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On Plane Strain Problems in Magneto-Thermo-Visco-Elasticity 

By D. S. CHANDRASEKHARAIAH 1) 

Summary - Plane strain problems on magneto-thermo-visco-elastic interactions in a parallel 
union of the Kelvin and Maxwell bodies are investigated using the basic equations of electrodynamics 
and thermo-visco-elasticity. Assuming that the applied magnetic field is transverse to the plane of 
deformation and that the material is a perfect conductor of electricity, it is seen that the heat sources 
and the potential part of the body forces produce longitudinal waves only and the rotational part 
of the body forces gives rise to transverse waves only. The effect of deformation on magnetic perme- 
ability is equivalent to an anisotropic rescaling of the primary magnetic field. The effect of the applied 
magnetic field on waves produced by a plane heat source is equivalent to increasing the value of the 
material constants which results in an increase in the speed of the waves. 

1. Introduction 

The investigations of  magneto-mechanica l  interactions in electrically conduct ing 
thermo-visco-elast ic  bodies is o f  recent origin compared  to tha t  in thermoelast ic  and 
viscoelastic bodies. The  study of  magneto- thermo-viscoelas t ic  interactions has been 
initiated recently by the present  au thor  [1 ] z) by discussing plane waves in a thermo-  
viscoelastic body  representing a parallel union of  the Kelvin and Maxwell  bodies, 
in the presence of  a steady magnetic  field. In this paper  the investigation is cont inued 
and p lane  strain dynamic  p rob lems  have been considered. Using the basic equations 
developed in [1] it has been found that  when the mater ial  is infinitely conducting,  the 
heat  sources and the potent ial  par t  o f  the body  forces produce  longitudinal waves 
only and the rota t ional  par t  o f  the body  forces produce  transverse waves only. The 
effect o f  deformat ion  on magnetic  permeabi l i ty  is taken into account  (as in [1 ]), and  
it is found that  the effect is equivalent  to an anisotropic rescaling of  the initial mag-  
netic field. The magneto- thermo-viscoelas t ic  interactions due to plane heat  sources 
are considered and it is observed that  the applied magnetic  field increases the speed 
of  wave propagat ion ,  wi thout  affecting its modes  of  propagat ion .  

2. Basic equations 

The equat ions governing magneto- thermo-visco-elast ic  interactions in the body  

under  consideration,  in the nota t ion  of  cartesian tensors, are [1 ] 
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(a) the Maxwell equations 

Bi,  i = 0 

t~B i 
~,j~ E~,  j = - -~-;- 

Bi = #ij Hj 
(2.1) 

(b) the generalized Ohm's Law 

auj -] 
di = a E i + eOk ~ t  B~J - Ko > ,  (2.2) 

(c) The field equations of thermo-visco-elasticity 

with 

and 

1 + m ~ 7  s o = 2 #  l + m 2 ~  efj 

s~ = % - 1 s 3~j ; 

3ij 

2 eli = u~, j + H j,  i 

s = 3 K ( e k k - -  3 a T )  

~2//i 
o-:i ' j + F, = ~ ~t 2 

(2.3) 

(2.4) 

(2.5) 

and (d) the equation of  heat conduction 

a T  ~ekk 
q V2 T + Q = o cv c3-7 + 3 a K To ~ 7 -  + rCo Ji, i .  (2.6) 

All the symbols in equations (2.1)-(2.6) except F i in (2.5), are as expIained in [1] 
and F, stands for the total body force acting on the material. In a problem on mag- 
neto-mechanical interactions F~ is the sum of the electromagnetic body force 
(Loaentz force) eij k J j  B k and other external force fi if any. Accordingly if we put 
Fi=e~:k Ji  B k + f i  and eliminate sij , eii and a~:, eij from equations (2.3)-(2.5) we get the 
equation of motion for displacements in the form [1 ]: 

("+" [ / 
/ (2.7) 

w h e r e / d = #  m a and K ' = K m >  Equations (2.1), (2.2), (2.6) and (2.7) determine all 
the field variables of our problem. 
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3. Plane deformation 

In what follows we consider the deformation parallel to xy-plane when the applied 
magnetic field is parallel to the z-axis. Accordingly we take u3 = 0 and assume that all 
field variables are independent of z coordinate. The magnetic field H~ may be taken 
as H i =  (hi, ,t/z, H+h3) where H is the strength of the applied uniform magnetic field 
and h i is the perturbed field. We assume that h i and u i are so small that their squares 
and products are negligible. 

