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Abstract The criterion for the onset of Bénard–Marangoni ferroconvection in an initially quiescent magnetized
ferrofluid saturated horizontal Brinkman porous layer is investigated in the presence of a uniform vertical
magnetic field. The viscosity is considered to be varying exponentially with temperature. The lower rigid
boundary and the upper free boundary at which the surface tension effects are accounted for are assumed to
be perfectly insulated to temperature perturbations. The eigenvalue problem is solved numerically using the
Galerkin technique and analytically by regular perturbation technique with wave number a as a perturbation
parameter. It is observed that the analytical and numerical results are very well comparable. The characteristics
of stability of the system are strongly dependent on the viscosity parameter B. The effect of B on the onset of
Bénard–Marangoni ferroconvection in a porous layer is dual in nature depending on the choices of the physical
parameters, and a sublayer starts to form at higher values of B. The nonlinearity of fluid magnetization M3 is
found to have no influence on the onset of ferroconvection, whereas an increase in the value of the magnetic
number M1 and the Darcy number Da is to advance the onset of Bénard–Marangoni ferroconvection in a
porous layer.

1 Introduction

Ferrofluids are synthesized in the laboratory, and the idiosyncrasy of these fluids is the combination of normal
liquid behavior with a magnetic control of their flow and properties. Since advective transport in a ferrofluid
can be readily controlled by using an external magnetic field, these fluids have promising applications in heat-
transfer-related problems. The growing importance of microscale heat exchangers in micro-electromechanical
system (MEMS) and nano-electromechanical system (NEMS) devices has initiated a great deal of research that
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addresses heat transfer in miniaturized configurations. Using ferrofluids in these applications and manipulating
the flow by external magnetic fields can be a viable alternative to enhance convection in these devices. In
addition, many terrestrial electronic cooling devices rely on free convection. However, the corresponding space
(or hypo-gravity, i.e., less than normal gravity) applications require innovative methods to sustain convection.
Ferromagnetic convection is a substitute for gravity-induced free convection. Realizing the importance of
ferrofluids in many heat transfer applications, thermal convection in a layer of ferrofluid has been studied
extensively and is well documented in the literature [1–6]. Its counterpart in a layer of ferrofluid saturated
porous medium has also received due attention of researchers in the recent past [7–11].

On the other hand, if the surface of a ferrofluid layer is free and open to the atmosphere, then convection
can also be induced by temperature-dependent surface tension forces at the free surface known as Marangoni
ferroconvection. In view of the fact that heat transfer is significantly enhanced due to convection, Marangoni
ferroconvection offers new possibilities for application in cooling of motors in space, loudspeakers, transmis-
sion lines and other equipments in micro-gravity environment where a magnetic field is already present. In
most of the cases, the combined effect of buoyancy and surface tension forces on convective instability in a
ferrofluid layer also becomes important. Realizing these aspects, a limited number of studies have addressed
the effect of surface tension forces on ferroconvection in a horizontal ferrofluid layer. Linear and nonlinear
stability of combined buoyancy–surface tension effects in a ferrofluid layer heated from below has been ana-
lyzed by Qin and Kaloni [12]. Odenbach [13] has carried out experiments to investigate the onset and the flow
profile of thermomagnetic convection in a cylindrical fluid layer under microgravity conditions. The linear
stability analysis of a layer of magnetic fluid with deformable free surface which is heated uniformly from
below and subject to a vertical magnetic field has been studied by Weilepp and Brand [14], considering the
temperature dependence of the surface tension and buoyancy. Odenbach [15] has shown that microgravity
experiments can provide unique experimental conditions allowing the investigation of magnetic effects in fer-
rofluids covered by gravitational action in normal terrestrial examinations. The coupling between Marangoni
and Rosensweig instabilities by considering two semi-infinite incompressible and immiscible viscous fluids
of infinite lateral extent in which one of them is ferromagnetic and the other is a usual Newtonian liquid has
been addressed by Weilepp and Brand [16]. The effect of different forms of basic temperature gradients on
the onset of ferroconvection driven by combined surface tension and buoyancy forces has been discussed by
Shivakumara et al. [17], while Hennenberg et al. [18] have considered Rayleigh–Bénard–Marangoni instability
in a ferrofluid layer in the presence of a weak vertical magnetic field normal to the boundaries. Shivakumara
and Nanjundappa [19] have analyzed the onset of Marangoni ferroconvection with different initial temperature
gradients with the object of understanding control of convection. Nanjundappa et al. [20] have investigated
theoretically the effect of magnetic-field-dependent viscosity on the onset of Bénard–Marangoni ferrocon-
vection in a horizontal layer of ferrofluid. Nanjundappa et al. [21] have studied the effect of internal heat
generation on the onset of Bénard–Marangoni convection in a horizontal ferrofluid layer heated from below
in the presence of a uniform vertical magnetic field. Recently, Nanjundappa et al. [22] have investigated the
onset of penetrative Benard–Marangoni convection in a horizontal ferromagnetic fluid layer in the presence
of a uniform vertical magnetic field via an internal heating model.

