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Ultrasound mediated, green innovation for the synthesis of 

polysubstituted 1,4-dihydropyridines 

Sumaiya Tabassum, Santhosh Govindaraju, Riyaz-ur-Rahaman Khan and M. A. Pasha* 

An elegant, atom efficient protocol for the synthesis of a series of novel pharmacologically interesting polysubstituted 1,4-

dihydropyridines has been developed via a one-pot four-component cyclocondensation reaction of aromatic aldehydes, 

malononitrile, acetylenedicarboxylates and arylamines catalyzed by copper (I) iodide in aqueous medium under ultrasound 

irradiation. In comparison with the reported methods, our approach is expedient and offers several advantages such as: 

shorter reaction time, excellent yields, milder conditions, convenient and is environmentally benign. We have herein 

successfully demonstrated the utility of sonication in a multicomponent reaction (MCR), which exhibits a better functional 

group tolerance, straightforward product isolation and the purification is by precipitation

Introduction 

In the last two decades, enormous thrust and exploration 

towards inculcating the green chemistry practices have been 

taking place steadily. Multi-component reactions (MCRs) are 

one of the major contributions to the field of green chemistry, 

which have time and again served as the best tools to gain an 

access into biologically active heterocyclic molecules of 

interesting properties [1] by a one-pot, single-step process. 

This approach offers several potential advantages over 

conventional synthesis. Assembling of N-heterocycles via 

multi-component strategy is one of the vital areas in synthetic 

organic chemistry. 

These heterocycles are a remarkable scaffold of prime 

importance to mankind. These heterocyclic skeletons are often 

an enticing framework for synthetic organic chemists, 

pharmaceutical and agricultural industries to design 

compounds of immense chemical and biological interest [2]. 

Accordingly, molecules containing 1,4-dihydropyridine scaffold 

are an important class of privileged heterocycles that have 

been enjoying a relative renaissance of interest owing to the 

abundance of these components in various natural products, 

new materials and pharmaceuticals. These ubiquitous motifs 

are endowed with a wide range of biological applications [3]. 

They are often used in the treatment of cardiovascular 

diseases, angina pectoris, Alzheimer’s disease and 

hypertension [4]. Their presence in prominent commercially 

available drug molecules such as felodipine, amlodipine, 

nifedipine and nicardipine is well known (Figure 1) [5]. The 

classical methods for the synthesis of 1,4-dihydropyridines 

usually involve Hantzsch reaction [6], cycloaddition reactions 

[7], Michael condensation [8], Huisgen dipolar additions [9] 

and others [10]. 
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Figure 1. Some biologically potent 1,4 DHPs 

A rigorous literature survey reveals that, a few synthetic 

methodologies have been reported recently which employ 

varied catalysts and solvents such as: nano particles [11], 

meglumine [12], KF/Al2O3 [13], triethylamine [14], NaOH [15], 

polyethylene glycol (PEG), ethanol [16], grinding condition 

[17], trifluoroacetic acid [18], (NH4)2HPO4 [19], Cu(OTf)2 [20] 

and Sc(OTf)3 [21]. Although a variety of approaches have been 

documented and are found to have their unique advantages, 

they suffer from one or the other drawbacks such as 

preparation of the catalyst, use of expensive catalysts, organic 

bases and organic solvents, prolonged reaction times, 

exposure to chemicals leading to environmental concerns 
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during grinding in grindstone method, require expensive 

starting materials, unsatisfactory yields and lack of generality.  

Owing to the prominent aforementioned medicinal profile 

of 1,4-dihydropyridines, search for the development of better 

eco sustainable, economical and energy efficient methods 

remain a challenging task and therefore has attracted keen 

attention of synthetic and medicinal chemists in designing 

them. 

Another noteworthy recent finding includes the 

identification of benzofuran and Huisgen’s dipole chemistry 

because of their relevance as building blocks in drug design. 

