) have been generated for different values
of the Reynolds number, the aspect ratio and the amplitude of the periodic force. We choose
to keep one of the parameters namely the Strouhal number, a constant and equal to unity. The
plots represent an attractor as they are bounded in phase space. Since Sl always occurs in
combination with Re in the equation, the limit of small Sl number is automatically obtained
by reducing Re. In order to account for the drift in the preferred direction in the problem,
we determined the average displacement of the particle from the zero-position axis, denoted
as Ypmean.

The area bounded by the phase space plot which is bounded and hence represents an attractor
in phase space, increases with increasing amplitude of the forcing term, ReF , establishing
the obvious relation between the attractors and the amplitude of the periodic force. As ReF

increases, the particle oscillates with larger amplitude and thus covers a larger surface area in
the phase plot. As can be seen from figure 4, the increase in area is quite significant when ReF

is increased from 0·01 to 0·05. This shows that the periodic force, which initiates the motion
of the particle, has a strong influence on the particle’s velocity and displacement. We have also
shown the effect of ReF on increasing the aspect ratio. The influence is much greater and the
attractor covers relatively greater surface area. The reason being, at higher aspect ratios, the
value of the components of the Stokes Resistance tensor are lower. This result suggests that
the displacement of the particle increases with aspect ratio (shape) and hence this indicates
a possibility that we can separate particles of different shapes using a periodic forcing in a
quiescent fluid.

The effect of increasing the Reynolds number can be seen from figure 5. The effect is
opposite compared to that of increasing the amplitude of the forcing term. Increasing Re results
in a smaller attractor plot. The surface area covered by the particle decreases in the phase
plot. This shows the effect of inertia on the motion of the particle. Inertial effects dominate at
higher Reynolds number and the mean position of the particle is seen to shift in the direction
of initial motion on increasing Re. On comparing the results obtained for different aspect
ratios, we find that this shift is more significant when the aspect ratio is larger. In figure 5
there are kinks in the lower aspect ratio regime which vanish as aspect ratio increases. These
kinks are present only for aspect ratios up to 2 and ReF = 0·01. We tried to eliminate these
kinks by changing the parameters of the numerical algorithm; however they persisted under
all the changes we made in the tolerance and the resolution of the solution. Hence we feel
that they are an integral part of our solution. Since solutions of nonlinear equations have been
known to contain discontinuities, we feel that they are a part of the solution. We had observed
similar kinks in the calculation of the phase plots for the sphere problem (Ramamohan et al
2009). At ReF = 0·01, inertial effects dominate. When the displacement of the particle is a
maximum or a minimum, we observe that the velocity of the particle is near to zero and its
acceleration is at a maximum and at this mean position at low ReF , the particle may behave
a little jerkily due to the effect of inertia. In figure 4, it is shown that increasing Re leads to a
decrease in the surface area of the phase space plots. Increase in Re implies that the resistance
to change in motion is high and hence the distance traversed by the particle reduces due to
this. In figures 4 and 5, we see that the particle tends to drift away from the zero position
axis with each cycle. We see that at higher aspect ratios the phase plots are larger in size.
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Figure 4. This phase portrait shows the effect of ReF on the system. We see that on increasing the
value of ReF , the phase plots get enlarged showing the obvious effect of the forcing term. The phase
plots for different ReF values (0·01, 0·03, 0·05), Re = 0·1, aspect ratio = 2, 6 and 10.

It can be seen that in the initial cycles, the drift is significant when compared to the drift in
the later stages of the simulation. Thus, we see that the inertial effects are dominant during
the initial stages and later on the particle tends towards an oscillatory steady state. The effect
of the aspect ratio can also be seen here. For particles with lower aspect ratios, inertial effects
coupled with higher resistance cause the phase plot to be smaller in size, whereas for the
particles with higher aspect ratio, lower resistance makes the phase plot larger. We observe
that the inertial effects dominate at lower aspect ratios and their dominance reduces with
increasing aspect ratio. This is also evident from the perturbation solution. We observe that
the perturbation solutions show better agreement with the numerical solution at higher aspect
ratios.
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Figure 5. Phase portrait obtained for different Re values (0·01, 0·1, 0·5), ReF = 0·01, aspect
ratio = 2, 6, 10. We can see the effect of increasing Re which results in diminished phase plots and
also of the higher aspect ratio wherein the inertial effects are lower.