It has also been realized the possibility and importance of Marangoni convection in porous media. Several
studies have been undertaken in the past to understand such an instability problem in an ordinary viscous fluid
saturating a porous medium. Patberg et al. [23] have studied Marangoni effects in packed distillation columns.
It is observed that large differences in refreshing of the liquid on wetted particles can be produced by the
Marangoni effect. White and Perroux [24] have examined experimentally that bulk liquid convection can be
produced in porous media by macroscopic gradients in surface tension. In their seminal paper, Hennenberg
et al. [25] have discussed in detail the Marangoni convection in a liquid-saturated porous matrix. Shivaku-
mara et al. [26] have investigated coupled Darcy–Bénard–Marangoni convection in a liquid-saturated porous
layer.

The earlier studies are mainly concerned with either Bénard–Marangoni convection in an ordinary viscous
fluid saturated porous layer or ferroconvection in a magnetized ferrofluid saturated porous medium. Nonethe-
less, certain observed convective motions in many heat transfer applications in ferrofluid saturated porous
media cannot be attributed to the buoyancy mechanism alone. Therefore, probing convective instability prob-
lems in a sparsely packed porous medium saturated with magnetized ferrofluids involving both buoyancy and
surface tension forces will be of fundamental and practical importance. Moreover, the majority of ferrofluids
are either water based or oil based, and naturally, the viscosity of these fluids varies with temperature. The
viscosity of water is far more sensitive to temperature variations, and oils are known to have viscosity decreas-
ing exponentially with temperature rather than linearly. Several investigators have considered the variation in



Effect of temperature-dependent viscosity on the onset of Bénard–Marangoni ferroconvection 837

viscosity with temperature in analyzing thermal convective instability in a fluid layer [27–29] as well as in a
layer of fluid saturated porous medium [30–32], but the studies are limited to ordinary viscous fluids.

To the best of our knowledge, due attention has not been given to investigate the variation in viscosity
due to temperature on ferroconvection despite its relevance and importance in many heat transfer applications.
Stiles and Kagan [33] have investigated thermal convective instability in a ferrofluid layer heated from below
by considering a linear variation in viscosity with temperature. Shivakumara et al. [34] have investigated the
onset of thermogravitational convection in a horizontal ferrofluid layer with viscosity depending exponentially
on temperature. Recently, Najundappa et al. [35] have studied the effect of temperature-dependent viscosity on
the onset of Marangoni–Bénard ferroconvection under microgravity conditions in a horizontal ferrofluid layer
in the presence of a uniform vertical magnetic field. However, variation in viscosity attributable to temperature
changes on coupled buoyancy and surface tension driven convective instability in a ferrofluid saturated porous
medium has not received any attention in the literature.

The intent of the present study is to analyze the influence of viscosity varying exponentially with temperature
on the onset of coupled Bénard–Marangoni convection in a ferrofluid saturated Brinkman porous layer in the
presence of a uniform vertical magnetic field. In investigating the problem, the lower rigid and upper free
boundary at which the temperature-dependent surface tension forces are accounted for are considered to be
perfectly insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using
the Galerkin technique. Besides, an analytical formula is obtained for the critical Rayleigh/Marangoni number
by regular perturbation technique with wave number a as a perturbation parameter. The results are presented
graphically for various values of physical parameters in the presence of buoyancy and/or surface tension forces.

2 Mathematical formulation

We consider a horizontal layer of Brinkman porous medium of thickness d saturated with an electrically
non-conducting Boussinesq magnetized ferrofluid with an imposed spatially uniform magnetic field Ho in the
vertical direction as shown in Fig. 1. The lower and upper boundaries are maintained at constant but different
temperatures Tl and Tu(<Tl), respectively. A Cartesian coordinate system (x, y, z) is used with the origin
at the bottom, and z-axis is directed vertically upward. Gravity acts in the negative z-direction, �g = −gk̂,
where k̂ is the unit vector in the z-direction. For most of the fluids, the capillary number is very small. Several
investigators in the past have followed this assumption in the study of Marangoni convection, and the free
surface is assumed to be non-deformable (zero capillary number). At the upper free surface, the surface tension
σ is assumed to vary linearly with temperature in the form