Benzofuran is a very prevalent basic core unit of 

pharmaceutical interest which is found in many natural 

products (such as moracin, egonol and homoegonol), bioactive 

molecules and other compounds [22]. Due to their profound 

chemotherapeutic and physiological properties [23], this 

scaffold constitutes an integral part of chemical, medicinal and 

life sciences that has led to a considerable amount of modern 

research being pursued in many parts of the world. This 

heterocycle can also serve as versatile biodynamic motif that 

can be used to construct novel active therapeutic agents [24]. 

The increasing enthusiasm into this nucleus is due to their 

ability to display an array of valuable pharmacological activities 

such as immunomodulatory, anticancer, antihyperglycemic, 

antiparasitic, kinase inhibitor activities and with applications 

such as brightening agents, fluorescent sensors, drugs, 

antioxidants and oxidants [25]. They are regarded as potential 

medicinal leads in developing therapeutic agents. 

Furthermore, the highly active nature of the Huisgen’s 

dipoles play a crucial role in organic synthesis as they are very 

receptive to participate as key substrates in many kinds of 

multi-component reactions and have lead to a library of 

structurally diverse heterocyclic and carbocyclic molecules 

[26]. They can be conveniently generated by the addition of 

amines to electron-deficient alkynes which upon further 

treatment with various electrophiles and other reagents would 

furnish a number of C-C and C-N bond formation reactions 

[27]. 

As part of green chemistry concept, catalysis in aqueous 

system under sonochemical condition has become an 

irresistible method after more than two decades of extensive 

studies in this domain [28]. This approach has proven to be 

fast, efficient, clean and reliable in chemical laboratories when 

compared to the traditional methods. Sonochemistry, a 

frontier area in chemical research has been used increasingly 

in organic synthesis as it facilitates unusual mechanism for 

generating high-energy chemistry. The phenomenon of 

acoustic cavitation, indeed, the backbone of sonochemistry 

offers immense potentiality in the intensification of reaction 

rates that can be attributed to the mechanical effects of sound 

waves (heterogeneous processes) and chemical induction 

(homogeneous processes) in an energy-efficient manner. It is 

during the cavitation bubble collapse that immense pressures, 

temperatures and the extraordinary heating and cooling rates 

sets in to drive the reactions towards completion in very short 

times [29]. Rapid reaction rate, simplicity, controllable reaction 

conditions, high purity of the product, enhance catalyst 

efficiency and safety of the technique are the essence of 

sonochemical reactions. These characteristics place 

sonochemistry amongst the elite of green chemical methods 

[30]. Since water is non-toxic, abundant natural resource, 

inexpensive, non-flammable, eco-compatible and is known to 

facilitate excellent cavitation up to 50–60 °C, it is emerging as 

the solvent of choice in sonochemistry [31]. As a result of inter 

and intra molecular non covalent interactions, it causes special 

effects in reactions leading to assembly processes. Copper (I) 

iodide, a versatile Lewis acid catalyst has found applications in 

numerous organic transformations [32]. It holds a great 

promise for future research as it offers beneficial advantages 

such as remarkable catalytic activity, operational simplicity, 

commercial availability, inexpensive, non-corrosive and less 

toxic nature.  

To the best of our knowledge, there are no reports in the 

literature on the use of copper iodide in water under sonic 

condition for the synthesis of these nitrogen heterocycles. 

Encouraged by all these findings, substantial efforts have been 

made by us to meticulously design a library of diversified 

potent 1,4-dihydropyridines via a one-pot four-component 

cyclocondensation reaction of aromatic aldehydes, 

malononitrile, acetylenedicarboxylates and arylamines 

catalyzed by copper (I) iodide in aqueous medium under 

ultrasound irradiation as shown in the Scheme 1. 
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Scheme 1: Preparation of polysubstituted 1,4-dihydropyridines 5(a-r) 

Results and discussion 
To explore the feasibility and generality of copper (I) iodide 

catalyzed sonicated domino MCR, the reaction variables 

including catalyst, reaction solvent, feed ratio of catalyst and 

energy efficiency were optimized to observe their roles in 

enhancing the rates and yield of the products. Benzofuran-2-

carboxaldehyde, malononitrile, aniline and DMAD were chosen 

as model substrates. 

