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ABSTRACT
In the imbedded Markov chain (IMC) analysis of M/G/1 queuing system,
X1, X2, . . . , Xn, . . . form a sequence of i.i.d random variables. where
Xn denotes the number of customer arrivals during the service time
of nth customer. In the M/D/1 queue, the distribution of common
random variable X is the Poisson distribution with mean ρ, the traffic
intensity. This fact is utilized formaximum likelihood (ML) and uniformly
minimum variance unbiased (UMVU) estimation of traffic intensity,
performance measures, transition probabilities of IMC, and correlation
functions of departure process, based on a sample of fixed size n from
P(ρ) distribution. Also, consistent asymptotic normality (CAN) property
of ML estimators (MLEs) is established. The MLEs and UMVUEs are
compared.

1. Problem, literature, and plan

Statisticians have dealt with parametric estimation in Poisson distribution due to many appli-
cations in various disciplines like ophthalmology, sociology, engineering, and biological sci-
ence. In this article, the objective is parametric estimation in Poisson distribution arising in
the imbedded Markov chain (IMC) analysis of the M/D/1 queuing system. A case for M/D/1
queuing system is: patients arrive for a certain test according to a Poisson process with rate
λ, which is not known and are asked to drink a cup of mixture dispensed by an automatic
machine which requires a constant time. The focus will be on estimation of traffic intensity
(ρ), measures of effectiveness, and correlation functions in the stable-M/D/1 queuing system.
The M/D/1 queuing system will be stable (or in steady state) iff the traffic intensity, ρ, is con-
strained to the parameter space� = {ρ : o< ρ < 1}. Thus, the problem is that of parametric
estimation under a constrained parameter space in Poisson distribution.However, the interest
is also in transition probabilities of the IMC of M/D/1 queuing system, which are not neces-
sarily steady-state measures. The sample information is (X1, . . . ,Xn), where Xn denotes the
number of arrivals during the service time of nth customer. This aspect is further explained
at the beginning of next section. The motivation for estimation emanates from mainly queu-
ing performance measures. However, the motivation is also due to the fact that we are
addressing the problem of estimation in a standard probability distribution namely Poisson
distribution.
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Clarke (1957) is among the early researchers on estimation in queuing systems. Bhat and
Subba Rao (1987) and Bhat et al. (1997) have reviewed this and related aspects. However, the
literature on estimation in queuing systems in the post review period has prospered due to
contributions from Conti (1999), Rio Insua et al. (1998), Armero and Bayarri (1999), Sharma
and Kumar (1999), Zheng and Seila (2000), Armero and Conesa (1998, 2000), Butler and
Huzurbazaar (2000), Huang and Brill (2001), Ausin et al. (2004), Mukherjee and Chowdhury
(2005), Chu andKe (2006), Chu andKe (2007), Ausin et al. (2008), Choudhury andBorthakur
(2008), Ramirez et al. (2008, 2008a), Kiessler and Lund (2009), Jayakrishna Udupa (2009), Xu
et al. (2011), Srinivas et al. (2011), and Chowdhury and Mukherjee (2013).

The following is the layout of this article. In Section 2, the maximum likelihood estimator
(MLE) of the traffic intensity ρ is obtained in the M/D/1 queuing system and MLE of traf-
fic intensity is derived in the stable-M/D/1 queuing system. The MLE and uniformly mini-
mumvariance unbiased estimators (UMVUEs) of performancemeasures in the stable-M/D/1
queuing system are derived in Section 3. Estimation of correlation functions of Orders 1 and
2 of the departure process of the stable-M/D/1 queuing system is the objective of Section 4.
In Section 5, the MLEs and UMVUEs of transition probabilities of the Markov chain imbed-
ded in the M/D/1 queuing system are derived. In Section 6, consistent asymptotic normality
(CAN) estimators of various measures are derived. A comparison of MLEs and UMVUEs
derived in Sections 3 and 4 is the objective of Section 7, using asymptotic expected deficiency
(AED) criterion.

