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Self-assembly of thiacyanine dyes in water for the synthesis of active hybrid
nanofibres
Govindaswamy Shankera,b, Gurumurthy Hegdec and Carlos Rodriguez-Abreub

aDepartment of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore, India; bInternational Iberian
Nanotechnology Laboratory, Braga, Portugal; cBMS R & D Centre, BMS College of Engineering, Bangalore, India

ABSTRACT
Water-soluble self-assembled nanostructures were synthesised by simple counter ion exchange
of thiacyanine dyes which helps in the formation of nematic (N) and hexagonal (M) chromonic
liquid-crystalline (CLCs) phases. Conjugated double bonds as central spacers connected between
two benzothiazole segments affect water solubility and liquid crystal formation. Aggregation-
dependent properties characterised by ultraviolet–visible, fluorescence and 1H nuclear magnetic
resonance spectroscopy. Sol–gel reaction of dye aggregates with silica species furnishes
entangled nanotubular fibres with constant diameter and their length in excess of micrometres,
having templates of pore sizes below the mesoporous range. The π–π stacked chromonic
aggregate dyes are also of importance in shape selective catalysis, adsorption, desorption
micro-patterned materials, and provide a significant step towards biosensor medical applications
because of their water-soluble nature.
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1. Introduction

Supramolecular complex molecular architectures play
a vital role in the field of biological and material
science.[1–10] These complex architectures form by
self-assembly of smaller structural motifs and mole-
cular sub-units through non-covalent interaction as a
driving force. Liquid crystal (LC) is one such area
wherein molecules self-assemble through non-cova-
lent interactions in the formation of various kinds of
LC phases.[11–14] Chromonic systems are a lyotropic
counterpart wherein mesophases are formed by solu-
ble aromatic compounds with ionic or hydrophilic
groups. The molecular architectures in these systems
are obtained through stacks of molecules rather than
individual molecules.[15–19] A large number of

aromatic compounds such as drugs, dyes and nucleic
acids have a great tendency to exhibit these chromo-
nic liquid-crystalline (CLC) phases.[20] In particular,
certain classes of dyes, which are hydrophilic in nat-
ure, show a strong tendency to self-assemble into
stack of columns and, at higher dye concentrations,
result in ordered structures due to enthalpy as the
driving force.[1–19,21–23] In addition, the column
length increases at higher concentrations, mainly due
to solubilising groups around the periphery of the
dyes rather than at one end, and having face-to-face
aggregates into columns. Disc/rod-shaped molecules
with a hydrophilic nature have a greater tendency to
aggregate into columns, stabilising CLC formation.
[24,25]
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Organisation of organic dyes into extended supra-
molecular arrays is well-established and is recognised
to be the result of oriented dye aggregation, arising
from various dispersive forces such as π–π, cation–π,
electrostatic, ion–dipole, hydrophobic and hydrogen
bonding interactions between individual dye mole-
cules.[26,27] In addition, dyes exhibiting strong fluor-
escence are useful as stain-tagging molecules in
biological processing, particularly fluorophores with
absorption and emission at longer wavelengths (600–
1000 nm) that show high-sensitivity and less-back-
ground interference.[28,29] Functionalised dyes on
self-assembly envisage greater utility, having multi-
chromophores groups with novel optical and electronic
properties.[30–32]

In recent years, organic dyes have aroused interest
due to improved colouring, fluorescence, adsorption
and desorption performance. Thiacyanine dyes are
one such example,[33,34] wherein the dyes are made
up of two benzothiazole units coupled through conju-
gated double chains having two nitrogen centres with
one atom positively charged.

In this paper, we report the synthesis and character-
isation of the self-assembly of thiacyanine dyes in water
by simple counter ion exchange and their liquid-crys-
talline behaviour; to the best of our knowledge this will
be first of its kind. We also study the effect of con-
jugated double bonds used as central spacers, followed
by their use as templates for the preparation of CLC-
based hybrid nanofibres.