The attainment of an oscillatory steady state is found to be quicker when the aspect ratio
is larger. This happens due to weaker inertial effects.

The values obtained for the acceleration term for different aspect ratios are given in table 1.
We see that the values of the second and third diagonal elements of the tensor are quite similar
to one another. This is expected as both are symmetric to the direction of motion of particle, in
the current work. These values give us an idea about the reaction to particle motion and hence
the term acceleration reaction. As can be seen, the values increase with increasing aspect
ratio. These values appear in the term Re’ in the equation (6). This term additionally contains



Dynamics and ‘normal stress’ evaluation 671

a factor which is the square of the inverse of aspect ratio. The contribution from the Pseudo-
steady Stokes drag also decreases with increasing aspect ratio which again contributes to lower
resistance. The decrease of resistance with aspect ratio could be due to the body becoming
more streamlined and hence being able to move freely through the fluid medium easily.

The effect of nonlinearity was evident when we took the power spectrum of the displacement
time series. We observed that there exist subharmonics in the neighbourhood of ReF = 0.01,
which decreased with the increase in the aspect ratio and increased with the increase in the Re.
There were some glimpses of higher harmonics which vanished with increase in aspect ratio.

In this regime we found the power spectrum of the displacement time series for different
values of Re, ReF and aspect ratio. In figure 6 we have presented these results. Note that at

Figure 6. The power spectrum for ReF = 0·01, Re = 0·01, 0·1 and 0·5 and aspect ratio 2, 6 and 10.
We can see higher harmonics at low aspect ratio and ReF = 0·01, a clear effect of inertia.
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Figure 7. Typical plot showing the relationship of Ypmean with ReF and aspect ratio for Re = 0·01.

aspect ratio = 2, there exist higher harmonics other than the fundamental dominant sinusoidal
part. The amplitude of these higher harmonics increase with the increase in Re and hence
inertia.

We observe that there exists a definite relation between Ypmean and Re, as well as Ypmean

and ReF .We see that as the quantities ReF and Re increase, the value of Ypmean also increases.
This variation is shown in figures 7 and 8, respectively. These figures also show the effect of
aspect ratio on Ypmean and find that Ypmean increases with the aspect ratio. We have presented
a typical case in these figures. However, the pattern remains the same for all other cases.

When we apply a phase shift of π to the sinusoidal forcing term the attractors shift their
position about the velocity axis. That is, when we apply a force in an initially negative direction
(the opposite direction) Yp shows a reflection about the Yp = 0 axis, namely we obtain a
reflection of the attractor. Figure 9 shows the phase plots when the direction of the amplitude
of the force is changed and the attractors form a reflection of each other about the axis Yp = 0,
as expected. Since the direction of the force represents the direction of initial motion and also
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Figure 8. Typical plot showing the relationship of Ypmean with Re and ReF for a particular aspect
ratio = 2.

there is a fading memory, the particle shows an initial displacement and at large times the
periodic motion manifests itself.

