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On Plane Strain Problems in Magneto-Thermo-Visco-Elasticity

By D. S. CHANDRASEKHARAIAH L)

Summary — Plane strain problems on magneto-thermo-visco-elastic interactions in a parallel
union of the Kelvin and Maxwell bodies are investigated using the basic equations of electrodynamics
and thermo-visco-¢elasticity. Assuming that the applied magnetic field is transverse to the plane of
deformation and that the material is a perfect conductor of electricity, it is seen that the heat sources
and the potential part of the body forces produce longitudinal waves only and the rotationai part
of the body forces gives rise to transverse waves only. The effect of deformation on magnetic perme-
ability is equivalent to an anisotropic rescaling of the primary magnetic field. The effect of the applied
magnetic field on waves produced by a plane heat source is equivalent to increasing the value of the
material constants which results in an increase in the speed of the waves.

1. Introduction

The investigations of magneto-mechanical interactions in electrically conducting
thermo-visco-elastic bodies is of recent origin compared to that in thermoelastic and
viscoelastic bodies. The study of magneto-thermo-viscoelastic interactions has been
initiated recently by the present author [1]%) by discussing plane waves in a thermo-
viscoelastic body representing a parallel union of the Kelvin and Maxwell bodies,
in the presence of a steady magnetic field. In this paper the investigation is continued
and plane strain dynamic problems have been considered. Using the basic equations
developed in [1] it has been found that when the material is infinitely conducting, the
heat sources and the potential part of the body forces produce longitudinal waves
only and the rotational part of the body forces produce transverse waves only. The
effect of deformation on magnetic permeability is taken into account (as in [1]), and
it is found that the effect is equivalent to an anisotropic rescaling of the initial mag-
netic field. The magneto-thermo-viscoelastic interactions due to plane heat sources
are considered and it is observed that the applied magnetic field increases the speed
of wave propagation, without affecting its modes of propagation.

2. Basic equations
The equations governing magneto-thermo-visco-elastic interactions in the body

under consideration, in the notation of cartesian tensors, are [1]
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(a) the Maxwell equations

dB;
g He ;=3 & E;=— ot 2.1
B ;=0 B; = w; H;
{b) the generalized Ohm’s Law
ou;
Ji=0 Ei‘l‘gijka‘tBk -Ko T, (2.2)
(c) Thefield equations of thermo-visco-elasticity
1 ¢ 2pll+ 0 (2.3)
— .= — 1é&.:. .
+ my Py 8y; y23 my ot ij
with
Sij:O'ij—%séij; s:3K(8kk——3aT)
€; = &; — % &y Oy 2.4)
28ij = ui,j + uj’,-
and
~2
0%y,
o ;+F=0 P (2.5)
and (d) the equation of heat conduction
5 oT Dey
qV T+Q=ch—&+3aKTOT+nOL,i. (2.6)
0

All the symbols in equations (2.1)-(2.6) except F; in (2.5), are as explained in [1]
and F; stands for the total body force acting on the material. In a problem on mag-
neto-mechanical interactions F; is the sum of the electromagnetic body force
(Loientz force) ¢; J; By and other external force f; if any. Accordingly if we put
F;=¢,; J; By +f; and eliminate s;;, ¢;; and o, ¢;; from equations (2.3)~(2.5) we get the
equation of motion for displacements in the form [1]:

, b1 8
M+M5; U+ A+p+ (K +§H)'a_t Uk, ki
) - 2.7
—(1+m1&><3aKT,g'—fi“3iijjB"+g—6—t—21>=0

where p'=pm, and K'=K m,. Equations (2.1), (2.2), (2.6) and (2.7) determine all
the field variables of our problem.
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3. Plane deformation

In what follows we consider the deformation parallel to xy-plane when the applied
magnetic field is parallel to the z-axis. Accordingly we take u;=0 and assume that all
field variables are independent of z coordinate. The magnetic field H; may be taken
as H,=(h,, h,, H+h;) where H is the strength of the applied uniform magnetic field
and 4; is the perturbed field. We assume that k; and u; are so small that their squares
and products are negligible.