A variety of catalysts were explored under different 

reaction conditions (room temperature, reflux temperature of 

the solvent, microwave and ultrasonic irradiation) and the 

results are presented in Table 1. To rationalize the influence of 

the catalyst, the four component reaction was first carried out 

in the absence of catalyst wherein a maximum yield of only 

40% could be recorded and most of the starting materials were 

recovered (Table 1, Entry 1). It was further observed that the 

yield of the reaction hardly improved in the presence of other 

catalysts which included amino acid (ʟ-Proline), organic 

nitrogen bases (DBU, piperidine, Et3N), Lewis acids (InCl3, 

Cu(OTf)2, CuO, CuSO4
.
5H2O, CuCN, CuCl, CuBr, CuNO3), amino 
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sugar (Meglumine) and inorganic bases (K2CO3, NaOH) (Table 

1, Entries 2−12, 14−17) whereas the use of CuI proved to be 

superior, as it gave the best yield of 5a in 30 min (Table 1, 

Entry 13). Hence, CuI under ultrasonic irradiation was 

preferred for our further studies. 

 

Table 1: Optimization of catalyst for the synthesis of 5a 
a
 

Entry  Catalyst  

Reaction Condition  

RT (25 °C)  Reflux (80 °C)  MW  US  

Time 

(min) 

Yield 

(%) 
b
 

Time 

(min) 

Yield 

(%) 
b
 

Time 

(min) 

Yield 

(%) 
b
 

Time 

(min) 

Yield 

(%) 
b
 

1  No Catalyst  600  10 600  15  30  40  30  40  

2  L-Proline  600  10  600  35  30  50  30  50  

3  DBU 600  10  600  25  30  50  30  55  

4  Piperidine 600  10  600  30  30  50  30  60  

5  Et3N  600  15 600  30  30  50  30  60  

6  InCl3 600  25  600  35 30 50  30  65  

7  K2CO3 600  60  600   62 30  65  30  67  

8  Meglumine 600  85  600  80  30  75 30  60  

9  NaOH  600  85  600  86  30  80  30  78 

10  Cu(OTf)2 600 70 600 75 30 70 30 78 

11 CuO 600 75 600 80 30 70 30 70 

12 CuSO4
.
5H2O 600 65 600 70 30 50 30 55 

13 CuI  600  60  600  67 30  84  30  96  

14 CuCN 600 40 600 40 30 45 30 47 

15 CuCl 600 45 600 50 30 53 30 55 

16 CuBr 600  50 600  60 30  63 30  67 

17 CuNO3 600  62 600  65 30  68 30  72 
a
Reaction conditions: benzofuran-2-carboxaldehyde (1 mmol), malononitrile (1 mmol), aniline (1 mmol), 

DMAD (1 mmol), catalyst (0.20 mmol) and H2O (3 mL). 
b
Isolated yields. 

Varied solvents (nonpolar, polar aprotic and polar protic 

solvents) were assessed in order to substantiate the best 

choice and the results of the findings are tabulated in Table 2. 

We, initially probed this experiment under solvent-free 

condition and observed that, sonication gave the maximum 

yield (45%) of 5a whereas unsatisfactory yields were obtained 

under other conditions even after prolonged time (Table 2, 

Entry 1). 

Furthermore, the studies revealed that, the use of 

nonpolar solvents made the reactions very lethargic and low 

yields were isolated (Table 2, Entries 2−3), whereas in the case 

of polar aprotic solvents, moderate yields were obtained 

(Table 2, Entries 4−8) and to our delight, polar protic solvents 

gave very high yields (Table 2, Entries 9−10).  

Table 2: Optimization of solvent for the synthesis of 5a 
a
 

Entry Solvent 

Reaction Condition 

RT (25 °C) Reflux MW US 

Time 

(min) 

Yield 

(%) 
b
 

Time(min) 
Yield 

(%) 
b
 

Time 

(min) 

Yield 

(%) 
b
 

Time 

(min) 

