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Amino-calixarene-modified graphitic carbon as a novel
electrochemical interface for simultaneous measurement of lead
and cadmium ions at picomolar level
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Abstract Amino-calixarene-derivatized graphitic carbon
electrode has been used in the simultaneous quantification of
lead and cadmium ions at picomolar level. The graphitic car-
bon has been chemically modified using amino-calixarene as
an indicator molecule through microwave irradiation, and it
has been characterized by NMR, mass, and Fourier transform
infrared spectroscopy (FTIR) techniques. The proposed sen-
sor has shown linearity in the concentration range 10–120 pM
with detection limits of 3.3 and 3.5 pM for lead and cadmium,
respectively. The proposed sensor has been successfully ap-
plied to quantify lead and cadmium levels in battery effluents,
alloy materials, and sewagewater samplematrices. The results
obtained by the proposed sensor are in agreement with the
results of the standard protocols.

Keywords Amino-calixarene . Graphitic carbon . Anodic
stripping voltammetry . Lead . Cadmium . Battery effluents

Introduction

Toxicity due to heavy metal ion presence such as lead and
cadmium in groundwater has been a major concern in recent
years all over the world [1]. The presence of these metal ions
in the environment in larger concentration is mainly due to the

increased human activity in various industrial processes like
metallurgical, catalytic, polymer, dye, and fertilizer industries.
Because of their high toxicity and prolonged exposure, even at
trace-level concentration, these metal ions can cause severe
problems in human and aquatic systems [2]. Lead and cadmi-
um have acute and chronic effects on human health. The pres-
ence of lead in the environmental samples like water, air, and
soil samples may cause neurological, cardiovascular, and re-
productive disorders in human kind. The presence of cadmi-
um in water samples may lead to kidney damage; subsequent-
ly, it can alter the constitution of the bone, liver, and blood [3].
The prescribed threshold limit values (TLV) of lead and cad-
mium ions in drinking water are 10 and 3 ppb, respectively,
according to the World Health Organization [4]. Hence, it is
mandatory to measure these metal ions at ultra trace-level
concentration in order to check the quality of drinking water
by several governmental and non-governmental agencies [5].
Several protocols have been reported to quantify these metal
ions at bulk concentration level. However, the trace-level
quantification is a major challenging problem due to the so-
phisticated instrumentation involved, skilled operators, very
tedious sample preparation procedures, etc. Several tech-
niques like flame atomic absorption spectrometry (FAAS),
graphite furnace atomic absorption spectrometry (GFAAS),
and inductively coupled plasma atomic emission spectrometry
(ICPAES) have been routinely used to quantify these elements
at ultra trace-level concentration from a variety of sample
matrices [6–10]. But, all these techniques are expensive and
require skilled personnel to operate and prolonged sample
preparation procedures. However, electrochemical methods
are possible alternative ones to these techniques due to their
high sensitivity, selectivity, and wide variability in their mod-
ification strategies. They also provide very wide working lin-
earity, portability, and low cost. Hence, in recent years, a sig-
nificant emphasis has been laid in the development of
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electrochemical-based sensors in the quantification of several
toxic and heavy metal ions [11]. A variety of electrodes have
been used in the electrochemical quantification of both inor-
ganic and organic analytes incorporating suitable indicator or
modifier molecules on the surfaces of substrate materials.
Among these, gold-coated electrodes, silver electrodes, glassy
carbon electrodes, carbon paste electrodes, and screen-printed
electrodes are significant ones to mention it here [12–22].
Chemically modified electrodes (CMEs) are another class of
electrodes extensively used to achieve the target analyte selec-
tivity and specificity based on modifying the carbon substrate
surface with an indicator molecule containing electroactive
moieties as a part of the molecular structure [23]. The chem-
ical modification of various carbon substrates such as carbon
nanotubes (CNTs), carbon nanohorns (CNH), carbon
nanofibers(CNF), graphene, graphite, glassy carbon spheres,
and boron-doped diamond has been reported [24–30] for mea-
surement of lead and cadmium ions. Poly(4-vinylpyridine-co-
aniline)-based solid-state ion sensor was used for cadmium(II)
measurement from water and food samples [31]. A microtiter
plate-based electrochemical device was developed and used in
simultaneous measurement of lead and cadmium ions from
standard effluent sample [32]. These electrodes were modified
using several methods such as wet impregnation
(physisorption), polymer wrapping, covalent attachment,
chemisorption, etc. A chemically modified carbon paste elec-
trode containing periodic mesoporous organosilica and cyclo-
dextrins was used in the determination of lead and cadmium
from water samples [33, 34]. But, these methods are having
limitations such as poor stability, low-adhesive nature, non-
uniform distribution of modifier, and uncontrollable thickness
of the film resulting in the poor reproducibility of the mea-
surements [35].