σ = σ0 − σT (T − T0) (1)

where σ0 is the unperturbed value and −σT is the rate of change of surface tension with temperature T, whereas
the viscosity η of the ferrofluid is assumed to vary exponentially with temperature in the form

η = η0 exp
[−γ (T − Tr )

]
(2)

where η0 is the reference value at the reference temperature Tr and γ is a positive constant.
The governing mathematical equations used are as follows:
The continuity equation is

∇ · �q = 0. (3)

Fig. 1 Physical configuration
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The momentum equation for an incompressible fluid with variable viscosity is

ρ0

[
1

ε

∂ �q
∂t

+ 1

ε2 (�q · ∇)�q
]

= −∇ p + ρ �g + ∇ ·
[η

ε

(
∇�q + ∇�qT

)]
+ μ0

( �M · ∇
) �H − η

k
�q. (4)

The temperature equation for an incompressible fluid which obeys the modified Fourier’s law as given by
Finlayson [2] is

ε

[

ρ0CV,H − μ0 �H ·
(

∂ �M
∂T

)

V,H

]
DT

Dt
+ (1 − ε)(ρ0C)S

∂T

∂t
+ μ0T

(
∂ �M
∂T

)

V,H

· D �H
Dt

= k1∇2T . (5)

The density equation of state for a Boussinesq magnetic fluid is

ρ = ρ0 [1 − αt (T − Ta)] . (6)

Maxwell’s equations for non-conducting fluids are

∇ · �B = 0,∇ × �H = 0, �B = μ0

( �M + �H
)

. (7.1–3)

Here, �q = (u, v, w) is the seepage velocity vector, p is the pressure, ρ is the fluid density, �B is the magnetic
induction, �M is the magnetization, �H is the magnetic-field intensity, �B is the magnetic flux density, μ0 is the
magnetic permeability of vacuum, k is the permeability of the porous medium, ε is the porosity of the porous
medium, kt is the thermal conductivity, CV,H is the specific heat at constant volume and magnetic field, ρ0 is
the reference density, αt is the thermal expansion coefficient, Ta = (Tl + Tu)/2 is the average temperature,
∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian operator, and the subscript s represents the solid. In view
of Eq. (7.2), �H can be expressed as

�H = ∇ϕ (8)

where ϕ is the magnetic potential.
Since the magnetization depends on the magnitude of magnetic field and temperature (see Finlayson [2]),

we have

�M = �H
H

[M0 + χ (H − H0) − K (T − Ta)] (9)

where M0 = M (H0, Ta) is the saturation magnetization, χ = (∂ M/∂ H)H0,Ta is the magnetic susceptibility,

K = −(∂ M/∂T )H0,Ta is the pyromagnetic co-efficient, H =
∣∣
∣ �H

∣∣
∣ and M =

∣∣
∣ �M

∣∣
∣.

It is clear that there exists the following solution for the quiescent basic state:

�qb = 0, (10.1)

pb(z) = p0 − ρ0gz − 1

2
ρ0αt gβz (z − d) − μ0 M0 Kβ

1 + χ
z − μ0 K 2β2

2 (1 + χ)2 z (z − d) , (10.2)

Tb(z) = Ta − β

(
z − d

2

)
, (10.3)

�Hb(z) =
[

H0 − Kβ

1 + χ

(
z − d

2

)]
k̂, (10.4)

�Mb(z) =
[

M0 + Kβ

1 + χ

(
z − d

2

)]
k̂ (10.5)

where β = (Tl − Tu)/d is the temperature gradient, and the subscript b denotes the basic state. To investigate
the conditions under which the quiescent solution is stable against small disturbances, we consider a perturbed
state such that

�q = �q ′, p = pb(z) + p′, η = ηb(z) + η′, T = Tb(z) + T ′,
�H = �Hb(z) + �H ′, �M = �Mb(z) + �M ′ (11)
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where �q ′, p′, T ′, �H ′ and �M ′ are perturbed variables and are assumed to be small. Then, we note that

η = η0 exp
[
γβ(z − d/2) + γ (Tr − Ta) − γ T ′] . (12)

Substituting Eq. (11) into Eq. (7.3) and using Eqs. (7.1, 2), we obtain (after dropping the primes)

Hx + Mx = (1 + M0/H0) Hx , Hy + My = (1 + M0/H0) Hy, Hz + Mz = (1 + χ) Hz − K T . (13)

Again substituting Eq. (11) into momentum Eq. (4), linearizing, eliminating the pressure term by operating
curl twice and using Eq. (13), the z-component of the resulting equation can be obtained as (after dropping the
primes)

ρ0

ε

∂

∂t

(∇2w
) = η(z)

ε
∇4w + 2

ε

∂η(z)