2. Results and discussion

Scheme 1 shows the synthetic step for converting thia-
cyanine iodide into the thiacyanine acetate anion.
Appropriate dyes [3,3′-diethylthiacyanine iodide
(n = 1), 3,3′-diethylthiacarbocyanine iodide (n = 3),
3,3′-diethylthiadicarbocyanine iodide (n = 5), 3,3ʹ-
diethylthiatricarbocyanine iodide (n = 7)] and silver
acetate (1 equiv.) were dissolved in distilled methanol
(10 equiv.) and stirred at room temperature for 8 h
under nitrogen atmosphere. The reaction mixture was

then passed through a short column containing neutral
alumina as a stationary phase. Collected solvent from
the filtrates was evaporated at room temperature using
nitrogen gas to achieve the thiacyanine dyes in good
yield: 3,3′-diethylthiacyanine acetate (1), n = 1; 3,3′-
diethylthiacarbocyanine acetate (2), n = 3; 3,3′-
diethylthiadicarbocyanine acetate (3), n = 5; and 3,3ʹ-
diethylthiatricarbocyanine acetate (4), n = 7. The mole-
cular structures of these acetate anions were deter-
mined by 1H nuclear magnetic resonance (NMR) and
13C NMR spectroscopy techniques (see experimental
section).

Thiacyanine iodide dyes are insoluble in water, but
converting the iodide anion to acetate makes these dyes
soluble in water, thereby forming self-assembled
nanostructures that result in formation of chromonic
nematic (N) and chromonic M LC phases. In particu-
lar, dyes (2) and (3) are freely soluble in water; even at
a low concentration of 0.5% (w/v), dye (2) exhibits a
chromonic N phase with a typically characteristic
Schlieren texture [11–18,21,35–37] (Figure 1(a)) with
high birefringence treated on ordinary glass slides with
crossed polarisers.

On increasing the dye concentration in water (3%
w/v) and above, dye (2) exhibits a grainy optical tex-
ture with high birefringence typical for the M phase
(Figure 1(b)).[11–18,21,38–42] This rod-shaped 3,3′-
diethylthiacarbocyanine acetate (2) self-assembles into
columns in the chromonic N phase with no positional
order, but the same columns are rearranged in a hex-
agonal array furnishing the M phase showing structural
similarity unlike their spatial arrangements. In addi-
tion, 3,3′-diethylthiadicarbocyanine acetate (3) exhibits
a similar kind of chromonic LC behaviour; at 1% (w/v)
it shows the chromonic N phase, but on increasing
concentration to 5% (w/v) and above, it exhibits the
M phase. Similar textural behaviour is observed for dye
(3), which exhibits the chromonic N and M phases at
lower concentration in water as shown in Figure 1(c)
and 1(d), respectively.

The acetate anion plays a vital role in stabilising
liquid-crystalline phases. This can be attributed to its

Scheme 1. Synthesis of counter anion conversion of thiacarbocyanine dyes in an alcoholic medium.
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larger shape, size and flexibility compared with that of
the iodide anion,[26] resulting in crystalline materials.
Although the dyes with short (1) and long (4) central
spacers are freely soluble in water at lower concentra-
tions (<10–4 M), they show strong aggregation.
However, increasing the dye concentration in water
does not result in chromonic liquid-crystalline phases
due to partial solubility. The space filling and length-
to-breath ratio in dyes (2) and (3) favours the forma-
tion of chromonic LCs; other dyes (1 and 4) may lack
this ratio, resulting in crystalline compounds.