Modification of carbon substrate with calixarene moie-
ty has gained much attention in recent years due to their
selective recognition and complexation with metal ions.
Calixarenes and its derivatives with suitable functional
moieties have been used as a sensing material in the elec-
troanalysis of toxic metal ions recently [36, 37]. Mahajan
et al. have used poly(vinylchloride) (PVC) matrix mem-
brane based on Schiff base p-tert-butyl calix[4]arene de-
rivative as an ion-selective electrode in silver(I) quantifi-
cation [38]. Mandlier et al. have successfully extracted
and quantified uranyl ions from aqueous solution using
a self-assembled monolayer composed of cysteamine to
which 4-sulfonic calixarene was electrostatically anchored
on the surface of gold electrode [39]. Similarly, Hanna
et al. have used ferrocene-substituted calixpyrrole as a
neutral redox-active receptor incorporating into carbon
paste electrode to recognize anions such as F−, Cl−, Br−,
and H2PO4

− in aqueous medium [40]. Hart et al. have
used calixarene derivatives as an indicator molecule in
the determination of Pb2+and Cd2+ ions using screen-

printed carbon electrodes [21, 22]. Zazoua et al. have used
cadmium-sensitive electrode based on tetraacetone deriv-
ative of calixarene moiety using electrochemical imped-
ance spectroscopy [41]. In the present report, amino-
calixarene-modified graphitic carbon has been used as a
novel electrochemical interface to quantify lead and cad-
mium ions simultaneously at trace level from various
sample matrices using cyclic voltammetry and differential
pulse anodic stripping voltammetry (DPASV) techniques.

Experimental

Chemicals and reagents

All reagents used were of Analar grade and used without
any further purification. Graphite (dia. <20 μm), lead ni-
trate, cadmium nitrate, and potassium bromide (Fourier
transform infrared spectroscopy (FTIR) grade, purity,
99.99 %) were obtained from Sigma-Aldrich. Acetic acid,
sodium acetate, and sodium hydroxide were purchased
from SD Fine Chemicals, Mumbai. All pH solutions in
the range 2–8 were prepared using ultra pure double-
distilled water from Millipore water purifier with a resis-
tivity of not less than 18.2 MΩ cm−1 at 25 °C. Stock
solutions of lead and cadmium ionic solutions were pre-
pared using corresponding salts. Working standards were
prepared by diluting the stock solutions on the day of use.

Apparatus

All electrochemical measurements were carried out using
an electrochemical workstation [CH Instruments, TX,
USA, model: CHI 619B] at room temperature (25 ±
2 °C) in an electrochemical cell of volume 10 mL with
a standard three-electrode configuration. Chemically mod-
ified glassy carbon electrode (dia. = 5 mm) acted as the
working electrode and Ag/AgCl (3 M KCl) as a reference
electrode (CH Instruments, TX, USA). Platinum wire
acted as the counter electrode. All the solutions were
degassed using high-purity nitrogen gas for 10 min before
all electrochemical measurements. All pH measurements
were carried out using a pH meter (Control Dynamics,
Mumbai, India model: APX 175). Infrared measurements
were recorded using FTIR spectrometer (Bruker, model:
8400S) in the range 400–4000 cm−1 with a resolution of
4 cm−1. Microwave experiments were conducted using a
domestic microwave oven. 1H NMR spectra were record-
ed using400-MHz NMR spectrometer (Bruker) using
d ime thy l su l fox ide (DMSO-d6) as so lven t and
tetramethylsilane (TMS) as an internal standard. The mass
spectral data was recorded using GCMS (Shimadzu,
Japan, model: QP 2010S).
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Analytical procedure

The simultaneous determination of Pb2+ and Cd2+ ions
was carried out using DPASV in the potential range from
−1.0 to 0.0 V with an amplitude of 0.01 V and a pulse
width of 0.05 s. Known amounts of both lead and cadmi-
um ions were taken in an electrochemical cell of 10-mL-
volume capacity containing 4 mL of sodium acetate–
acetic acid buffer solution (pH 6) and 4 mL of 1 M po-
tassium nitrate, which is fitted with a tab-controlled mag-
netic stirrer. The CME was immersed into the above-
stirred solution for 2 min to preconcentrate the metal ions
at open circuit potential. Then, the preconcentrated metal
ions were reduced at a reduction potential of −1.2 V and
subsequently stripped off from the electrode surface into
the bulk of the electrolytic solution by sweeping the po-
tential in the positive direction after 20 s of equilibration
time. Then, the modified electrode is gently washed with
a small quantity of distilled water for further use.