∂z
∇2

(
∂w

∂z

)
+ 1

ε

∂2η(z)

∂z2

(∇2w − 2∇2
hw

) + ρ0αt g∇2

h T

−μ0 Kβ
∂

∂z

(
∇2

hϕ
)

− η(z)

k
∇2w − 1

k

∂w

∂z

∂η(z)

∂z
+ μ0 K

2
β

1 + χ
∇2

h T (14)

where η(z) = η0 exp
[
γβ (z − d/2) + γ (Tr − Ta)

]
and ∇2

h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian
operator. Equation (5), after using Eq. (11) and linearizing, takes the form (after dropping the primes)

(ρ0C)1
∂T

∂t
− μ0T0 K

∂

∂t

(
∂ϕ

∂z

)
= k1∇2T +

[
(ρ0C)2 − μ0T0 K 2

1 + χ

]
wβ (15)

where (ρ0C)1 = ερ0CV,H + εμ0 H0 K + (1 − ε)(ρ0C)s and (ρ0C)2 = ερ0CV,H + εμ0 H0 K .
Equations (7.1, 2), after substituting Eq. (11) and using Eq. (13), may be written as (after dropping the

primes)

(
1 + M0

H0

)
∇2

hϕ + (1 + χ)
∂2ϕ

∂z2 − K
∂T

∂z
= 0. (16)

As propounded by Vidal and Acrivos [36], it is not possible to prove the principle of exchange of stability
analytically for the Marangoni convection problem due to the peculiar nature of one of the boundary conditions
at the free surface. However, through numerical calculations, they have shown that the marginal state or neutral
state for the Marangoni convection is indeed stationary. In discussing a similar problem for magnetic fluids,
Weilepp and Brand [16] have demonstrated through their numerical calculations that there is no oscillatory
instability and convection sets in as stationary convection. Stengel et al. [27] have opined that oscillatory
convection is not a preferred mode of instability even in the case of viscosity varying with temperature. Based
on these observations and also noting that there is no mechanism to set up oscillatory motion, the principle
of exchange of stability is assumed to be valid for the problem considered. Accordingly, the normal mode
expansion of the dependent variables is taken in the form

{w, T, ϕ} = {W (z), Θ(z), Φ(z)} exp [i(�x + my)] (17)

where � and m are wave numbers in the x and y directions, respectively.
On substituting Eq. (17) into Eqs. (14)–(16) and non-dimensionalizing the variables by setting

(
x∗, y∗, z∗) =

( x

d
,

y

d
,

z

d

)
, W ∗ = d

εν A
W, Θ∗ = κ

βνd
Θ, Φ∗ = (1 + χ) κ

Kβνd2 Φ, f̄ (z) = η(z)

η0
(18)

where ν = η0/ρ0 is the kinematic viscosity, κ = k1/(ρ0C)2 is the effective thermal diffusivity and A =
(ρ0C)1/(ρ0C)2, we obtain (after dropping the asterisks)

f̄
(
D2 − a2)2

W + 2D f̄
(
D2 − a2) DW + D2 f̄

(
D2 + a2) W − Da−1 f̄

(
D2 − a2) W

−Da−1 D f̄ DW = Rt a
2Θ − Rma2 (DΦ − Θ) , (19)

(D2 − a2) Θ = −(1 − M2 A)W, (20)

(D2 − a2 M3) Φ − DΘ = 0. (21)
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Here, D = d/dz is the differential operator, a = √
�2 + m2 is the overall horizontal wave number, W is

the amplitude of the vertical component of velocity, Θ is the amplitude of temperature, Φ is the amplitude
of magnetic potential, Rt = αt gβd4/νκ A is the thermal Raleigh number, Rm = Rt M1 = μ0 K 2β2d4/(1 +
χ) μκ A is the magnetic Rayleigh number, M1 = μ0 K 2β/(1 + χ) αtρ0g is the magnetic number, M2 =
μ0Ta K 2/(1 + χ) ρ0C is the magnetic parameter, M3 = (1 + M0/H0)/(1 + χ) is the measure of nonlinearity
of fluid magnetization parameter and Da = k/εd2 is the Darcy number. The typical value of M2 for magnetic
fluids with different carrier liquids turns out to be of the order of 10−6, and hence, its effect is neglected as
compared to unity, and f̄ (z) is given by

f̄ (z) = exp [B (z − 1/2) + (Tr − Ta) /βd] (22)

where B = γβd is the dimensionless viscosity parameter. If Tr = Ta , then

f̄ (z) = exp [B (z − 1/2)] . (23)

The lower boundary is rigid-ferromagnetic while the upper free boundary at which the surface tension effects
are accounted for is taken to be non-deformable and flat. In addition, both the boundaries are assumed to be
perfectly insulated to temperature perturbations. The boundary conditions are then given by

W = DW = DΘ = Φ = 0 at z = 0, (24)

W = f̄ D2W + Ma a2Θ = DΘ = DΦ = 0 at z = 1 (25)

where Ma = σT ΔT d/μκ is the Marangoni number.