2. Maximum likelihood estimation of traffic intensity

In the IMC analysis of M/G/1 queuing system, X1,X2, . . . ,Xn, . . . forms a sequence of i.i.d
random variables. The probability distribution of common random variable, denoted by X ,
in M/D/1 queuing system is the well-known Poisson distribution with mean ρ. That is

P(X = x) = e−ρρx

x!
, x = 0, 1, 2, . . . ,

where the parameter space is � = {ρ : ρ > 0}. As mentioned earlier, the estimation proce-
dures in this article are based on the random sample X

∼
= (X1,X2, . . . ,Xn), where Xj denotes

the number of customer arrivals during the service time of jth customer. Clearly,
∑n

i=1 Xi is a
minimal complete sufficient statistic for Poisson family of distributions. The sample mean is
an intuitive estimator of ρ, which turns out to be theMLE, UMVUE, andmethod ofmoments
(MOM) estimator of ρ in M/D/1 queuing system. However, our special interest is in estima-
tion of ρ in stable-M/D/1 queuing system as wewish to estimatemeasures of effectiveness and
correlation functions of departure process in stable-M/D/1 queuing system. The ML estima-
tion problem of ρ in the stable-M/D/1 queuing system can be formulated as

maxL(ρ; x
∼
) = −nρ +

n∑
i=1

xi · log ρ − log
n∏

i=1

xi!

subject to 0 < ρ < 1. The constraint 0 < ρ < 1 is required as theM/D/1 queuing system is in
steady state. However, the MLE may not exist for this problem. To circumvent this problem,
we replace 0 < ρ < 1 by 0 < ρ ≤ 1−, where 1− is a number less than 1 but close to 1 and is
provided by other sources of information. A source is the knowledge of the queuing analyst
and this analyst should be able to provide this number to the required accuracy like 0.9999 or
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0.999999. Now the problem of MLE of ρ can be reformulated as

maxL(ρ; x
∼
) = −nρ +

n∑
i=1

xi · log ρ − log
n∏

i=1

xi!

s.t ρ ≤ 1−

ρ ≥ 0

where L(ρ; x
∼
) denotes the log-likelihood function and L(ρ; x

∼
) is a strictly concave function

over the interval (0, 1−]. Solving the above problem we get the ML estimate of ρ. The ML
estimate is given by

ρ̂c =
{
x̄n, if x̄n ∈ [0, 1)
1−, if x̄n �∈ [0, 1), (2.1)

where x̄n is the samplemean estimate given by x̄n =
∑n

i=1 xi
n . Thus, theMLE is the samplemean

estimate if x̄n ≤ 1−. However, if the sample mean estimate is greater than 1−, then the MLE
of ρ is taken to be 1−.

3. Estimation of performancemeasures

The interest in this section is to estimatemeasures of system performance in the stable-M/D/1
queuing system. The measures are given by

Lq = 1
2

· ρ2

1 − ρ
, (3.1)

and

L = ρ + 1
2
ρ2

1 − ρ
, (3.2)

followingGross andHarris (1985), where Lq is the expected number of customers in the queue
while L is the expected number of customers in the system. The MLEs of Lq and L are easily
obtained by the application of invariance property of MLEs. That is theMLEs are obtained by
plugging ρ̂c, the MLE of ρ, for ρ in (3.1) and (3.2). Thus, the MLEs are

L̂q = 1
2

· ρ̂2
c

1 − ρ̂c
(3.3)

and

L̂ = ρ̂c + 1
2

ρ̂2
c

1 − ρ̂c
. (3.4)

For UMVU estimation of Lq and L, we make the direct application of Lehmann–Scheffe the-
orem. Poisson family of densities induced by T = ∑n

i=1 Xi is complete and thus
∑n

i=1 Xi is a
complete statistic. Also

∑n
i=1 Xi is sufficient for Poisson family of densities. Thus,T = ∑n

i=1 Xi

is the complete sufficient statistic. By Lehmann–Scheffe theorem, φ(T ) is the UMVUE of Lq
if

Eρ{φ(T )} = Lq ∀ ρ ∈ � = {ρ : 0 < ρ < 1}.
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That is

∞∑
t=0

φ(t )
e−nρ (nρ)t

t!
= 1

2
ρ2

1 − ρ
, (3.5)

where the parameter space is restricted to � = {ρ : 0 < ρ < 1} as Lq and L are steady-state
measures. Clearly, (3.5) is equivalent to

∞∑
t=0

{
2φ(t )nt

t!

