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ABSTRACT

A solution for pure bending andtwisting of thin skewed plates of
uniform thickness under a constant temperature moment - is obtained by
using the basic equations for thermal bending. The corresponding
expressions for classical case are obtained as particular cases.

1. INTRODUCTION

IN a recent paper Reissner (1) has obtained a solution for the problem of
pure bending and twisting of thin skewed plates of uniform thickness.
Assuming the results for rectangular plates of uniform thickness, he has
extended the problem to skewed plates. In this paper we extend his results
to thermal bending and twisting under a constant temperature moment.
We obtain the influence of the angle skew on the torque-twist relation
and the pure thermal bending associated with twisting deformation. Our
problem reduces to that of Reissner if the temperature moment is neglected.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Let xy plane coincide with the undeflected middle surface of the plate.
The equation for deflection is given by

174 w+(1 +v)aVG 2 me =0	 (1)

where w is the deflection, a is the deflection angle and me is the tempera-
ture moment.

If the temperature moment be constant, say M, then (1) takes the form

Vow=0.	 (2)
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The expressions for stress couples Mx, My and Mxy are

MX _—D ^ z + v 2 +(1 + v) aMl

My = — D 1 + v jz2 +(1 + v)aM]

2

Mxy =—D[(1—v) 
xc

—+(1+v)aM]	 (3)

where D is the flexural rigidity of the plate.

We consider the plate bounded by the straight lines x = + 1 and
y = + ? c — x tan 0, where ¢ is the angle of skew, 21 is the span and
c is the chord of the plate.

The bending and twisting moments M. and Mt acting along the
edges y = ± c — x tan 0 follow by the transformations (1)

Mn = My cost ¢ + Mx sine ¢ + 2 M y cos ¢ sin ¢

Mt = (Mx — My) cos ¢ sin ¢ + Mxy (cost ¢ — sine c)I	
(4)

We also have Kelvin's and Tait's result (1) that there occur concen-
trated forces P at the corners of the plate given by

P = (Mxy + Mnt)comer•	 (5)

The boundary conditions for pure bending are

cM^=m at x=+l 	1	 (6)
Mn =0 at y=±+c—xtan¢

and

Mxy + Mt = 0
	

(7)

bwheroe m is the applied bending mment. [The equation (7) has be
notained by equating the corner forces P to zero].

The boundary conditions for pure twisting are

Mx =0 at x=±l
(8)

M=0 at y=± c—xtan¢
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and

T = cP	 (9)

where T is the applied torque.

3. CASE OF PURE BENDING

Suppose we take the deflection function in the form (1)

w=ZAx 2 +?By 2 +Cxy	 (10)

where A, B and C are suitable constants to be determined by the boundary
conditions. Calculating

2̂2 ,2̂2 and ^ 2w
Wx Zy	 ^xby

and substituting in the expressions (3) we get

Mx =—D[A+vB+(1+v)aM]

My =—D[B+ vA +(1+ v)aM]

Mxy =—D[(1—v)c+(1 +v)aM]. (11)

The bending and twisting moments given by (4) then assume the form

Mn = — D[( v cost¢ + sine¢) A + (cos 2 ç6 + v sine0) B
+ 2 (1 — v) cos q sin 0 C + (1 + v) a M (cos + sin 0)2]

Mnt = — D [(1 — v) cos q sin ¢ A — (1 — v) cos 0 sin ¢ B

+ (1— v) (cos t — sin2 0) C + (1 + v)

x a M (cost 0 — sin 2 0)]	 (12)

Substituting for M x, Mn , Mxy and Mt from (11) and (12) in (6) and
(7) we get

—cD[A+ vB +(1 + v)aM] =m	 (i)

(v+tan 2 0)A+(1 + vtan 2 ¢) B+2(1 — v)tan0C

+(1 + v)aM(1 +tan q)2=0	 (ii)

(1— v)tan¢—(1 — v)tan 0B+2(1 — v)C
+0 + v) a M = 0	 (iii)
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solving (i) (ii) and (iii) we get