Synthesis of modifier

Calixarene was prepared using p-tert-butylphenol and
formaldehyde as per the reported literature method [42];
subsequently, 1 g of calixarene (1.54 mM) was taken in
100-mL round-bottom flask to which 20 mL of conc. ni-
tric + sulfuric acid mixture (1:1) was added and stirred at
10 °C for 24 h. Yellow-colored solid obtained was filtered
after the addition of 80 mL of distilled water. Then, it was
washed with methanol and dried at room temperature. The
obtained solid was recrystallized using acetone [43].
Then, in order to reduce the nitro to amino calixarene,
5 mg of nanopalladium/carbon composite was added un-
der hydrogen atmosphere into 50-mL flask containing 1 g
of p-nitrocalixarene and the reaction mixture was stirred
for 15–30 min. Then, the reaction mixture was cooled at
room temperature to obtain the desired product
(Scheme 1).

Characterization

The prepared compounds of calixarene and amino-calixarene
were characterized by spectroscopic tools to ascertain the
functional groups as well as its molecular mass.

FTIR study

The infrared spectra of calixarene and amino-calixarene were
recorded in the wave number range 4000–400 cm−1 to con-
firm the presence of functional groups in the synthesized mol-
ecule. A weak stretching frequency was observed at
3166 cm−1 due to the vibration of OH groups of cyclic tetra-
mer. The bands at 1449 and 1391 cm−1 might be due to the –
COH bending vibrations (Fig. 1). The spectrum of amino-
calixarene (Fig. 2) showed a band at 1342 cm−1 corresponding
to the –C=N– stretching and the band at 1530 cm−1 due to –N–
H bending and 3285 cm−1 –N–H stretching, which were not
found in the spectrum of calixarene. These results confirmed
the presence of amino groups on the calixarene moiety.

GC-MS study

The synthesized calixarene molecule and its molecular mass
were determined by the GC-MS study. A molecular ion peak
at m/z 648 (Fig. 3) was observed, which corresponds to the
molecular weight of the synthesized compound. The peak
observed at m/z 592 is due to the loss of one tert-butyl group
from one of the upper rims of the compound.

1H NMR study

1H-NMR spectra were recorded using Bruker 400-MHz in-
strument with TMS as the internal standard and DMSO-d6 as
the solvent. A broad singlet observed at 8.69 ppm corresponds
to the four phenolic –OH groups of the calix[4]arene moiety.
Methylene protons resonated at 3.80 ppm as a singlet, whereas

Scheme 1 Synthesis of amino-
calixarene
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the singlet observed at 1.09 ppm corresponds to the methyl
group of the tert-butyl moieties (Fig. 4).

Covalent modification of graphitic carbon
with amino-calixarene

One gram of graphitic carbon powder in 100-mL beaker con-
taining 10 mL of conc. HNO3 was irradiated with microwave
energy (15 % of total 600 W) for about 2 min to induce
carboxylic groups on the surface of graphitic carbon particles.
Then, 500 mg of amino-calixarene was added and irradiation
was continued for two more minutes. The chemically modi-
fied graphitic carbon powder was washed thoroughly with
acetonitrile several times to remove the unreacted and
physisorbed modifier molecules. Then, the reaction mixture
was washed with ample quantities of water to remove the
excess of acid present in it. Finally, the carbon powder

particles were washed with acetone to remove the moisture.
The functionalized carbon powder was dried by placing in a
fume hood for a period of 10 h and stored in an airtight con-
tainer prior to its use [44] (Scheme 2).

Chemical modification of glassy carbon electrode

Chemically modified graphitic carbon particles (5 mg) were
added into 5 mL of water in glass vial and sonicated for
30 min to achieve uniform dispersion. Then, 25 μL of dis-
persed solution was drop casted onto the glassy carbon elec-
trode (Scheme 3). The electrode was allowed to dry for a
period of several hours to remove the solvent from the surface
of electrode at ambient conditions. This procedure was repeat-
ed several times to get uniform distribution of modified graph-
ite particles on glassy carbon electrode surface.