To study the effect of deformation on magnetic permeability we assume the tensor
permeability y;; in the form [1]

ti; = (1 + vy 1) 8y — P pe(us, ; + uy, ) (3.1)

where 1, is the magnetic permeability of the body in the unstrained state and «, § are
parameters depending on the nature of the effect of deformation on permeability.
For the present problem (3.1) reduces to

e Ouy Ou,
1 —2B) — o —— —fe 0
=28 5 ey B
= 0 0
Hij = He 'y l+a 2 h@-2p22 o (3.2
Ox oy
L 0 0 l14+ae
where
ouy,  Ou,
= — 4 -——.
dx  dy

Substituting (3.2) in (2.1)* we get

= (0,0, u, H
(BO)l ( ’ K ) (33)
bi = :ue(hls hz, h3 +o H e)

where (B,); and b, are respectively the initial and perturbed magnetic induction vectors.
If we suppose that the body is a perfect conductor of electricity (¢ — ), equation

(2.2) gives
ou ou
Ei=_ﬂeH<?t2,"E{,0). (3.4)

Equations (2.1)? and (3.4) yield with the help of (3.3) the relations
b= — H(1 + ) [0,0,c]. (3.5)
Equations (2.1)! and (3.5) yield

de Oe
4=—Hu+@[£,@,ﬂ. (3.6)
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Equations (3.3) and (3.6) give

de Oe
sijk‘]jBk = U H2(1 + d) [5);, a—y, 0] (37)

The equation of motion (2.7) then reduces to
+ ,a\) +|A+p+ (K +1 ,)a
=y ) —
2 H 6t i, jj u 3 U 6t

+<1 + m; ;),ueHz(l +<x)] (3.8)

6 *u,
where , j=1, 2.

From equation (3.8), it is clear that the effect of deformation on magnetic per-
meability is equivalent to replacing H? by H* (1 +a).
Taking the divergence of equation (3.8) we get

1 0 5, )
[jfe=~<1+m17><3aKV2T—£—£) (3.9)
where ¢ o x 9
'D 1 0 ( + Vi) g V-1 il
¢t m - —
+m1 1 n)tC2 35 +m16t Pyl
A+2
PRI S (3.10)
g @
CH* (1 4+« o* o
ya_ b+ my=4(m,—my) and V2=—— 4 .
4 0x* 0y

Taking Curl of equation (3.8) we get

1 of, Of
2g=_2{1 2 A 3.11
a2 Q< T 6t><6x oy (3-11)
where
a=c2{1+ 0 vi—{1+ X
m —_—
2= 25 m16 pYe 1)
ov  du (3.
Ox dy’

Decomposing u; and f; into potential and rotational parts by the relations

0o oY oy 0¢

“uw T T

a; x/{ 5?( az (3.13)
+ — fa=

ay ox’ ‘ay ox
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and introducing these into equations (3.9) and (3.11) we get

1 0
Df¢=é<1+m1m>(3aKT—x) (3.14)
1 0
D§¢=—-<1+m1ﬁ>€- (3.15)
0 ot
The heat equation (2.6) reduces to
0
2T+0Q=3aK T,V (5?) (3.16)
where
2 2 6
O35=¢qV —cha. (3.17)

From equations (3.14)—(3.16) we observe that ¢ is linked with y and @, and ¢ is
linked only with £. Accordingly the potential part of the body force (viz x) and the
heat source Q produces longitudinal waves only and the rotational part of the body
force (viz. &) produces transverse waves only. Further, the applied magnetic field has
no influence on the transverse waves.

Eliminating 7 from equations (3.14) and (3.16) we get

DfD§¢=3‘;K<1+m1§>(3a1<TOV2<6—¢>—Q) }

ot

11 0
. +my

It is readily seen from equation (3.18) that the longitudinal waves are subjected to
damping and dispersion.