3 Method of solution

Equations (19)–(21) together with the boundary conditions constitute an eigenvalue problem with Rt or Ma
as an eigenvalue. The eigenvalue problem is solved both numerically using the Galerkin method as well as
analytically using a regular perturbation technique with the wave number as a perturbation parameter.

3.1 Solution by the Galerkin method

In this method, the test (weighted) functions are the same as the base (trial) functions. Accordingly, W, Θ and
Φ are written as

W =
n∑

i=1

Ai Wi (z), Θ(z) =
n∑

i=1

Ci Θi (z), Φ(z) =
n∑

i=1

Di Φi (z) (26)

where Ai , Ci and Di are unknown constants to be determined. The base functions Wi (z), Θi (z) and Φi (z) are
generally chosen such that they satisfy the boundary conditions but not the differential equations. We select
the trial functions as

Wi = (z4 − 5z3/2 + 3z2/2)T ∗
i−1, Θi = z(1 − z/2)T ∗

i−1, Φi = z2(1 − 2z/3)T ∗
i−1 (27)

where T ∗
i ’s are the modified Chebyshev polynomials. The above trial functions satisfy all the boundary con-

ditions except the natural one, namely �f D2W + Ma a2Θ = 0 at z = 1 but the residual from this condition
is included as residual from the differential equation. Substituting Eq. (26) into Eqs. (19)–(21), multiplying
momentum Eq. (19) by W j (z), energy Eq. (20) by Θ j (z) and magnetization Eq. (21) by Φ j (z); performing
the integration by parts with respect to z between z = 0 and z = 1 and using the boundary conditions, we
obtain a system of linear homogeneous algebraic equations in Ai , Bi and Ci . A nontrivial solution to the
system requires the characteristic determinant of the coefficient matrix must vanish, and this leads to a relation
involving the parameters Rt , Ma, Rm, Da−1, M1, M3, B and a in the form

F(Rt , Ma, Rm, Da−1, M1, M3, B, a) = 0. (28)

The critical values of Rtc or Mac are found as functions of the wave number a for various values of phys-
ical parameters. It is observed that the convergence is achieved with six terms in the series expansion of
Eq. (26).
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3.2 Solution by regular perturbation technique

It is known that for insulated boundary conditions the onset of convection corresponds to a vanishingly small
wave number (i.e., unicellular convection). The numerical calculations carried out in the previous section also
corroborate this fact. Therefore, an attempt is being made to exploit this fact to obtain an analytical formula for
the onset of convection using a regular perturbation technique with wave number a as a perturbation parameter.
Accordingly, the variables W, Θ and Φ are expanded in powers of a2 as

(W, Θ, Φ) = (W0, Θ0, Φ0) + a2(W1,Θ1, Φ1) + · · · . (29)

Substituting Eq. (29) into Eqs. (19)–(21) and also in the boundary conditions, and collecting the terms of zeroth
order, we obtain

D4W0 + 2B D3W0 + (B2 − Da−1)D2W0 − B Da−1 DW0 = 0, (30.1)

D2Θ0 + W0 = 0, (30.2)

D2Φ0 + DΘ0 = 0 (30.3)

with the boundary conditions

W0 = DW0 = 0 = DΘ0 = Φ0 at z = 0, (31.1)

W0 = D2W0 = 0 = DΘ0 = DΦ0 at = 1. (31.2)

The solution to the zeroth order equations is found to be

W0 = 0, Θ0 = 1 and Φ0 = 0. (32)

The first-order equations are then

D4W1 + 2B D3W1 + (B2 − Da−1)D2W1 − B Da−1 DW1 = Rt (1 + M1)e
−B(z−1/2) (32.1)

D2Θ1 + W1 = 1, (32.2)

D2Φ1 − DΘ1 = 0 (32.3)

with the boundary conditions

W1 = DW1 = Φ1 = DΘ1 = 0 at z = 0, (33.1)

W1 = D2W1 + e−B(z−1/2)Ma = DΦ1 = DΘ1 = 0 at z = 1. (33.2)

The general solution of Eq. (32.1) is given by

W1 = c0 + c1e−Bz + c2eδ1z + c3eδ24z + (Rt + Rm)

B Da−1 ze−B(z−1/2) (34)

where

δ1 = −B + √
B2 + 4Da−1)