Yield 

(%) 
b
 

1 No Solvent 600 15 600 20 30 25 30 45 

2 Toluene 600 16 600 25 30 35 30 45 

3 n-Hexane 600 15 600 25 30 40 30 50 

4 DCM 600 18 600 30 30 45 30 55 

5 THF 600 12 600 35 30 40 30 50 

6 DMSO 600 12 600 25 30 30 30 58 

7 CH3CN 600 10 600 20 30 35 30 60 

8 DMF  600 05 600 15 30 30 30 55 

9 Ethanol  600 10 600 20 30 80 30 87 

10 H2O  600 25 600 50 30 82 30 96 
a
 Reaction conditions: benzofuran-2-carboxaldehyde (1 mmol), malononitrile (1 mmol), aniline (1 mmol), 

DMAD (1 mmol), CuI (0.20 mmol) and solvent (3 mL). 
b
Isolated yields. 
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Table 3: Optimization of the amount of CuI for the synthesis of 5a 
a
 

Entry 
Amount of CuI 

(mmol) 

Time  

(min) 

Yield 
b
 

(%) 

1 0.05 30 50 

2 0.10 30 70 

3 0.15 30 82 

4 0.20 30 96 
a
 Reaction conditions: benzofuran-2-carboxaldehyde (1 mmol), 

malononitrile (1 mmol), aniline (1 mmol), DMAD (1 mmol), 

catalyst and H2O (3 mL). 
b
Isolated yields. 

 

Figure 2. Reusability of CuI for the synthesis of 5(a–r) 

With the expectation to maximize the product yield in 

short reaction time, the amount of catalyst required to 

promote this successful transformation was ascertained and 

the results are summarized in Table 3. When the reaction was 

carried out using 0.05 mmol, 0.10 mmol, 0.15 mmol and 0.20 

mmol of the catalyst, the rate of the reaction progressed 

steadily with lower to good yields. To our pleasure, an 

excellent chemical yield of 96% was obtained when 0.20 mmol 

of the catalyst was employed (Table 3, Entry 4). Further 

addition of the catalyst did not show any significant 

enhancement in the yield of the desired product. 

Consequently, the best results were achieved by using 0.20 

mmol of CuI as catalyst, water as green solvent in the presence 

of ultrasonic waves for the synthesis of 5a. 

The possibility of recycling the catalyst was then examined. 

After completion of the reaction (30 min), the reaction mixture 

was treated with EtOAc (5 mL) to dissolve the product formed, 

and filtered through a pre-weighed sintered glass crucible. The 

solid (CuI) present in the sintered glass crucible was repeatedly 

washed with water and dried in a hot air oven, the crucible 

was weighed, and the solid (19 mg) was collected and kept 

aside for reuse. In the present reaction, it was found that 20 

mol% of CuI was reusable without appreciable loss of activity 

for four runs. From the Figure 2, it can be seen that, in the first 

four runs the activity was more or less maintained but after 

the fourth run the yields were low, which may be due to loss 

of the catalyst during recovery.  

To broaden the scope of the designed protocol, we 

subjected benzofuran-2-carboxaldehyde and other aromatic 

aldehydes, malononitrile, diverse substituted aromatic amines 

(bearing electron donating, electron withdrawing groups), and 

non-aromatic amines, dialkyl acetylenedicarboxylate (DMAD, 

DEAD) and CuI as catalyst in water for the tandem one-pot 

multi-component synthesis of fifteen novel polysubstituted 

1,4-dihydropyridines assisted by ultrasound. Gratifyingly, in all 

the cases these four components congregated successfully into 

the corresponding 5-cyano-1,4-dihydropyridine-2,3-

dicarboxylate analogs in good to excellent yields (Table 4, 

Entries 1−14). Furthermore, the protocol was successfully 

extended to a series of substituted aromatic aldehydes and 

excellent yields were obtained (Table 4, Entries 15−19). To our 

disappointment, complex mixtures of products were observed 

when non-aromatic amines such as n-hexylamine, cyclohexyl 

amine, ethyl amine and iso-propyl amine were used (Table 4, 

Entries 19−22).  It was also noted that, the electronic effects of 

the substituents tethered on the aromatic ring showed 

marginal effect on the reactivity and did not have much impact 

on the product yields. 