The electromagnetic variables J;, ; and E, given by (3.4)~(3.6) now reduce with
the help of (3.13), to

(3.18)

Ei:_ueH(1+a)

6[6(}5_{_61!/,01# 6(1590]
dy Ox o0y 0x

-
Y

h;=—H(1 + 2)[0,0,V* ¢] (3.19)
2[99 0¢
JLZ—'H(I'I'OC)V [ay,'é;,o:l.

Thus all the field variables (mechanical, thermal and electromagnetic) are ex-
pressible in terms of the functions ¢ and  satisfying the equations (3.15) and (3.16).
Accordingly the solution of our problem reduces to solving the equations (3.15) and
(3.18) under prescribed initial and boundary conditions. If there are no body forces
apart from the Lorentz force, there exist only longitudinal waves and in such cases we
can take iy =0.
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In what follows we illustrate the theory by considering a plane heat source in an
infinite solid.
4. Plane heat source in an infinite body
Suppose an infinite body contains a plane heat source Q=Q, 5(x) e where
Q, is a constant and 6 (x) is dirac delta function. Then by symmetry, all field variables

depend on x and ¢ only. If there are no forces apart from the Lorentz force, we have
y=¢&¢=y =0and ¢ is given by (vide equation (3.18))

A2+B26 o* e 8\ o* o* 0 5 |
o) ax> Yor)o || 1o T %o

4.1
3K Nkt 22— 0y a0 e Y
= - a — = X)e
0 "5 Coxtor °
where
A=+ W}
B =(ci + V) m +c3m,.
The solution of (4.1) is given by
3aKQ,(1—myiw) , [e™™* e
¢ = QO(Z -~ ) gor ~S x>0 (4.2)
2 9(ag — a3) %y 9]
where o, o, are the roots of equation
o*(l—iom c,iw 94a*°K?iwT,
ot +o® (2 5 1)-}-@ e az - ;
A*—Biw q q(4* —iw B?) @3
(1—iwm1)gcvia)3_0 )
q(A> - B*iw)

and Re(x;)>0.
Function ¢ being known, we can determine all field variables from (3.13), (3.14)
and (3.19). Introducing

, &m’ im?
F=—my =
n n
where
, o*(l—-im o) ge,iw
m = ——h———; = ——
A* —iw B? q
equation (4.3) reduces to
F=Cyy+il—e)l+iy° =0 (4.4)

where
92 K*Ty(1—iwm,)

e
0 c,(A* —iw B?)
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For actually occurring vibrations, we may take [2] y<1 and the solution of (4.4)
may be written as

2
2 gc,w g7
Ry ( 8)[ 2(1 —8)2]

_ OC2 '))4
=1 e(1—g)° 7z (4.5
2qw &y -2
2 — 1 : 2 — AZ _ BZ . 1 —
Vi 0 Cu(l _ 8) I: + 2(1 _ ,y)Z:l V2 ( i CO) ( 8)

where v;=w/Im(a;) is the phase velocity of the waves. We can easily verify that
oy, v, correspond to modified thermal wave and «,, v, correspond to modified visco-
elastic wave. Writing v3 explicitly by using expressions for A% and B* we get

vi=[ci + V7 —io{(+ V) m +cEmy}][1—e]. (4.6)

We at once see that the effect of the magnetic field on the wave propagation is to
change the speed of propagation from ¢, to ¢, (1+ V7 [c})!/2. In the absence of & (4.6)
gives the phase velocity of magneto-visco-elastic wave and in the absence of m, and
m , it gives the phase velocity of a magneto-thermo-elastic wave. In the particular
case m; =m,=0 (with effect of deformation on magnetic permeability neglected)
equation (4.6) reduces to the one obtained by Nowacki [3], apart from a slight change
in notations.
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