2.1. Aggregation of thiacyanine dyes: ultraviolet
and fluorescence spectroscopy

To explore the effect of water on the aggregation of
these dyes, ultraviolet–visible (UV–vis) spectra were
recorded at different molar concentrations. 3,3′-
Diethylthiadicarbocyanine acetate (3) spectra were
recorded as a function of temperature. The maximum
absorption was observed at λmax = 523 nm at a 10–2 M
concentration; decreases in the absorption intensity for
10–3 M indicated a change in aggregation state; on
further dilution, the degree of aggregation changes are
affected. At the lower concentration of 10–4 M [43]
(Figure 2(b)), there is a shift in λmax = 647 nm, with
an additional peak at λ = 554 nm. This peak weakens
for the 10–5 M solution followed by complete loss of
aggregation on further dilution. The λmax absorption
peak at 647 nm towards red shifts for the 10–4 M
solution in the whole spectra indicating the formation

of J-aggregates with a significant tilt due to repulsive
electrostatic forces and the deposition of partial charges
in the molecular orbitals making the π–π systems over-
lap.[44] An additional peak at 523 nm can be attributed
to the formation of H-aggregate in the concentrated
solution (Figure 2(a)). It is evident from the spectra
that H-aggregation is observed at higher molar solu-
tion, followed by J-aggregation at dilute concentrations
(Figure 2(a) and 2(b)).[45–50]

The morphology of thiacyanine dyes is tunable by
the effect of various solvents as a result of intermole-
cular interactions between the solvents and the dye. A
representative dye (3) was subjected to UV–vis analysis
using methanol as solvent at different concentrations.
At 10–2 M in methanol, dye (3) exhibits λmax at 652 nm
and, at subsequent dilute concentrations, the absorp-
tion values are decreased (Figure 2(c) and 2(d)). In
comparison between (Figure 2(a) and 2(c)), an unre-
solved peak in the water medium observed is opposite
to that of clear resolved peak in methanol. This beha-
viour can be attributed to the strength of the intermo-
lecular interactions between the solvent and the dye,
maximum in the case of water and reduced in metha-
nol. This trend is expected to continue when methanol
is replaced by different organic and other polar
solvents.

Overall, two distinct aggregate states were evident:
the thermodynamically stable H-aggregate with possi-
bility of parallel alignment of the molecular dipole
moments; and the kinetically meta-stable
J-aggregation state.[51–56] The delocalised π-

P/A 50 µm 100 µm

100 µm 200 µm

(a) (b)

(c) (d)

Figure 1. (colour online) Microphotographs (crossed polariser) of the textures observed at room temperature for the dyes at
different concentrations in water: (a) 0.5% dye (2) (w/v) exhibits a chromonic N phase; (b) 5% dye (2) (w/v) exhibits a chromonic M
phase; (c) 1% dye (3) (w/v) chromonic N phase; and (d) 5% dye (3) (w/v) chromonic M phase.
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electrons of aromatics and the high polarisability of
the dyes lead to the strong electrostatic force of attrac-
tion between the neighbouring molecules, and finally
achieve a macroscopic self-assembled structure.

Intrinsic fluorescence typically occurs from aromatic
molecules having strong fluorophores that occur natu-
rally; dyes are one such example.[33,34] A representa-
tive, dye (3) excited at λexc = 570 nm and the relative
fluorescence was recorded as a function of temperature
and molar concentration in water (Figure 3). The broad
fluorescence spectra observed from 625 to 750 nm are
due to charged dye (3) itself and the decrease in intensity
once again explains its aggregation at higher concentra-
tions and breakdown on dilution. At different molar
concentrations of dye (3) recorded as a function of
temperature, on heating there is a decrease in the inten-
sity of the peaks as a result of aggregation (Figure 3(a), 3
(c), 3(e), 3(g), 3(i)); on cooling from 65°C there is an
increase in the intensity of the peaks (Figure 3(b), 3(d), 3
(f), 3(h), 3(j)), confirming the stability and reversibility
of the aggregation process.