2
,

δ2 = −B − √
B2 + 4Da−1)

2
,

c0 = −c1 − c2 − c3,

c1 = δ1

B
c2 + δ2

B
c3 + (Rt + Rm)eB/2

B2 Da−1 ,

c2 = (Rt + Rm)
[
((B + 1)e−B/2 − eB/2)�4 − (B − B2)e−B/2�2

]

B Da−1(�2�3 − �1�4)
+ Mae−B/2�2

(�2�3 − �1�4)
,

c3 = (Rt + Rm)
[
((B + 1)e−B/2 − eB/2)�3 − (B − B2)e−B/2�1

]

B Da−1(�2�3 − �1�4)
+ Mae−B/2�1

(�2�3 − �1�4)
,
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with

Δ1 = B(1 − eδ1) + δ1(1 − e−B),

Δ2 = B(1 − eδ2) + δ2(1 − e−B),

Δ3 = δ1 Be−B + δ2
1
eδ1,

Δ4 = δ2 Be−B + δ2
2
eδ1 .

From Eq. (32.2), it follows that

1 =
1∫

0

W1dz. (35)

Substituting for W1 from Eq. (34) into Eq. (35) and carrying out the integration leads to an expression of the
form

Rtc(1 + M1)

FRt (B, Da−1)
+ Mac

FMa(B, Da−1)
= 1 (36)

where

FRt (B, Da−1) = B3 Da−1
[

δ2λ1 F1 + δ1λ2 F2

δ1δ2(Δ2Δ3 − Δ1Δ4)
+ (2 − B)eB/2 − (2 + B)e−B/2

]−1

,

FMa(B, Da−1) = B2e−B/2
[

δ2λ1Δ2 + δ1λ2Δ1

δ1δ2(Δ2Δ3 − Δ1Δ4)

]−1

with

λ1 = δ2
1
(1 − B − e−B) − B2(1 + δ1 − e−B),

λ2 = δ2
2(1 − B − e−B) − B2(1 + δ2 − e−B),

F1 = [(B + 1)e−B/2 − eB/2]Δ4 − [(B − B2)e−B/2]Δ2,

F2 = [(B + 1)e−B/2 − eB/2]Δ3 − (B − B2)e−B/2Δ1.

From Eq. (36), it is interesting to note that the parameter M3 has no influence on the onset criterion. Since at
the onset of convection ac = 0 (very large wave length), one would expect that M3 has no effect on the stability
of the system. Besides, it can be seen that the parameters M1 and M3 have no influence on the onset of pure
Marangoni ferroconvection (Rt = 0) in the absence of viscosity variation (B = 0). The numerical calculations
carried out in the previous section also reflected the same behavior. It is interesting to check Eq. (36) under the
limiting conditions. When M1 = 0 and Da−1 = 0 (i.e., ordinary viscous fluid), Eq. (36) reduces to the result
obtained by Char and Chen [37]. In the limit B → 0 and when M1 = 0, we recover the following result for
an ordinary viscous fluid of constant viscosity (Garcia-Ybarra et al. [38]; Yang and Yang [39]):

Rtc(1 + M1)

320
+ Mac

48
= 1. (37)

When we set Mac = 0, Eq. (37) reduces to

Rtc = 320

1 + M1
. (38)

The above result coincides with the one obtained by Nanjundappa and Shivakumara [40]. Equation (37) simply
reduces to Mac = 48 when Rtc = 0 and Rtc = 320 when Mac = 0 = M1, which are the known exact values
for the viscous fluid layer.
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4 Results and Discussion

The influence of viscosity varying exponentially with temperature on the onset of coupled Bénard–Marangoni
convection in a layer of ferrofluid saturated Brinkman porous medium is studied in the presence of a uniform
vertical magnetic field. The lower rigid and upper free boundaries are assumed to be perfectly insulated to
temperature perturbations. The critical eigenvalue Mac or Rtc and the corresponding wave number ac are
computed numerically by the Galerkin method as well as analytically by employing a regular perturbation
technique with wave number a as a perturbation parameter for different values of Rm or M1, Da−1and B. It
is seen that the results obtained from these two methods are in good agreement. The values of the magnetic
parameters chosen are based on the physical parameters for a commercially available magnetic fluid EMG
905 produced by Ferrofluidics [41]; density ρ[kg/m3] = 1.24 × 103, kinematic viscosity (27 ◦C)ν [m2/s] =
12 × 10−6, thermal diffusivity κ [m2/s] = 8 × 10−8, heat capacity cp [J/kgK] = 1.47 × 103, coefficient of
thermal expansion αt [1/K ] = 8.6×10−4, susceptibility at low field χ = 1.9, pyromagnetic coefficient at H =
50 kA/m[A/Km] = 110 and mean particle diameter [nm] = 10.2. For such fluids, the magnetic parameters have
the following order of magnitude: M1 ∼ 10−4−10 and M3 ≥ 1. The salient features of the physical parameters
on the stability characteristics of the system are exhibited graphically in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10. In general,

0 6 12 18 24 30
0

300

600

900

1200

1500

B

10

M1=0

Rtc

                         Ma=0
                         Ma=20

Regular Perturbation Method 

Galerkin Method 

1

5

2
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the nonlinearity of the fluid magnetization parameter M3 is found to have no influence on the criterion for the
onset of Bénard–Marangoni ferroconvection.