Results and discussion

Electrochemical behavior of amino-calixarene-modified
electrode

The electrochemical response of amino-calixarene-modified
electrode in presence of lead and cadmium ions was first ex-
amined using cyclic voltammetry technique in order to under-
stand the potential affinity of the modifier molecule toward
Pb2+ and Cd2+ in aqueous medium. The typical cyclic
voltammetric response in presence and absence of metal ions
at calixarene and amino-calixarene-modified interfaces in the
potential window from −1.0 to 0.0 V is shown in Fig. 5 (a–d).
The resulting voltammograms have showed well-defined ox-
idative and reductive peaks for the CME in presence of metal
ions, indicating that the modifier molecule could be used in
the quantitative study. The glassy carbon electrode modified
with calixarene in absence of metal ions (Fig. 5 (a)) has not
shown any anodic signals but showed a small cathodic split
signal, which might be attributed to the fact that the electrode
surface unevenness is caused by that during drop-casting
method. However, the same electrode (Fig. 5 (c)) in presence
of metal ions has shown well-defined oxidative and reductive
peaks with small peak current intensities. But, the amino-
calixarene-modified electrode exhibited strong oxidative
peaks with increased peak currents in comparison with
calixarene-modified interface. However, amino-calixarene-
modified electrode in presence of metal ions showed signifi-
cant anodic peaks and weak split cathodic peaks Fig. 5 (b).
The splitting of cathodic signals of amino-calixarene-
modified electrode in presence of electrolyte solution contain-
ing target analytes, i.e., Pb(II) and Cd(II) ions, was observed at
a potential of −0.55 and −0.80 V, respectively. The splitting of
cathodic peaks might be due to the uneven electrode surface
formed during the drop-casting method. or it could also be due
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to any extraneous redox processes occurring during electro-
chemical study. The voltammogram of the unmodified elec-
trode has been shown in Fig. 5 (d), and no splitting of the
cathodic peaks was observed. These studies revealed that the
chemically modified electrode (CME) surface could be effi-
ciently used in the measurement of lead and cadmium ions
simultaneously at trace level.

The oxidative peaks were significant in comparison with
reductive peaks in the CV study; hence, to improve the

measurement efficiency in the present protocol, the anodic
stripping voltammetric technique was adapted in the current
electrochemical study. The peak potentials in the stripping
analysis have shifted toward more negative potential than in
cyclic voltammetry due to the complexation phenomenon be-
tween the ligand molecules (CO–NH groups in the modifier
molecule) and metal ions [45]. All these observations reveal
that the working electrode modified with amino-calixarene as
an indicator molecule could be used as a thin film in the

Fig. 3 GC-MS spectrum of calixarene

Fig. 4 1H NMR spectrum of calixarene
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quantitative application study. In the proposed interface, the
modifier molecule containing –CONH groups acts as a che-
lating agent, and during preconcentration step, metal ions ac-
cumulate on the electrode interface through complexation
phenomenon. During electrochemical turnover, the accumu-
lated metal ions will reduce to metallic state and subsequently
gets oxidized to ionic state producing peak current proportion-
al to the concentration of metal ions accumulated on the elec-
trode interface [27]. The binding behavior and complexation
mode between modifier molecule and the target metal ions are
schematically shown in Scheme 4.

Optimization study

In order to achieve the maximum efficiency of amino-
calixarene-modified electrode in the electrochemical quantifi-
cation of Pb2+ and Cd2+ ions under aqueous medium, all the
reaction variables likemedium pH, preconcentration time, and
reduction potential were optimized.

Effect of pH

The effect of pH on the anodic stripping voltammetric (ASV)
response of the modified electrode in the range pH 2–8 was
investigated using 8 mL of 1 M KNO3 as supporting electro-
lyte and 1 mL of 1-mM solutions of each of lead and cadmium

ions. The desired pH was adjusted using acetate buffer solu-
tion. It was found that the peak current increased sharply with
increasing pH up to 6; this is due to the increasing complex
formation of lead and cadmium with chemically modified
amino-calixarene electrode surface. At higher pH, the de-
crease of the anodic peak currents might be the cause of hy-
drolysis, leading to the metal hydroxide formation. Hence, pH
6 was used as an optimum pH for the electrolyte in all further
studies (Fig. 6).

Effect of preconcentration potential

The effect of the preconcentration potential on the anodic peak
current of lead and cadmium ions was examined by varying
the potential range from −0.6 to −1.4 V; well-defined peak
currents were obtained. In this method, preconcentration can
be achieved by keeping the electrode at particular potential in
order to reduce the metal ions to their metallic state, which is
reoxidized to their respective ions giving an anodic stripping
peak during the anodic potential scan. The peak currents in-
crease with increase of potential from −0.6 to −1.2 V for lead
and cadmium ions due to the reduction of more Pb2+and Cd2+

ions. Further increase in the reduction potential from −1.2 to
−1.4 V leads to a steady-state current due to the hydrogen
evolution at higher reduction potentials, which interfere in
the determination of Pb2+ and Cd2+ ions [46−48]. Hence, a

Scheme 2 Chemical modification of graphitic carbon powder

Scheme 3 Chemical
modification of glassy carbon
electrode (GCE) surface by drop
casting: a bare electrode, b
modifier drop, and c modified
electrode surface
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reduction potential of −1.2 V was used as the optimum con-
dition in all further studies.