Such a reversible process can be used in sensing appli-
cations due to the morphology retention in both cycles.
Analogous behaviour was observed for other dyes (1 and
2) in both UV and fluorescence studies, but surprisingly
dye (4) was inert to any fluorescence excitations. These
chromonic mesogens self-assemble in water to form
macroscopic structures due to intermolecular interactions
of aromatic rings driven by enthalpy. These interactions
are presumably a combination of van der Waals forces
and electrostatic attraction (π–π interaction). Longer

wavelength emission was observed for all the dyes due
to effect of polarity from water, being polar themselves,
the fluorophores are sensitive to solvent polarity.[57]
Chromonic aggregation is isodesmic, as there is no opti-
mum aggregation size and no critical concentration for
the formation of aggregates.[58] Since these dyes are
water soluble and exhibit strong fluorescence at longer
wavelengths between 600 and 1000 nm, they can be used
for bio-labelling in cellular uptake studies.[28,29] See the
supplementary material which is available via the multi-
media link on the online article webpage for more UV
(Figures S1 and S4) and fluorescent (Figures S2 and S3)
spectra.

2.2. Synthesis and characterisation of silica
samples

The procedure used for the synthesis of silica was
reminiscent of that reported in the literature.[59] A
solution of 3% dye/s in aqueous 25% ammonia was
prepared. Tetraethoxy ortho silicate (TEOS) (10 equiv.)
was added to this solution and stirred at room tem-
perature for 90 min and then at 70°C for an additional
90 min. The reaction mixture was filtered and the
precipitate washed thoroughly with distilled ethanol
to remove excess, unreacted TEOS. The resulting pure
powder (60–64% yield) was further calcined in air at
600°C for 6 h with a slow heating and cooling rate of 2°
C/min to produce mesoporous materials.

As evident from the reported literature,[58] chro-
monic LCs have a tendency to form entangled silica
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Figure 2. (colour online) UV absorption spectra of dye (3) in water at different molar concentrations: (a) 0.01 mm cell thickness and
(b) 10 mm cell thickness. Also dye (3) in methanol at room temperature: (c) 0.01 mm cell thickness and (d) 10 mm cell thickness.
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networks. The calcined silica of dye (3) shows nano-
tubular fibres with a constant diameter of ≈110 nm and
a length running in excess of micrometres (Figure 4(a)

and 4(b)) as evident from scanning electron micro-
scopy (SEM) analysis. The mechanism behind this
structure formation could be identical to that published
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Figure 3. Fluorescence spectra of dye (3) in water excited at λexc = 570 nm and recorded spectra between 600 and 800 nm at room
temperature for different molar concentrations: (a) 10–4 M heating cycles; (b) 10–4 M cooling cycle; (c) 5 × 10–5 M heating cycles; (d)
5 × 10–5 M cooling cycles; (e) 2.5 × 10–5 M heating cycles; (f) 2.5 × 10–5 M cooling cycles; (g) 10–5 M heating cycles; (h) 10–5 M
cooling cycles; (i) 10–6 M heating cycles; and (j) 10–6 M cooling cycles. CPS, counts per second.
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earlier.[60] The hollow nature of the tubular network is
evident from the transmission electron microscopy
(TEM) image (Figure 4(c)) and magnified images
reveal the presence of an inside hollow structure; the
walls of nanotubular fibres are made of smaller tubes
with a diameter of ≈2 nm. Dye aggregates upon silica
precipitation observed from TEM images are due to
attractive interaction and cooperative self-assembly
with silica nanoparticles during a sol–gel reaction.

Identical SEM and TEM images with more flex-
ibility in nanotubular fibres having constant dia-
meter with length in excess of micrometres were
observed for dye (1) with a short methylene spacer
(Figure 4(d) and 4(e)). It is also known that the
thiacyanine core can be readily converted into car-
bon nanorods by pyrolysis; in particular, the cal-
cined sample of dye (3) is suggested to generate two

different sizes of carbon nanorods by pyrolysis.[61]
Dye (4) was not able to bind to silica using similar
reaction conditions as described above.