The variation in the critical Rayleigh number Rtc as a function of viscosity parameter B for different
values of magnetic parameter M1 when Da−1 = 50 is illustrated in Fig. 2. The results are presented for
two values of Ma = 0 (i.e., in the absence of surface tension force) and 20 (i.e., in the presence of surface
tension force) in the figure. The figure clearly represents the strong influence of B and M1 on the onset of
coupled Bénard–Marangoni ferroconvection. The viscosity parameter B shows a dual effect on the stability
characteristics of the system. That is, Rtc increases initially with B, attains a maximum value depending on
the strength of surface tension force and then starts decreasing with further increase in the value of B. At the
maximum value of Rtc, a sublayer starts to form, and the thickness of this sublayer and Rtc gets reduced with
increasing B. Increasing M1 is to diminish the initial increasing trend of Rtc with B and also to hasten the onset
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of ferroconvection due to an increase in the destabilizing magnetic force. Moreover, Rtc decreases quite rapidly
at first, and then, slowly and finally, the curves of different M1 merge as the value of B is becoming extremely
large because the thickness of the sublayer reduces infinitesimally. It is more so with an increase in the value
of M1, and this is due to additive reinforcement of destabilizing magnetic force. The results for M1 = 0
correspond to an ordinary viscous fluid, and it is observed that higher heating is required to have instability in
this case. Furthermore, the presence of surface tension force facilitates the onset of ferroconvection but only
up to certain values of B, exceeding which the effect of surface tension is found to be of no consequence on
the onset criterion. The combined effect of surface tension and magnetic forces is to reinforce together and to
advance the onset of ferroconvection compared to their effect in isolation. Irrespective of the values of M1,
the critical Rayleigh number Rtc attains its maximum value (Rtc)max with respect to B at a fixed value of
B = 7.4316 when Ma = 0 and at B = 7.6083 when Ma = 20.
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Figure 3 shows the variation in Rtc as a function of B for various values of Da−1 with M1 = 2 for two
values of Ma = 0 and 20. For the case of Da−1 = 0 (i.e., in the absence of porous medium), the critical
Rayleigh number Rtc decreases monotonically with B, and the variation in the critical Rayleigh number
between Ma = 0 and 20 is more noticeable for all values of B. For nonzero values of Da−1, however, the
curves of Rtc coalesce in the presence as well as in the absence of surface tension force with increasing B
although initially the effect of increasing Da−1 is found to delay the onset of ferroconvection. The values of
B at which Rtc attains its maximum value (Rtc)max for different values of Da−1 when Ma = 0 and 20 for
M1 = 2 are tabulated in Table 1. From the table, it is seen that the values of B decrease with increasing Da−1

but increase with increasing Ma.
The variation in critical Marangoni number Mac as a function of viscosity parameter B is represented for

Rt = 0 (i.e., in the absence of gravitational force) and 10 (i.e., in the presence of gravitational force) in Fig. 4
when Da−1 = 50 and for different values of magnetic Rayleigh number Rm , while in Fig. 5 for different
values of Da−1 when Rm = 50. As can be seen from Fig. 4, the curves of Mac for different values of Rm
as well as for two values of Rt join together in the beginning but separate apart with increasing B, and in
that case, the effect of increasing Rm and Rt is found to advance the onset of ferroconvection. As observed
in Figs. 2 and 3, Mac also attains its peak value at some intermediate value of B depending on the values
of Rm, Da−1 and Rt . From Fig. 5, it is seen that increasing Da−1 is to increase the peak value of Mac and
to delay the onset of Marangoni ferroconvection. Moreover, the curves of Mac for different values of Da−1

coalesce at higher values of B and take distinct values for Rt = 0 and 10. The value of B at which Mac
attains its maximum value (Mac)max is tabulated in Table 2 for different values of Rm with Da−1 = 50 for
two values of Rt = 0 and 10. From the table, it is seen that the values of B decrease with increasing Rm
and Rt .