Effect of preconcentration time

The effect of time to preconcentrate the analyte species from
the bulk of the solution to the electrode interface was studied.
During this preconcentration step, the metal ions interact with
the surface functional moieties through complexation and ac-
cumulate on the electrode surface. The effect of deposition
time was studied between 1 and 7 min on the anodic stripping
peak currents of Pb2+ and Cd2+. The dependence of the dif-
ferential pulse anodic stripping peak current was carried out in
a buffer solution of pH 6 containing 1 M KNO3 as supporting
electrolyte. The peak currents increase from 1 to 5 min and
then remain almost constant after 5 min. It might be due to the

non-availability of sites on the electrode surface for the accu-
mulation of metal ions, indicating the electrode surface satu-
ration [34]. Hence, an optimum preconcentration time of
5 min was used in all further studies.

Calibration plot

The differential pulse anodic stripping voltammograms with
the above-optimized conditions at different concentrations of
lead and cadmium ions in presence of CME showed a linearity
in the concentration range 10–120 pM for Pb2+and Cd2+ ions
with detection limits of 3.3 and 3.5 pM, respectively. The
experiments were repeated five times, and the concerned over-
laid stripping voltammograms are shown in Fig. 7. The math-
ematical expressions for the calibration plots of target metal
ions were found to be linear and given as lead ion Y = (0.0054
± 0.0004) x + (1.02 ± 0.03) R2 = 0.984 and cadmium ion
Y = (0.0146 ± 0.0012) x + (0.15 ± 0.09) R2 = 0.983. The
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Scheme 4 Schematic representation of binding and complexation mode of modifier with analyte
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regression coefficients of the above equations indicate the
linearity and standard deviations in the slope (Table 3ESI).

Interference study

In order to check the selectivity of the proposed sensor, the
effect of interfering ions was studied. Common cations and
anions were added into the electrolyte in addition to the ana-
lyte species, and the impact of these ions on the analytical
signal intensity was studied. The developed sensor showed
least interference from most of the common cations and an-
ions due to specific interaction between the moieties of the
modifier molecule and the target analytes, i.e., lead and cad-
mium ions. The effect of interfering ions on the anodic peak

current response in presence of 60 pM each of Pb2+ and Cd2+

ions was investigated (Table 1ESI).

Repeatability and long-term storage stability

The simultaneous measurements of lead and cadmium ions in
presence of 60 pM each of these ions were studied five times
using the CME following the proposed protocol. The relative
standard deviation in the peak current response was found to
be 3.1 and 3.5 %, respectively. The stripping voltammograms
of the modified electrode in presence of metal ions were stud-
ied for a period of 3 months, and the deviation in the peak
currents obtained was 4.7 and 5 %, respectively, for lead and
cadmium. These results revealed that the proposed electrode
interface could be used repeatedly over a period of time and
posses good stability; hence, it can be used for repeated mea-
surements at trace-level concentration.

Application study

The proposed sensor has been successfully applied to quantify
Pb2+ and Cd2+ ions present in battery effluents, wood’s alloy,
and wastewater samples. Battery effluents and alloy samples
were collected from different sources and filtered to remove
any colloidal matter present in it. Ten milliliters of real sam-
ples was diluted to 100 mL by adjusting the pH to 6, and this
solution was added into the electrochemical cell containing
modified glassy carbon electrode. The stripping peak currents
were measured, and the concentrations were correlated
through the standard calibration plots (Table 2 ESI). The real
samples were also analyzed by the atomic absorption spectros-
copy (AAS) method for comparison purpose. The results ob-
tained by the proposed protocol are in good agreement with

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

0

40

80

120

160

200

C
u

r
r
e

n
t 
/ 

μA

Potential / V

[Cd
2+

]

[Pb
2+

]
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Table 1 Comparison table with
other existing sensors Electrode Metal

ions
Deposition time
(s)

Linear range
(μg L−1)

Limit of
detection

Ref.

LOD (μg L−1)

Bi-CPE Pb2+ 300 10–100 0.9 [49]
Cd2+ 10–100 1.2

Bi-BDD Pb2+ 120 1–20 1.9 [50]
Cd2+ 1–20 2.3

EPPG electrode Pb2+ 240 2–200 0.2 [51]
Cd2+ 20–200 0.3

Nafion-BHP-CPE Pb2+ 300 2–10.4 0.62 [52]
Cd2+ 1–5.6 0.17

Bi/PANI-MES/
GCE

Pb2+ 300 0.1–30 0.05 [53]
Cd2+ 0.1–20 0.04

Calixarene-GCE Pb2+ 300 10–120 ng L−1 3.3 ng L−1 Present
workCd2+ 10–120 ng L−1 3.5 ng L−1