}
ρt =

∞∑
t=2

{
t−2∑
r=0

nr

r!

}
ρt ,

where the condition ρ < 1 is used for expansion of (1 − ρ)−1 and enρ and thus the UMVUE
to be derived holds only when the M/D/1 queuing system is in steady state, that is the stable-
M/D/1 queuing system. The left hand side and right hand side of the above equation are
both power series and thus we obtain the UMVUE of Lq by equating the coefficient of ρt , t =
0, 1, 2, . . .. Thus, the UMVUE is given by

L̃q = φ(t ) =
⎧⎨
⎩

1
2

{
t−2∑
r=0

nr
r!

}
· t!
nt , t ≥ 2

0, t = 0, 1

To obtain UMVUE of L, we note that L = ρ + Lq, the queuing relationship, and use the fol-
lowing well-known theorem mentioned in Patel et al. (1976) and Kale (2005).

Theorem 3.1. If T1,T2, . . . ,Tk are UMVU estimators of parametric functions g1(θ ), . . . , gk(θ )
respectively, then

∑k
i=1 ciTi is the UMVU estimator of

∑k
i=1 cigi(θ ), where ci, i = 1, 2, . . . , k are

known constants.

In terms of notations of the above theorem, k = 2, c1 = 1, c2 = 1, θ = ρ, g1(ρ) = ρ, and
g2(ρ) = Lq. Thus, the UMVUE of L is obtained by the application of Theorem 3.1. The esti-
mator is given by

L̃ = ρ̃ + L̃q
= X̄n + L̃q

=
⎧⎨
⎩ X̄n + 1

2

{
t−2∑
r=0

nr
r!

}
t!
nt , t ≥ 2

X̄n, t = 0, 1
.

We now turn to estimation of correlation functions in the following section.

4. Estimation of correlation functions

The study of correlation structure of queuing processes has received attention because of its
implication in estimation as well as in its own right. In this context, it is pertinent to recall
the review of literature by Reynolds (1975). Jenkins (1966) derived the correlation functions
of Orders 1 and 2 of the departure process in the stable-M/D/1 queuing system and showed
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that they are given by

γ1 = Corr(dn−1, dn) = e−ρ + ρ − 1
ρ + 1

(4.1)

γ2 = Corr(dn−1, dn+1) = (ρ + 1)e−2ρ + ρ − 1
ρ + 1

(4.2)

TheMLEs of γ1 and γ2, denoted by γ̂1 and γ̂2, are easily obtained by plugging ρ̂c, in (2.1), for ρ
in (4.1) and (4.2). We now use the method used in the preceding section to obtain UMVUEs
of γ1 and γ2. As such the UMVUE of γ1 is the solution to ψ of the following equation:

Eρ{ψ(T )} = γ1

which can be written as
∞∑
t=0

ψ(t ) · e
−nρ (nρ)t

t!
= γ1,

and this is equivalent to

∞∑
t=0

{
ψ(t )nt

t!

}
ρt = (1 + ρ)−1enρ[e−ρ + ρ − 1].

After expanding the R.H.S and collecting terms involving ρt , we get

ψ(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t∑
r=2
(−1)r+1

[
(n − 1)r

r!
+ nr−1

(r − 1)!
− nr

r!

]
t!
nt
, if t is an odd number

t∑
r=2
(−1)r

[
(n − 1)r

r!
+ nr−1

(r − 1)!
− nr

r!