To know the simultaneous presence of buoyancy, surface tension and magnetic forces on the stability
of the system, the locus of Rtc and Mac is exhibited in Fig. 6 for different values of M1 with B = 2
and Da−1 = 50, in Fig. 7 for different values of B with M1 = 2 and Da−1 = 50, while in Fig. 8
for different values of Da−1 with M1 = 2 and B = 2. From the figures, it is observed that there is a
strong coupling between the critical Rayleigh and the Marangoni numbers and the curves are slightly con-
vex. That is, when the buoyancy force is predominant, the surface tension force becomes negligible and
vice-versa. From Fig. 6, it is seen that an increase in the value of M1 (i.e., magnetic force) is to decrease
the value of Rtc as well as Mac, and thus, its effect is to hasten the onset of ferroconvection. The curves
of different M1 converge to the same value Mac = 258 when Rtc = 0 indicating M1 has no effect on
the onset of ferroconvection when it is only due to surface tension forces. Figure 7 shows that for the
range of values of B considered, an increase in the value of B is to increase both Mac and Rtc. From
Fig. 8, it is seen that an increase in the value of Da−1 is to increase the value of Rtc as well as Mac, and
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Fig. 9 Perturbed velocity eigenfunction for different values of B for a Ma = 0 and b Ma = Rtc when Da−1 = 50

thus, its effect is to delay the onset of Bénard–Marangoni ferroconvection. Also, we note that Mac < Rtc
always.

Figure 9a, b show the perturbed vertical velocity eigenfunction for Ma = 0 and Ma = Rtc, respectively,
for different values of B. The results presented in these figures are for two values of M1 = 0 and 2 when
Da−1 = 50. As can be seen, the shape of the eigenfunction is parabolic in nature, and increasing M1 is
to increase the vigor of the ferrofluid flow; hence, its effect is to hasten the onset of ferroconvection. With
increasing B, a slightly skewed shape of the eigenfunction downward is formed compared to the normal shapes
observed at lower values of B. For larger values of B, the perturbed vertical velocity vanishes at the upper part
of the porous layer, and an apparent sublayer, in which the onset of ferroconvection takes place, is observed.
Further inspection of the figures reveals that the presence of surface tension force is to enhance the flow at a
fixed lower value ofB. At higher values of B, however, the velocity eigenfunction remains almost unchanged
indicating that the surface tension has no influence on the onset criterion. The results depicted in Fig. 10a, b
are respectively for Ma = 0 and Ma = Rtc when Da−1 = 25 and 100 with M1 = 2. It is observed that
increasing Da−1 is to inhibit the fluid flow, and hence, its effect is to delay the onset of Bénard–Marangoni
ferroconvection. The other observations are similar those observed in Fig. 9a, b.
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Table 1 Values of (Rtc)max occurring at B for different values of Da−1 when Ma = 0 and 20 with M1 = 2

Ma Da−1 (Rtc)max B

0 25 306.070 8.893
50 451.108 7.431
75 587.629 6.736

100 719.693 6.325
20 25 300.306 9.103

50 444.680 7.608
75 580.836 6.885

100 712.670 6.453

Table 2 Values of (Mac)max occurring at B for different values of Rm when Rtc = 0 and 10 with Da−1 = 50

Rtc Rm (Mac)max B

0 50 283,134.00 22.732
100 97,144.96 20.367
200 30,688.20 17.816

10 50 214,991.00 22.124
100 83,383.00 20.000
200 28,172.10 17.630
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5 Conclusions

The onset of coupled Bénard–Marangoni ferroconvection in a ferrofluid saturated Brinkman porous layer with
viscosity varying exponentially with temperature in the presence of a uniform vertical magnetic field has been
studied. The viscosity parameter B exhibits a dual effect on the stability characteristics of the system. It shows
a stabilizing effect on the system initially, but displays a reverse trend after exceeding a certain value of B
depending on the choices of parametric values. That is, the critical Rayleigh or Marangoni number attains
its maximum value at some intermediate values of B. The nonlinearity of fluid magnetization parameter M3
has no effect on the onset of coupled Bénard–Marangoni ferroconvection in a porous medium. The effect of
an increase in the value of magnetic Rayleigh number Rm and the Darcy number Da is to hasten the onset
of coupled Bénard–Marangoni ferroconvection. The buoyancy, surface tension and magnetic forces reinforce
each other in hastening the onset of ferroconvection. The buoyancy and magnetic forces show no influence on
the onset of ferroconvection up to moderate values of B, while the surface tension force exhibits no influence on
the onset criterion at higher values of B. The critical eigenvalues obtained by a regular perturbation technique
and computed numerically using the Galerkin method complement with each other, indicating the analytical
solutions obtained are exact.
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