All the products were fully characterized by IR, 
1
H NMR, 

13
C 

NMR, ESI-MS and by elemental analysis. In the IR spectrum of 

compound 5a, a stretching band at 2187 cm
-1

 appeared which 

confirms the presence of nitrile group in the product. In the 
1
H NMR 

spectrum, three singlets appeared at 3.45, 3.69 and 4.23 ppm 

indicating the presence of –CH3 protons of the two  –COOMe 

groups and the –NH2 protons of the amino group at C-2 carbon 

respectively. The proton at the fourth position of the 

dihydropyridine appeared as a singlet at 4.92 ppm confirming the 

fusion of malanonitrile and DMAD. The 
13

C NMR spectrum further 

confirmed the formation of dihydropyridine by exhibiting a signal at 

165.3 ppm for the C-2 carbon of 5a. The mass spectrometry data 

showed a peak at m/z 430.1 [M+H]
+
 which corresponds to the 

expected formula of the isolated 1,4-dihydropyridine. All these 

evidences are in the favour of structure 5a. 

Further, the chemical structure of the representative 

compounds 5b and 5f were unequivocally confirmed by single-

crystal X-ray diffraction studies as shown in Figures 3 and 4. 

The compounds 5b and 5f were recrystallized in ethanol. 

 
Figure 3. ORTEP plot of compound 5b 

 

 
Figure 4. ORTEP plot of compound 5f 
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Table 4: Synthesis of 5(a–r) using ultrasound
a

Entry 
Aldehyde 

R 
R

1
 R

2
 Product 

Time 

(min) 

Yield 
b
 

(%) 

Melting Point  

(°C) 

1 

O

 

CH3 H 5a 30 96 193−194 

2 C2H5 H 5b 30 93 182–183 

3 CH3 4-Cl 5c 30 91 163–164 

4 C2H5 4-Cl 5d 30 92 151–152 

5 CH3 4-CH3 5e 30 93 133–134 

6 C2H5 4-CH3 5f 30 93 218–219 

7 CH3 4-NO2 5g 30 89 159–160 

8 C2H5 4-NO2 5h 30 90 148–149 

9 CH3 2-Cl 5i 30 90 203–204 

10 C2H5 2-Cl 5j 30 94 172– 173 

11 CH3 4-OCH3 5k 30 92 160–161 

12 C2H5 4-OCH3 5l 30 87 144–145 

13 CH3 3-Cl 5m 30 90 177–178 

14 C2H5 3-Cl 5n 30 85 161–162 

15 3,4,5 (OCH3)3C6H2 CH3 4-Cl 5o 30 90 217–218 

16 4-ClC6H4 CH3 4-CH3 5p 30 87 187−188 [16a] 

17 4-ClC6H4 CH3 4-Cl 5q 30 87 128–129 [14b] 

18 3-NO2C6H4 CH3 4-CH3 5r 30 96 213–214 [14b] 

19 4-ClC6H4 CH3 n-hexylamine 
Intractable 

mixture 
30 – – 

20 3-NO2C6H4 CH3 cyclohexylamine 
Intractable 

mixture 
30 – – 

21 3,4,5 (OCH3)3C6H2 CH3 ethylamine 
Intractable 

mixture 
30 – – 

22 3,4,5 (OCH3)3C6H2 CH3 Iso-propylamine 
Intractable 

mixture 
30 – – 

a 
Reaction conditions: aromatic aldehyde (1 mmol), malononitrile (1 mmol), aniline/amine (1 mmol), DMAD/DEAD (1 mmol), 

CuI (0.20 mmol), H2O (3 mL) and temp 25 °C (35 kHz constant frequency, 80W). 
b 

Isolated yields. 

Generally, when ultrasound is passed through a liquid–

solid system, bubble cavitation ascends due to variation in bulk 

pressure and causes a series of unique physical phenomena 

that can affect the solid. Asymmetric bubble collapse occurs at 

the interface generating high-pressure/high-velocity microjets 

and high energetic shockwaves leading to intermolecular 

reactions in short times. These jets trigger the solid catalyst, 

causes disruption of the interfacial boundary, intensifies the 

contact through efficient mixing. As a result localized erosion, 

particle fragmentation by overall particle size reduction, 

disengagement of heterogeneous reactants, intermediates, 

product take place enhancing the overall heat and mass 

transfer [28b, 33]. Also, the implosive bubble collapse induces 

extremely high temperatures (as much as 4700 °C) and 

pressures (10 Pa) in a microscopic region of the sonicated 

liquid [28c]. As a result the rate of the chemical reaction 

increases by many folds, which is termed “false 

sonochemistry” Therefore, it is feasible to assume that these 

effects are responsible for the chemical enhancement of 

reactions. 