Absorption spectra of dye (3) bound to silica show
distinctive peaks at λ = 705 and 547 nm, indicating the
presence of both J- and H-aggregates (Figure 5), even
on concentration variations. The change in UV–vis
spectra of the free dye (Figure 2(a) / 2(b)) compared
with dye bound to silica (Figure 5) clearly indicates the
formation of self-assembled nanostructures through
electrostatic interaction between silica and dye.

The aggregation effect was also studied using con-
centration-dependent 1H NMR in deuterated water for
dyes (1), (2) and (3) with conjugated double bonds
n = 1, 3, 5, respectively. The chemical shifts of dye
(1) recorded as a function of concentration at room
temperature are presented in Table 1 and the assigned

(a) (b)

(c) (d)

(e) (f)

Figure 4. Electronic microscopic images: (a, b) SEM image of calcined silica of dye (3); (c) TEM image of calcined silica of dye (3); (d,
e) SEM image of dye (1) with silica species; and (f) TEM image of dye (1) with silica species.
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peaks are in agreement with chemical structure. As the
concentration of dye is decreased, there is an increase
in chemical shifts (δ) of protons as a result of inter-
molecular interactions, especially from the aromatic
rings of the benzothiazole units, which is one of the
driving forces for the formation of aggregates. The
signal-to-noise ratio of the spectra was poor for con-
centrations below 0.01%, preventing further
measurements.

With respect to dye (1), the chemical shift (δ)
difference between the highest and lowest concentra-
tions was ≈0.390 in the case of aromatic hydrogens
(H1–6) with sharp peaks showing a slow relaxation
time (spin-lattice) as a result of smaller dipole–dipole

interactions. The sharp singlet observed for hydrogen
(H7) with chemical shift difference = 0.350 between
higher and lower concentration is less than that of
aromatic hydrogens, indicates less interaction in
aggregation. This trend continues for hydrogens in
the methylene (H8) group. The acetate anion peak at
δ 1.939 has no effect on the dilution and the chemical
shift difference is negligible, emphasising the low
interaction between the acetate group and the rest of
the aggregated molecules. Free methyl units (H10)
had a very little interaction effect in the role of aggre-
gation. Similar behaviour was observed for two dyes
(2) and (3) as described above (see Table S1 in the
supplementary material which is available via the
multimedia link on the online article webpage).
However, due to the partial solubility of dye (4) in
deuterated water, concentration-dependent 1HNMR
analysis was not possible.

Overall, chromonic aggregates lead to drastic
changes in the 1H NMR chemical shifts (δ) due to
the shielding effect and intermolecular interaction
between adjacent molecules stacked one above
another in a column; there is also cross-link inter-
action with aromatic rings of neighbouring mole-
cules due to the ring current.[58] Thus, a substantial
chemical shift with concentrations arises in the 1H
NMR experiment which is reminiscent of the afore-
mentioned UV and fluorescent analysis in confirm-
ing the aggregate process. Conjugated double bonds
as a central spacer in the dyes affect the formation
of CLC phases; dyes with longer and shorter con-
jugated double bonds (4) and (1), respectively, at
1% (w/v) concentration were partially soluble in
water at room temperature, resulting in non-CLC
phases.

X-ray diffraction (XRD) analysis was performed
on a calcined sample of dye (3) bound to silica. Two
low-intense peak obtained with ratio of 1: √3 corre-
sponds to hexagonal lattice, 'd' spacing assign to 4.2
nm followed by next at 2.5 nm, whereby the ratio
authenticates the hexagonal spatial arrangement.
Low-intense order reflections can be attributed to
the diffuse interface which also contributes to peak
broadening.[26,27] (See Figure S5 in the supple-
mentary material which is available via the multi-
media link on the online article webpage.)

Based on the results of UV–vis, fluorescence, SEM,
TEM, XRD and microscopic images, dye (3) self-
assembles into nanotubular fibres having constant dia-
meter with the inner walls made of smaller tubes as
shown in the schematic diagram (Figure 6).
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Figure 5. (colour online) UV–vis absorption spectra of dye (3)
bound to silica at different concentrations (w/v) in water.