Bi-CPE bismuth carbon paste electrode, Bi-BDD bismuth boron-doped diamond, EPPG edge plane pyrolytic
graphite, Nafion-BHP-CPE Nafion–barium hydrogen phosphate–carbon paste electrode, Bi/PANI-MES/GCE Bi,
Nafion and 2-mercaptoethanesulfonate (MES)-tethered polyaniline (PANI)/glassy carbon electrode
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the AAS method. Known aliquots of standards were added to
the real samples, and its recovery was also studied. The ana-
lytical performance of the proposed sensor has been compared
with other existing similar protocols (Table 1). The present
method showed much better detection limit (ng L−1) than all
other methods in which the limit of detection is in the order of
microgram per liter. The obtained superior detection limits in
the present protocol could be due to complexation between the
hydroxyl groups in the lower rim and amide groups in the
upper rim of the calixarene and metal ions during the stripping
study.

Conclusions

A novel amino-calixarene-graphite composite material has
been used as a modified electrode for the detection of ultra
trace Pb2+ and Cd2+ ions by the DPASV technique. The com-
posite material has been easily prepared by microwave irradi-
ation of graphitic carbon in presence of amino-calixarene as a
modifier molecule. The chemically modified graphitic carbon
has been immobilized on glassy carbon electrode by the drop-
casting method and used as a novel electrochemical interface
in the measurement of lead and cadmium ions simultaneously.
The proposed sensor has shown very low detection limits,
respectively, for lead and cadmium ions. The proposed sensor
has been successfully applied to measure lead and cadmium
ions at trace level from battery effluents, wastewater, and alloy
sample matrices. The results obtained by the proposed sensor
are in good agreement with the results of the standard
protocols.

Acknowledgments The authors acknowledge the financial support
from the University Grant Commission (UGC), New Delhi, India. The
authors express their gratitude to Karnataka State Pollution Control
Board, Bengaluru, India, for providing wastewater samples for analysis.

References

1. Hutchinson TC, Meema KM (1987) Lead, mercury, cadmium &
arsenic in the environment. Wiley, New York

2. El Mhammedi MA, Achakb M, Chta in ia A (2009)
Ca10(PO4)6(OH)2-modified carbon-paste electrode for the determi-
nation of trace lead(II) by square-wave voltammetry. J Hazard
Mater 161:55–61

3. Lasantha TV, Stoyan B, Nikolay D (2008) Electrochemical method
for quantitative determination of trace amounts of lead. Anal Chem
80:2042–2049

4. Guidelines for drinking-water quality fourth ed. (2011) World
Health Organization Geneva

5. Mark TF (1986) Electrochemical approaches to trace element spe-
ciation in waters: a review. Analyst 111:489–505

6. Li Y, Jiang Y, Yan X, Peng W, Wu Y (2002) A flow injection on-
line multiplexed sorption preconcentration procedure coupled with

flame atomic absorption spectrometry for determination of trace
lead in water, tea, and herb medicines. Anal Chem 74:1075–1080

7. Ye Q, Li Y, Jiang Y, Yan X (2003) Determination of trace cadmium
in rice by flow injection on-line filterless precipitation-dissolution
preconcentration coupled with flame atomic absorption spectrome-
try. J Agric Food Chem 51:2111–2114

8. Yaman M (2005) The improvement of sensitivity in lead and cad-
mium determinations using flame atomic absorption spectrometry.
Anal Biochem 339:1–8

9. Hassan K, Mir FM, Yadollah Y, Mojtaba S (2004) On-line
preconcentration and simultaneous determination of heavy metal
ions by inductively coupled plasma-atomic emission spectrometry.
Anal Chim Acta 509:89–94

10. Kathryn LL (2005) Recent developments in trace element analysis
by ICP-AES and ICP-MS with particular reference to geological
and environmental samples. Geostandards and Geoanalytical
Research 29:7–22

11. Grady H, Deepa GP, Joseph W (2004) Electrochemical sensors for
environmental monitoring: design, development and applications. J
Environ Monit 6:657–664

12. Joseph W, Baomin T (1993) Mercury-free disposable lead sensors
based on potentiometric stripping analysis at gold-coated screen-
printed electrodes. Anal Chem 65:1529–1532

13. Xiu-Hua Z, Sheng-Fu W (2005) Determination of ethamsylate in
the p r e s ence o f ca t e cho l amine s us ing 4 -amino -2 -
mercaptopyrimidine self-assembled monolayer gold electrode.
Sens Actuators B 104:29–34

14. Mordechai B, Inna E, Emilia K (1997) The silver electrode in
square-wave anodic stripping voltammetry. Determination of Pb2+

without removal of oxygen. Anal Chem 69:4660–4664
15. Beata K, Joanna P (2005) Determination of lead and cadmium at

silver electrode by subtractive anodic stripping voltammetry in
plant materials containing Tl. Electroanalysis 17:815–818