—m—(1 — v 2)aMcD
A=	 cD(1—v2)

B =
 v m — (1 — v2) a McD

cD (1 — v2)

C= mtan^—(1+v)aMcD .
2cD(1—v)

Substituting these values of A, B and C in (10) we get

w= — 2cD(1 — v2)[x2— Vy 2 —(1 + v) tan 0 xy]

_ a M [x2 _ y2 + i _ v xy]	 (13)

If we introduce a new chord wise co-ordinate q counted from the centre
line y = — x tan 0 of the plate by setting

y=71—xtan0	 (14)

then the equation (13) assumes the form

w = — cD (1
m

 v2
) L(1 + tang 0) x2 — (1 — v) tan 0 xii — v^ 2)]

— aMr(1—tan 2 0— i +V tanS6)X2

{-tI + v +2tan¢) xii-721.	 (15)

We readily verify from (15) that the skewed plate has a smaller bending
stiffness than the unskewed plate and that the applied bending moment
produces a torsional deformation.

4. CASE OF PURE TWISTING

Substituting for Mx My Mxy and Mt from (11) and (12) in (8) and
(9) we get

A+ vB+(1 + v)aM =0	 (iv)
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(v + tan2 0)A+(1 + v ta )B+2(1 y-- v) tan r0 C

+(1 + v)aM(1 --tan¢) 2 =0	 (v)

—cD(1 — v)tan0A+cD(1 — v)tanç6 B— 2cD(1 — v)C

—2(1 + v)aMcD=T(1 +tan 2 ¢)	 (vi)

Solving (iv), (v) and (vi) we get

vTtan^—(1 — v2)aMcD
A —	 cD (1 — v2)

B= Ttançc—(1—v2)aMcD
cD (1 — v2)

+v)aMcD .
2cD(1—v)

Substituting these values of A, B and C in (10) we get

T	 tan ç6 2	 g 1
w=- 2cD(1—v)ixY- 1 +v (Y — vx)I

+ 2(1 M v) [2(1 + v)xy —(1—  v) (x2 +y2)1.	 (16)
-

In terms of the chordwise variable 	 defined by (14), (16) assumes
the form

T 	f(	 2 tang ¢	 tan 0 2
W=- 2cD(1—v)L\1+ 1+v) x

_
 i+ v 1]

(1 +	 #) tan ¢ x2] + aM ri' i + y + tan ^^ x^ — ^^

-- t-

21 i +vv) tan 0 + (1 + tan 2 ) } x2].	 (17)

Equation (17) indicates that the skewed plate has a smaller torsional
rigidity than the unskewed plate and the way in which the torsional rigidity
varies with the angle of skew 0.

If we define the effective angle of twist 0 per unit length by (1)

$ _ (w)';=ci2 —(W)=_,2 	(18)
cx
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we get for the effective,.angle' f tist :the= xpression-

_ 	 (	 2tan2 	aM I - -v
8 	2 D (L-^- - v) (1 + 1 ^	 ^) + 2 r k v + tans)	 (19)

where we have used (17) and (18)

If the temperature moment is neglected, the expressions (13), 15),
(16), (17) and (19) reduce to those obtained by Reissner for the classical
case.

5. A PARTICULAR CASE

If the angle of skew ¢ tends to zero, the skewed plate reduces to a
rectangular plate whose edges are x = ± l and y = ± Z c.

Then the expressions for the thermal bending, twisting and angle of
twist respectively take the form

w- 2cD(n v2)`x2— vy2)_aM

X( x 2 —y2 + l + vxy)

T	 aM
w=— cD(1—v) xy + 2(1_v)

x [2 (1 + v)xy—(1 — v) (x 2 + y2)]
and

— 	T
	aM I+v=e— 2cD(1 — v) + r 1 — v

In the absence of the temperature moment, (20) reduce to

m
w=- 2cD(1—va)r

T I
w=— cD(1—v)

and
_	 T_
= 2 cD (1 — v)

which are valid for the classical case.

(20)

(21)
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