Table 1. Chemical shifts (δ) for dye (1) in deuterated water
recorded as a function of concentration.

S

N+

S
N

-O

O

1

1

2

2

3 4
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7 8
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10

Concentration (wt %) Dye 1

Peak (δ) 1 0.5 0.25 0.125 0.01

1 7.511 7.597 7.676 7.750 7.883
2 7.201 7.282 7.356 7.427 7.568
3 7.139 7.228 7.311 7.387 7.531
4 7.139 7.228 7.311 7.387 7.531
5 7.052 7.136 7.209 7.276 7.400
6 7.052 7.136 7.209 7.276 7.400
7 6.031 6.113 6.186 6.253 6.382
8 4.171 4.251 4.307 4.359 4.460
9 1.941 1.940 1.939 1.939 1.939
10 1.365 1.407 1.435 1.457 1.493
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3. Conclusions

Thiacyanine acetate dyes form the chromonic nematic
N phase at very low concentrations (0.5%, w/v) repre-
sents first of its kind and hexagonal M liquid crystalline
phases in water at higher concentrations. The acetate
anion plays a vital role in stabilisation of CLC forma-
tion. In addition to 1H NMR concentration-dependent
analysis in deuterated water, J-aggregates observed by
UV–vis and fluorescent spectroscopy experiments
unambiguously confirm the stacking of these rod-
shaped molecules into columns with significant tilt,
[18] resulting in chromonic N and M phases at differ-
ent concentrations. The conjugated double bond as a
central spacer in the dyes plays a vital role in solubility
and CLC formation, but a remarkable aggregation
effect in water observed at lower concentrations. Sol–
gel reactions of these acetate dyes with silica particles
furnish an entangled network having nanotubular
fibres with a constant diameter and length in excess
of micrometres. Thus, these water-soluble dyes need
further investigation for their applications in biological
science.

4. Experimental section

All the dyes, such as 3,3′-diethylthiacyanine iodide, 3,3′-
diethylthiadicarbocyanine iodide, 3,3ʹ-diethylthiatricar-
bocyanine iodide and 3,3′-diethylthiacarbocyanine
iodide, as well as deuterated solvents, were purchased
from Sigma-Aldrich and used as such without further
purification. Thin layer chromatography (TLC) was per-
formed on precoated silica gel 60 F254 (Merck) plates.
Ultrapure water (resistivity = 18.2 MΩ/cm) was used in
all the experiments. UV–vis absorption spectra were
measured using a Shimadzu UV-2550 spectrometer
operating in the wavelength range 190–1100 nm.
Steady-state excitation and emission fluorescence spectra
were recorded with a Horiba Scientific Fluoromax-4
spectrofluorometer at a working temperature range

between −10°C and 100°C. The crude samples were
purified by short flash column chromatographic techni-
que using neutral alumina as the stationary phase. 1H
NMR spectra were recorded using a Bruker AMX-400
(400 MHz) spectrometer and the chemical shifts were
reported in parts per million (ppm) relative to tetra-
methylsilane (TMS) as an internal standard. Optical
polarising microscopy (OPM) was performed using a
Nikon SMZ1500. Elemental microanalysis was per-
formed using a Eurovector E300 elemental analyser.
Environmental scanning electron microscopy (ESEM)
images obtained using a Quanta 650 FEG (FEI) instru-
ment at different kV switched between three vacuum
modes. TEM images were collected with a Titan
200 kV ChemiStem (FEI) equipped with a Probe Cs
corrector. Small angle X-ray scattering (SAXS), using
an Anton Paar SAXSess MC2, is a non-destructive
method in which the incoming X-ray beam interacts
with the electrons of all atoms in the sample, resulting
in a so-called ‘scattering pattern’ (X-ray intensities versus
scattering angles).