16. Kangbing W, Shengshui H, Junjie F, Wen B (2003) Mercury-free
simultaneous determination of cadmium and lead at a glassy carbon
electrode modified with multi-wall carbon nanotubes. Anal Chim
Acta 489:215–221

17. Di J, Zhang F (2003) Voltammetry determination of trace manga-
nese with pretreatment glassy carbon electrode by linear sweep
voltammetry. Talanta 60:31–36

18. Percy C, Karin YC, Nelci FH, Graciliano ON, Lauro TK (2004)
Determination of reduced glutathione using an amperometric car-
bon paste electrode chemically modified with TTF– TCNQ. Sens
Actuators B 100:333–340

19. Gabriela RM, Ramirez-Silva MT, Rosendo LG, Laura G, Romero-
Romo M (2005) Electrochemical characterization and determina-
tion of mercury using carbon paste electrodes modified with cyclo-
dextrins. Electroanalysis 17:694–700

20. Chengguo H, Kangbing W, Xuan D, Shengshui H (2003)
Simultaneous determination of lead(II) and cadmium(II) at a
diacetyldioxime modified carbon paste electrode by differential
pulse stripping voltammetry. Talanta 60:17–24

21. Honeychurch KC, Hart JP, Cowell DC, Arrigan DWM (2001)
Voltammetric studies of lead at calixarene modified screen printed
carbon electrodes and its trace determination in water by stripping
voltammetry. Sens Actuators B 77:642–652

22. Honeychurch KC, Hart JP, Cowell DC, Arrigan DWM (2002)
Voltammetric behavior and trace determination of cadmium at a
calixarene modified screen-printed carbon electrode.
Electroanalysis 14:177–185

23. Jyh-Myng Z, Annamalai SK, Dong-Mung T (2003) Recent updates
of chemically modified electrodes in analytical chemistry.
Electroanalysis 15:1073–1087

24. Jean P, Fetah P (2005) Attachment of organic layers to conductive
or semiconductive surfaces by reduction of diazonium salts. Chem
Soc Rev 34:429–439

J Solid State Electrochem



25. Salmanipour A, Taher MA (2011) An electrochemical sensor for
stripping analysis of Pb(II) based on multiwalled carbon nanotube
functionalized with 5-Br-PADAP. J Soild State Electrochem 15:
2695–2702

26. Ganjali MR, Asgari M, Faridbod F, Norouzi P, Badiei A, Gholami J
(2010) Thiomorpholine-functionalized nanoporous mesopore as a
sensing material for Cd2+ carbon paste electrode. J Solid State
Electrochem 14:1359–1366

27. Raghu GK, Sampat S, Malingappa P (2012) Chemically function-
alized glassy carbon spheres: a new covalent bulk modified com-
posite electrode for the simultaneous determination of lead and
cadmium. J Solid State Electrochem 16:1953–1963

28. Frédéric B, Alison JD (2008) Covalent modification of graphitic
carbon substrates by non- electrochemical methods. J Solid State
Electrochem 12:1231–1244

29. Justin JG (2008) Advances in interfacial design for electrochemical
biosensors and sensors: aryl diazonium salts for modifying carbon
and metal electrodes. Electroanalysis 20:573–582

30. Malingappa P, Lawrence NS, Compton RG (2002) Homogeneous
chemical derivatisation of carbon particles: a novel method for
functionalising carbon surfaces. Analyst 127:1568–1571

31. Ling JLW,Ghani SA (2013) Poly(4-vinylpyridine-co-aniline)-mod-
ified electrode—synthesis, characterization, and application as
cadmium(II) ion sensor. J Solid State Electrochem 17:681–690

32. Intarakamhang S, Schuhmann W, Schulte A (2013) Robotic heavy
metal anodic stripping voltammetry: ease and efficacy for trace lead
andcadmiumelectroanalysis. JSolidStateElectrochem17:1535–1542

33. Zarcero SM, Quintanill DP, Sierra I (2015) A disposable electro-
chemical sensor based on bifunctional periodic mesoporous
organosilica for the determination of lead in drinking waters. J
Solid State Electrochem 19:2117–2127

34. Morales GR, Silva TR, Galicia L (2003) Carbon paste electrodes
electrochemically modified with cyclodextrins. J Solid State
Electrochem 7:355–360

35. Mirjana M, Aleksandra J, Biljana SP, Ivana S, Gordana CM (2012)
Exploration of MnO2/carbon composites and their application to
simultaneous electroanalytical determination of Pb(II) and Cd(II).
Electrochim Acta 74:158–164