]
t!
nt
, if t is an even number,

theUMVUEof γ1. Similarly, theUMVUEof γ2 can be obtained.However, we deriveUMVUEs
of each of the three terms on right hand side of (4.2) and thenuse theTheorem3.1 to obtain the
UMVUE of γ2. By Lehmann–Scheffe theorem, ψ1(T ) is UMVUE of e−2ρ if ψ1 is the solution
of

∞∑
t=0

ψ1(t )
e−nρ (nρ)t

t!
= e−2ρ (4.3)

for all ρ ∈ � = {0 < ρ < 1}. That is (4.3) is equivalent to
∞∑
t=0

{
ψ1(t )nt

t!

}
ρt = 1 + (n − 2)ρ + (n − 2)2

2!
ρ2 + · · · ,

which yields

ψ1(t ) =
{( n−2

n

)t
, t = 0, 1, 2, . . . (n ≥ 2)

0, otherwise.
. (4.4)

Now, ψ2(t ) is UMVUE of ρ

1+ρ if it is the solution of

∞∑
t=0

ψ2(t )
e−nρ (nρ)t

t!
= ρ

1 + ρ
.
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This equation can be rewritten as

∞∑
t=0

{
ψ2(t )

nt

t!

}
ρt = enρ · ρ(1 + ρ)−1. (4.5)

Expanding the R.H.S of (4.5) and equating the coefficients of ρt , we get

ψ2(t ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t!
nt

t−1∑
r=0

nr

r!
(−1)r, if t is an odd number

t!
nt

t−1∑
r=0

nr

r!
(−1)r+1, if t is an even number

0 , if t = 0.

Similarly, UMVUE of 1
1+ρ is obtained and the UMVUE is given by

ψ3(t ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 , if t = 0
t!
nt

t∑
r=0

nr

r!
(−1)r+1, if t is anoddnumber

t!
nt

t∑
r=0

nr

r!
(−1)r, if t is anevennumber.

Thus, the UMVUE of γ2 is obtained using Theorem 3.1 and is given by

γ̃2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 , if t = 0(
n − 2
n

)t

+ t!
nt

t−1∑
r=0

nr

r!
(−1)r − t!

nt

t∑
r=0

nr

r!
(−1)r+1, if t is an odd number

(
n − 2
n

)t

+ t!
nt

t−1∑
r=0

nr

r!
(−1)r+1 − t!

nt

t∑
r=0

nr

r!
(−1)r, if t is an even number.

5. Estimation of transition probabilities

The transition probabilities of IMC in the M/D/1 queuing system are given by

pi j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−ρρ j

j!
, i = 0, j ≥ 0

e−ρρ j−i+1

( j − i + 1)!
, i > 0, j ≥ i − 1

0, otherwise.

On inspectionwe see that pi j for all {i = 0, j ≥ 0} and {i > 0, j ≥ i − 1} are the Poisson prob-
abilities. Thus, the UMVU estimation of these pi j’s is the classical problem of UMVU estima-
tion of Poisson probabilities based on a random sample from Poisson distribution with mean
ρ. It is well known that UMVUEs of Poisson probabilities are binomial probabilities with
number of trials equal to t and success probability equal to 1

n (see, e.g., Lehmann and Casella,
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1998). Hence, the UMVUEs are given by

p̃i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t
j

) ( 1
n

) j (1 − 1
n

)t− j
, (i = 0, j ≥ 0)(

t
j − i + 1

) ( 1
n

) j−i+1 (
1 − 1

n

)t− j+i−1
, (i > 0, j ≥ i − 1)

0 , otherwise

MLEs of pi j’s for all {i = 0, j ≥ i} and {i > 0, j ≥ i − 1} are obtained by substituting X̄n for ρ
in pi j’s. Having proposed MLEs and UMVUEs it is natural to compare them. However, there
are countably infinite number of transition probabilities and thuswe do not intend to compare
the two classical estimators.