The possibility of separating particles by shape has been investigated. In order to demon-
strate this idea, a particle each of a given aspect ratio (2–10) is considered. The particle
ensemble is assumed to be at rest, placed at Yp = 0 at time t = 0. It is assumed that the major
axes of the spheroids are lined up along a single direction. A periodic force is then applied
to each individual particle along this direction. The displacement of every particle is tracked
as the time progresses. We performed the simulation up to 5000 iterations. The simulation
result after 5000 iterations has been presented in figure 10 for the parameter set, Re = 0·01
and ReF = 0·6. We note that the position of particles has been strongly influenced by the
aspect ratio of the particle. The particle with aspect ratio 10 shows the maximum displace-
ment while the one with aspect ratio 2 shows the minimum displacement from the initial
position (figure 10). This indicates that there exists a possibility of separating particles by
shape.
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Figure 9. The phase portrait obtained at aspect ratio = 4, Re = 0·6, ReF = +0·6 and −0·6, aspect
ratio = 7, Re = 0·3, ReF = +0·01 and −0·01, aspect ratio = 8, Re = 0·01, ReF = +0·3 and −0·3
and aspect ratio = 9, Re = 0·6, ReF = +0·6 and −0·6. This shows the reflection property of our
solutions indicating that there exists a physical basis to our results.

We need to understand the effects of the individual particle dynamics in the system on
a macroscopic experimentally accessible parameter, Here, we define a non-zero rheological
parameter, namely a quantity analogous to the normal stress 


p
xx for a dilute suspension of

prolate spheroids. Batchelor (1970) developed a method for computing the bulk stress gene-
rated by a flowing suspension in terms of volume averages. In this formulation, we consider
the suspension of particles in a quiescent Newtonian fluid. The volume fraction is taken to
be small and hence no interaction between particles is assumed. Since the particle motion is
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Figure 10. Plot showing the position of particles at the end of 5000 iterations for the parameter set,
Re = 0·01 and ReF = 0·6. We see that the particle position is strongly influenced by the aspect ratio
exhibiting a possibility of separating particles by shape.

approximately oscillatory, we assumed that there was no net motion of the particle through
the fluid. Under these assumptions we get (Kulkarni & Morris 2008)


P = 1

V

∑
i

SSSi − Re

V

∑
i

∫
Vp

1

2
(axaxax + xaxaxa)dVi − Re

V

∫
V

uuu′uuu′dV, (8)

where the first term represents the stresslet, or symmetric first moment of surface stress,
exerted by a particle i, given for a rigid particle by

SSSi =
∫

1

2
(xσ · nxσ · nxσ · n + σ · nxσ · nxσ · nx)dAi. (8a)

Here nnn is the normal directed outward from the particle surface into the fluid phase. The
second and the third terms in the expression of the particle stress denote the stress due to
acceleration, given by aaa of the particles and the Reynolds stress, respectively. The expression
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Figure 11. Plots showing the relationship between the ‘normal stress’ and ReF (a), Re (b), aspect
ratio (c) and volume fraction (d).

(8) directly shows that the contributions to the bulk stress from the acceleration and Reynolds
stress are dependent on Re; the stresslet is dependent on Re through the flow field. For a
dilute suspension, the interactions between the particles can be neglected and the solution
for a single particle can be used to calculate the particle stress. For our problem, the particle
stress 


p
xx is found correct up to O(Re). We include only the zeroth order terms in the second

and third terms on the R.H.S of equation (8) since our equations are correct only up to O(Re).


p
xx = 3

4π
φ

(a

b

)2
Yp(t)ReF sin(t) − ReRe2

F φ cos(t)(1 − cos(t))

36π2(cof )2
− ReU 2

p. (9)

For the Stokes’ flow case the non-zero macroscopic parameter analogous to normal stress is
given by


stxx = 1

8π2(cof )
φ

(a

c

)2
Re2

F sin(t)(1 − cos(t)). (10)

We present here results obtained by varying the parameters involved in the expression.
Figure 11 shows the variation of the ‘normal stress’ with different parameters. This parameter
is easier to measure than the motion of the particle itself and hence, it can be used to correlate
with system parameters. We varied the volume fraction φ, Re, ReF and the aspect ratio and
found that these parameters have a strong influence on the mean normal stress difference.
We see that with increase in the volume fraction, the amplitude of the periodic force or the
aspect ratio, the mean ‘normal stress’ shows an increasing trend, whereas with increasing Re,
the value of the ‘normal stress’ decreases. Figure 12 shows the variation of ‘normal stress’
amplitude with volume fraction and aspect ratio. These results are likely to be quite important
from a technological point of view and are also quite interesting as small changes in control-
lable parameters lead to relatively large changes in the ‘normal stress’. We note that even in
this simplified case, the suspension behaviour may be considered to be different from that
of a typical suspension. Hence it is expected that the macroscopic parameters will be more
complex when we study more complex situations.
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Figure 12. Plots showing relation between the ‘normal stress’ and aspect ratio and volume fraction.