36. Diamond D, Nolan K (2001) Peer reviewed: calixarenes: designer
ligands for chemical sensors. Anal Chem 73:22 A–29 A

37. McMahon G, O’Malley S, Nolan K, Diamond D (2003) Important
calixarene derivatives—their synthesis and applications.
ARKIVOC (vii):23–31

38. Mahajan RK, Kaur I, Kumar M (2003) Silver ion-selective elec-
trodes employing Schiff base p-tert-butyl calix[4]arene derivatives
as neutral carriers. Sens Actuators B 91:26–31

39. Amit B, Haim T, Ze’ev P, Daniel M (2008) Detection of
uranium(VI) in aqueous solution by a calix[6]arene modified elec-
trode. J Electroanal Chem 621:214–221

40. Iwona S, Hanna R, Jerzy R, Philip AG, Colin NW (2006) Ferrocene-
substituted calix[4]pyrrole modified carbon paste electrodes for anion
detection inwater. J Electroanal Chem 591:223–228

41. Dernane C, Zazoua A, Kazane I, Jaffrezic-Renault N (2013)
Cadmium-sensitive electrode based on tetraacetone derivatives of
p-tert-butylcalix[8]arene. Mater Sci Eng C 33:3638–3643

42. David CG, Muzaffer I, Donald S (1986) Calixarenes. 18. Synthesis
procedures for p-tert- butylcalix[4]arene. J Org Chem 51:742–745

43. Ping-Shan W, Rui-Sen L, Han-Xing Z (1999) Direct synthesis p-
nitrocalix[4]arene from p-tert-butylcalix[4]arene. Synth Commun
29:2225–2227

44. Ramesha GK, Sampath S (2007) Exfoliated graphite oxide modi-
fied electrode for the selective determination of picomolar concen-
tration of lead. Electroanalysis 19:2472–2478

45. Malingappa P, Thippeswamy R (2008) Derivatization and charac-
terization of functionalized carbon powder via diazonium salt re-
duction. J Solid State Electrochem 12:1411–1419

46. Hongchao Y, Ping M (2008) Determination of cadmium (II) using
H2O2-oxidized activated carbon modified electrode. J Appl
Electrochem 38:1623–1627

47. Sun D, Wan C, Li G, Wu K (2007) Electrochemical determination
of lead(II) using a montmorillonite calcium-modified carbon paste
electrode. Microchim Acta 158:255–260

48. Kokkinos C, Economou A, Raptis I, Efstathiou CE (2008)
Lithographically fabricated disposable bismuth-film electrodes for
the trace determination of Pb(II) and Cd(II) by anodic stripping
voltammetry. Electrochim Acta 53:5294–5299

49. Toghill KE, Wildgoose GG, Moshar A, Mulcahy C, Compton RG
(2008) The fabrication and characterization of a Bismuth nanopar-
ticle modified boron doped diamond electrode and its application to
the simultaneous determination of cadmium(II) and lead(II).
Electroanalysis 20:1731–1737

50. Toghill KE, Wildgose GG, Moshar A, Mulcahy C, Compton RG
(2008) The fabrication and characterization of a bismuth nanopar-
ticle modified boron doped diamond electrode and its application to
the simultaneous determination of cadmium(II) and lead(II).
Electroanalysi 20:1731–1737

51. Lu M, Toghill KE, Compton RG (2011) Simultaneous detection of
trace cadmium(II) and lead(II) using an unmodified edge plane
pyrolytic graphite electrode. Electroanalysis 23:1089–1094

52. Sheela T, Basavanna S, Viswanatha R, Kalachar HCB, Naik YA
(2011) Barium hydrogen phosphate modified carbon paste elec-
trode for the simultaneous determination of cadmium and lead by
differential pulse anodic stripping voltammetry. Electroanalysis 23:
1150–1157

53. Chen L, Su Z, He X, Liu Y, Qin C, Zhou Y, Li Z, Wang L, Xie Q,
Yao S (2012) Square wave anodic stripping voltammetric determi-
nation of Cd and Pb ions at a Bi/Nafion/thiolated polyaniline/glassy
carbon electrode. Electrochem Commun 15:34–37

J Solid State Electrochem


	Amino-calixarene-modified...
	Abstract
	Introduction
	Experimental
	Chemicals and reagents
	Apparatus
	Analytical procedure
	Synthesis of modifier
	Characterization
	FTIR study
	GC-MS study
	1H NMR study
	Covalent modification of graphitic carbon with amino-calixarene
	Chemical modification of glassy carbon electrode

	Results and discussion
	Electrochemical behavior of amino-calixarene-modified electrode
	Optimization study
	Effect of pH
	Effect of preconcentration potential
	Effect of preconcentration time
	Calibration plot
	Interference study
	Repeatability and long-term storage stability
	Application study

	Conclusions
	References