6. Consistent asymptotic normality

We discussed classical estimation of traffic intensity, measures of system performance, and
correlation functions of departure process in the stable M/D/1 queuing system as well as that
of transition probabilities in M/D/1 queuing system. In this section we concentrate on CAN
property (see Kale, 2005). For this we start by noting that ρ is the Poisson mean and thus
by weak law of large numbers (WLLN) X̄n

P→ ρ. Further, X̄n has an asymptotic distribution
which is a normal distribution with asymptotic mean ρ and asymptotic variance ρ/n. Thus
X̄n is a CAN estimator of ρ. To obtain CAN estimators of performance measures, we use the
invariance property of CAN estimators under differentiable transformation. As a prerequisite
for this we note that dLq

dρ = 1
2 · ρ(2−ρ)

(1−ρ)2 �= 0 if ρ �= 2. Naturally, ρ must not be equal to 1 as it
renders the derivative to be equal to infinity. All these conditions are satisfied as ρ < 1. Thus
1
2 · X̄2

n
1−X̄n

is CAN for Lq with asymptotic variance ρ3(2−ρ)2
4n(1−ρ)2 . Furthermore, X̄n + 1

2 · X̄2
n

1−X̄n
is CAN

for L with asymptotic variance

ρ

n

{
1 + +1

2
ρ(2 − ρ)

(1 − ρ)

}2

as
dL
dρ

= 1 + ρ(2 − ρ)

2(1 − ρ)
�= 0

for ρ �= 2 (and of course ρ �= 1), which are satisfied as ρ < 1.
The CAN estimator of γ1 is e−X̄n+X̄n−1

1+X̄n
, as γ ′

1 �= 0, with asymptotic variance

ρ

n

{
(1 + ρ)(1 − e−ρ )− (e−ρ + ρ − 1)

(1 + ρ)2

}2

.

Similarly, as γ ′
2 �= 0, (X̄n+1)e−2X̄n+X̄n−1

1+X̄n
is CAN estimator of γ2 with asymptotic variance

ρ

n

{
(ρ + 1)[(ρ + 1)− e−2ρ + 1] − [(ρ + 1)e−2ρ + ρ − 1]

(1 + ρ)2

}2

.

Thus, the CAN property of MLEs is established.

7. Comparison and recommendation

The MLEs and UMVUEs of system size probabilities and measures of system performance
in M/M/1 queuing system were compared by Srinivas et al. (2011) using asymptotic expected
deficiency (AED) criterion of Hodges and Lehmann (1970). The comparison was based on
the following theorem due to Hwang and Hu (1990).
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Table . Results based on AED computation.

Parametric function Space of ρ Performing estimator

L 0 < ρ < 1 UMVUE
Lq 0 < ρ < 1 UMVUE
γ1 0 < ρ < 1 MLE
γ2 (0, 0.5435) UMVUE

(0.5455, 0.9900) MLE

Theorem 7.1. Under certain regularity conditions, the AED of MLE g(Z) of ϕ(θ ) relative to the
UMVUEU (Z) for the exponential family with density

f (x; θ ) = exp{
1(θ )T (x)+
2(θ )+ d(x)}, x ∈ S, θ ∈ �
is given by

AED(g(Z),U (Z)) = V (θ )

{
ϕ′′′(θ )
ϕ′(θ )

+ 1
4

(
ϕ′′(θ )
ϕ′(θ )

)2
}

+V ′(θ )
ϕ′′(θ )
ϕ′(θ )

,

where V (θ ) = {

′

1(θ )
}−1.

The AED criterion is used to compare MLEs and UMVUEs of performance measures and
correlation functions of Orders 1 and 2 in the stable-M/D/1 queuing system. The AEDs were
computed for ρ ∈ (0, 1) to compare MLEs with UMVUEs of Sections 3 and 4. The results
are captured in Table 1. Clearly, based on AED computations and the corresponding results
in Table 1, we recommend UMVUE over MLE for estimation of L and Lq while MLE is rec-
ommended over UMVUE for estimation of γ1. However, such a categorical recommendation
in case of γ2 is not possible. For ρ ∈ (0, 0.5435)UMVUE is recommended while MLE is rec-
ommended for ρ ∈ (0.5435, 1) in the case of classical estimation of γ2.

Bayesian estimation of ρ and other measures relative to balanced and LINEX loss func-
tions have been considered and dissemination of information on this and related aspects will
be in different communications. Also, classical estimation results on steady-state probability
distribution of system size and results on testing of hypotheses will be conveyed separately.
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