To study the effect of deformation on magnetic permeability we assume the tensor 
permeability #u in the form [1 ] 

~,ij = ~,e(1 + ~ u~, ~) ~i~ - # #Xui,  ~ + u~, i) (3.1) 

where Pe is the magnetic permeability of the body in the unstrained state and ~, # are 
parameters depending on the nature of the effect of deformation on permeability. 
For the present problem (3.1) reduces to 

#- ~U t ~U 2 0 0 e l  
] 1+(~-2#)?-x  +~ a~- -#e 

Out au2 (3.2) 
#,j =He - r e  1 + ~ ~ + ( ~ - 2 # )  0~- 

0 0 1 + ~  

where 
Ou~ 9u2 

e = 7xx + ay" 
Substituting (3.2) in (2.1) 4 we get 

(Bo) i = (0, 0, ~e H) } (3.3) 
bi = pe(ht, h2, h3 + ~ H e) 

where (Bo) i and b i are respectively the initial and perturbed magnetic induction vectors. 
If we suppose that the body is a perfect conductor of electricity (a ~ oo), equation 

(2.2) gives 

.l'au2 autat ) Ei = -- #e M L ~ , , 0 , .  (3.4) 

Equations (2.1) z and (3.4) yield with the help of (3.3) the relations 

hi = - H(1 + c 0 [0, 0, el .  (3.5) 

Equations (2.1) ~ and (3.5) yield 

J , = - H ( l + ~ ) - - - / e e  , Oe oi"  (3.6) 
Lax ay' A 
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Equations (3.3) and (3.6) give 

eijk 4 Bk = #e He(1 + ~) F ae, ae 0].  (3.7) 
Lax ay' 

The equation of motion (2.7) then reduces to 

~+#'~ u"Js+ ;~+*'+(/r189 

+ ( l  +rn~ St)#~H2(l +cO]e,, (3.8) 

- t + m ~ a t  a K r i - f ~ + o  a t z j = 0  

where L j =  1, 2. 
From equation (3.8), it is clear that the effect of deformation on magnetic per- 

meability is equivalent to replacing H 2 by H 2 (1 + ~). 
Taking the divergence of equation (3.8) we get 

:)( V-l~e=-~o l + m l ~  3 a K V  2T 
where 

< af2"~ (3.9) 
ax Oy ] 

[]~= l+m~i (c~+vJ)+~m~ - l+m,~ o7' 

c2 2 + 2 #  c2 # - ; = - ;  

/ V~ ~e/-/2( 1 + ~) a 2 a s 
- 0 , m 3 = ~ ( m 2 - m l )  and V 2-~xx2+- aY 2 - .  

Taking Curl of equation (3.8) we get 

where 

[]220= - -  l + m  1 
~ \ a x  a y /  

l-q~ = c 2 l + rnz ot/i - l + ml ~t,]-ff~ and 

Ov Ou 
f 2 -  

Ox Oy" 

Decomposing u i andfl into potential and rotational parts by the relations 

o~ ar az o~ 
u -  0x 0y '  f l  0x ay 

Oq$ oO ax a~ 
~=aS+ox; f~=Vy+0x 

(3.1o) 

(3.11) 

(3.12) 

(3.13) 
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and introducing these into equations (3.9) and (3.11) we get 

1 l + m  1 3 a K T  X) (3.14) []~=o 
1 1 + ml g (3.15) - -  _ o 

G]~,= o at 

The heat equation (2.6) reduces to 

El2 T +  Q = 3 a K  Toy2( 63q~)- - ~-  (3.16) 
\ / 

where 

[ ~ 2  V 2 (3.17) 3 = q  - ~ c o a t -  

From equations (3.14)-(3.16) we observe that ~b is linked with Z and Q, and ~ is 
linked only with 4. Accordingly the potential part of the body force (viz)0 and the 
heat source Q produces longitudinal waves only and the rotational part of the body 
force (viz. 4) produces transverse waves only. Further, the applied magnetic field has 
no influence on the transverse waves. 

Eliminating T from equations (3.14) and (3.16) we get 

n~ D ~ ( 3 a K  l + m l  3 a K T o V  z aS ~ ~;-Q 

l + m l ~  )~. 

(3.18) 

It is readily seen from equation (3.18) that the longitudinal waves are subjected to 
damping and dispersion. 