4.1. Analytical data of thiacyanine dyes

(1): 3,3′-Diethylthiacyanine acetate. Pale greenish colour
solid; yield 65% (after column chromatography); δ 1H
NMR (400 MHz, CD3OD): δ 8.08 (d, J = 8.0 Hz, 2H, Ar),
7.83 (d, J = 8.4 Hz, 2H, Ar), 7.30 (t, J = 7.2 Hz, 2H, Ar),
7.54 (t, J = 7.6 Hz, 2H, Ar), 6.69 (s, 1H, –CH = CNS),
4.70 (q, J = 7.2 Hz, 4H, 2 × CH2), 1.91 (s, 3H, CH3COO

‒)
1.55 (t, J = 7.2 Hz, 6H, 2 × CH3); Anal. calc’d for
C21H22N2O2S2: C,63.29; H, 5.56; N, 7.03. Found: C,
63.45; H, 5.04; N, 7.05.

(2): 3,3′-Diethylthiacarbocyanine acetate. Deep red
colour solid, yield 70% (after column chromatography);
δ 1H NMR (400 MHz, CD3OD): δ 8.00 (t, J = 12.8 Hz,
1H, –CH = CH–CH =), 7.84 (d, J = 8.0 Hz, 2H, Ar),
7.64 (m, 4H, Ar), 7.41 (t, J = 7.6 Hz, 2H, Ar), 6.55 (d,
J = 12.4 Hz, 2H, –CH = CH–CH =), 4.42 (m, 4H,

Figure 6. (colour online) Schematic representation of self-assembled nanostructure forming nanotubular fibres of dye (3).
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2 × CH2), 1.91 (s, 3H, CH3COO
‒),1.48 (t, J = 7.2 Hz,

6H, 2 × CH3);
13C NMR (100 MHz, CD3OD) δ 181.39,

166.48, 148.47, 142.34, 129.39, 129.29, 127.89, 126.91,
126.57, 123.86, 122.40, 114.16, 112.57, 99.45, 42.82,
24.01, 12.93; Anal. calc’d for C23H24N2O2S2: C, 65.06;
H, 5.70; N, 6.60. Found: C, 65.05; H, 5.40; N, 6.44.

(3): 3,3′-Diethylthiadicarbocyanine acetate. Blue colour
solid; yield 72% (after column chromatography); δ 1H
NMR (400 MHz, CD3OD): δ 7.82 (d, J = 7.6 Hz, 2H,
Ar), 7.70 (d, J = 12.8 Hz, 2H, Ar), 7.62 (m, 4H, Ar), 7.42
(m, 2H, –CH = CH–), 6.59 (m, 1H, -CH = CNS), 6.47 (m,
2H, –CH = CH–), 4.43 (m, 4H, 2 × CH2), 1.93 (s, 3H,
CH3COO

‒),1.48 (m, 6H, 2 × CH3);
13C NMR (100 MHz,

CD3OD) δ 179.40, 164.91, 151.90, 142.25, 129.27, 129.15,
127.09, 126.43, 126.13, 123.69, 122.27, 114.05, 113.75,
100.95, 99.53, 42.64, 23.72, 13.00; Anal. calc’d for
C25H26N2O2S2: C, 66.63; H, 5.82; N, 6.22. Found: C,
66.51; H, 5.98; N, 6.43.

(4): 3,3ʹ-Diethylthiatricarbocyanine acetate. Olive
green colour solid; yield 65% (after column chromatogra-
phy); δ 1H NMR (400 MHz, CD3OD): δ 7.82 (m, 2H, Ar),
7.59 (m, 6H, Ar), 7.56 (m, 1H, –CH = CNS), 7.52 (m, 3H,
–CH = CH–CH =), 6.49 (m, 3H, = CH–CH = CH–), 4.41
(m, 4H, 2 × CH2), 1.99 (s, 3H, CH3COO

‒),1.46 (m, 6H,
2 × CH3); Anal. calc’d for C27H28N2O2S2: C, 68.03; H,
5.92; N, 5.88. Found: C, 68.05; H, 5.83; N, 5.79.
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