5. Conclusion

In this paper, an attempt has been made to determine the dynamics and ‘normal stress’ of
a dilute suspension of prolate spheroids under periodic forcing in a quiescent Newtonian
fluid medium at low Reynolds numbers. The particle is seen to oscillate under periodic
forcing. A preferred direction of motion is observed and it is seen that the particle shows a
net displacement along this direction with time. The effect of system variables is studied in
detail and it is found that increasing Re restricts the particle motion and hence the size of the
attractor. Increasing the periodic force amplitude is found to increase the size of the attractor.
The effect of the shape of the particle is studied by varying the aspect ratio and interesting
results have been obtained. The size of the attractor increases with increasing aspect ratio.
This result may be used to separate particles by shape. We have supplemented our results
with detailed physical arguments and wherever possible, various tests have been conducted
to justify our results. It is seen that the macroscopic parameter, the ‘normal stress’ is strongly
dependent on system variables through their dependence on the expression in the ‘normal
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stress’ as well as the dependence on the individual particle motion. We find a number of
interesting results in our analysis of the problem. This suggests that a large number of inter-
esting features may be obtained in more complex flows and more complex suspensions. It is
hoped that this work excites further research in this area.
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List of symbols

FFFH hydrodynamic force (vector)
FH

sFH
sFH
s Stokes expression for hydrodynamic force (vector)

φφφ Stokes resistance tensor
Yp,mean mean of the displacement of the particle
Re Reynolds’ number
Sl Strouhal number



p
xx The xxth component of ‘normal stress’ difference

φ The volume fraction
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Leal L G 1980 Particle motions in a viscous fluid. Ann. Rev. Fluid Mech. 12: 435–476
Lovalenti P M, Brady J F 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-

dependent motion at small Reynolds number. J. Fluid Mech. 256: 561–605
Lovalenti P M, Brady J F 1993a The force on a bubble, drop, or particle in arbitrary time-dependent

motion at small Reynolds number. Phys. Fluids A5(9): 2104–2116
Lovalenti P M, Brady J F 1995 The temporal behaviour of the hydrodynamic force on a bofy in

response to an abrupt change in velocity at small but finite Reynolds numbers. J. Fluid Mech. 293:
35–46

Nayfeh A H 1973 Perturbation methods, A Wiley-Interscience publication
Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical recipes in FORTRAN 77,

second edition 1992. The art of scientific computing. Cambridge University Press
Pozrikidis C 1992 Boundary integral and singularity methods for linearized viscous flow, Cambridge

University Press
Ramamohan T R, Shivakumara I S, Madhukar K 2009 Numerical simulation of the dynamics of a

periodically forced spherical particle in a quiescent Newtonian fluid at low Reynolds numbers.
Lect. Notes. Comp. Sci. 5544: 591–600

Rosensweig R E 1985 Ferrohydrodynamics, Cambridge University Press, Cambridge
Subramanian G, Koch D L 2006 Inertial effects on the orientation of nearly spherical particles in

simple shear flow. J. Fluid Mech. 557: 257–296
Strand S R, Kim S 1992 Dynamics and rheology of a dilute suspension of dipolar nonspherical particles

in an external field: Part 1. Steady shear flows. Rheologica Acta 34: 94–117
Tsebers A O 1986 Numerical modelling of the dynamics of a drop of magnetizable liquid in constant

and rotating magnetic fields. Magnetohydrodynamics 22: 345–351



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