The electromagnetic variables Ji, h~ and E i given by (3.4)-(3.6) now reduce with 
the help of (3.13), to 

E, = - ~ H(1 + ~,) at LTY + a~' ay 

h, = - H(1 + ~z) [0, 0, V 2 q~-[ 

01 

o] OX' 

(3.19) 

Thus all the field variables (mechanical, thermal and electromagnetic) are ex- 
pressible in terms of the functions q~ and 0 satisfying the equations (3.15) and (3.16). 
Accordingly the solution of our problem reduces to solving the equations (3.15) and 
(3.18) under prescribed initial and boundary conditions. If  there are no body forces 
apart from the Lorentz force, there exist only longitudinal waves and in such cases we 
can take 0 = 0. 
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In  what  follows we illustrate the theory by considering a plane heat  source in an 

infinite solid. 

4. Plane heat source in an infinite body 

Suppose an infinite body  contains a plane heat  source Q = Q o  6 ( x ) e  i~~ where 

Qo is a constant  and fi (x) is dirac delta function. Then  by symmetry ,  all field variables 
depend on x and t only. I f  there are no forces apar t  f rom the Lorentz  force, we have 
Z = ~. = ~ = 0 and ~b is given by (vide equat ion (3.18)) 

ax ~ -  l+m,O~/-/~_j q ~ x 2 - O c , ~  d? 

( 0)[ ] 
_ 3 a K  l + m  1 3 a K T  o - - Q o c ~ ( x )  e i~~ 

0 ~ 8X 2 8 t  

where 
A 2 2 = c z -t- V 2 

B 2 = ( c ~ +  Vh 2) m , + e  2 m  3. 

(4.1) 

The  solution of(4.1) is given by 

3 a  K Q o ( 1 -  m, ico) e,.t~e-'*" e-~'Xl x >0 (4.2) 
= 2.o(4 :-.:W L .Z ., j'  

where e~, c~ 2 are the roots  of  equat ion 

.. + .  Fco,(1 - i c o . , )  . c.,co 9a'K' icoro q 
k - ~  - ~ ) W  + q q(A" - i co B')_J 

(1 - i co m l )  0 cv i co3 (4.3) 
+ = 0  

q(A 2 - B 2 i co) 

and Re (e j) > 0. 

Funct ion q5 being known,  we can determine all field variables f rom (3.13), (3.14) 
and (3.19). In t roducing  

0{ 2 m 2 i m 2 
~2 = 

n - - g - - '  ]) - -  n 

where 

equat ion (4.3) reduces to 

where 

co2(1 - i m~ c9) e Co i co 
m 2 

A z i co B 2 ; n - - -  q 

( 4 _ ~ 2 y E ] ) + i ( 1 _ ~ ) ] + i ] ) 3 = 0  

9 a z K 2 To(1 - i 09 m l )  

c v ( A  2 - i ~o B 2) 

(4.4) 
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For  actually occurring vibrations, we may take [2] ? ~ 1 and the solution of (4.4) 
may be written as 

c~2 - 0 c~ ~~ ( 1 -  e) 1 +  
- 2--7- 2(1 2 ~ ) ~  

e2 ?~ 
=~ = �89 ~(1 - ~)-~ ~ 

2qco  F e?  1-2  " 
v2 = 0 cv(1 - e) [_1 + 2 ( ; - -  ~))2j ' 1)2 = ( A2 - -  B2 i m) (1 - e) 

(4.5) 

where vi=co/Im(cg) is the phase velocity of the waves. We can easily verify that 
~ ,  vt correspond to modified thermal wave and e2, v2 correspond to modified visco- 
elastic wave. Writing v22 explicitly by using expressions for A 2 and B 2 we get 

v~ = F~ + v# - i ~{(c~ + v#)  ml + 4 m3}] F1 - ~].  (4.6) 

We at once see that the effect of the magnetic field on the wave propagation is to 
change the speed of propagation from cl to cl (1 + V2/c2) 1/2. In the absence of e (4.6) 
gives the phase velocity of magneto-visco-elastic wave and in the absence of m 1 and 
m 2 it gives the phase velocity of a magneto-thermo-elastic wave. In the particular 
case m~=mz=O (with effect of deformation on magnetic permeability neglected) 
equation (4.6) reduces to the one obtained by NOWACKI [3], apart from a slight change 
in notations. 
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