In conclusion, the present study deals with the 

development of an efficient synthetic strategy to construct 

complex 1,4-dihydropyridines that could further streamline 

their syntheses with the aid of greener and harmless sound 

energy technique.  

 The attractive features of this procedure are the use of 

inexpensive starting materials, high atom efficiency, clean 

reaction profiles, use of ecofriendly solvent, mild reaction 

conditions, it is general and very high yields are obtained, 

involes use of an energy efficient techinque which meets the 

essential precepts of a green chemical approaches. These 

pharmacophoric frameworks may hopefully provide insights 

for medicinal chemists to explore their virtue in developing 

novel pharmaceutical agents to tackle the varied pathological 

aspects and modify the disease processes. These analogs are 

of particular interest, as they contain reactive handles and as 

such could be used as a foundation for the synthesis of more-

complex biologically important molecules. 
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Experimental section 
Material and methods  

Reagents and solvents were purchased from Sigma Aldrich. 

All materials were of commercial reagent grade. Melting 

points were determined using Thiele’s apparatus (con. H2SO4) 

with a calibrated thermometer. The progress of the reaction 

and the purity of the compounds were monitored by TLC 

[analytical silica gel plates (Merck60 F254)]. Infrared (IR) spectra 

were recorded using an Agilent Cary 630 FT-IR 

Spectrophotometer. 
1
H NMR spectra were recorded on an 

Advance Bruker instrument operating at 400, 500 MHz and 
13

C 

NMR spectra were recorded at 100 MHz in CDCl3. Chemical 

shifts were reported in ppm. ESI-MS analysis was carried out 

using ESI-Q TOF instrument. CHN analysis was performed using 

Elementar vario MICRO cube analyzer. Sonication was 

performed using SIDILU Indian make sonic bath operating at 

35 kHz (constant frequency, 80W) maintained at 25 °C by 

circulating water. 

General procedure for the synthesis of polysubstituted 1,4-

dihydropyridines 5(a-r) 

A 50mL flask was charged with benzofuran-2-

carboxaldehyde/aromatic aldehyde (1 mmol), malononitrile (1 

mmol), copper iodide (0.20 mmol) in water (3 mL) and 

sonicated (35 kHz) at 25 °C for 10 min. Then a solution of 

acetylenedicarboxylate/s (1 mmol) and aniline or non-aromatic 

amine (1 mmol) in water (3 mL) was added to the above flask 

and the resulting mixture was further sonicated (35 kHz) at 25 

°C for an additional 20 min. After completion of the reaction 

[monitored by TLC, using hexane:ethyl acetate (9:1) as eluent], 

the reaction mixture was treated with EtOAc (5 mL) to dissolve 

the product formed, and filtered through a pre-weighed 

sintered glass crucible. The solid (CuI) present in the sintered 

glass crucible was repeatedly washed with water and dried in a 

hot air oven, the crucible was weighed, the solid (19 mg) was 

collected and kept aside for reuse. The filtrate was then taken 

into a separating funnel, the organic layer was separated, and 

dried over anhydrous Na2SO4 to get the crude compound 

which was then recrystallized from ethanol to get the pure 

product. The structures of all the products were confirmed by 

IR, 
1
H NMR, 

13
C NMR, ESI-MS and CHN analyses. 

 

Spectral data 

Dimethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-phenyl-1,4-

dihydropyridine-2,3-dicarboxylate (5a): 

Yellow crystal; m.p 193–194 °C; IR (ν cm
-1

): 3336, 2975, 2187, 1740, 

1653, 1217; 
1
H NMR (500 MHz, CDCl3): δ 3.45 (s, 3H, -CH3), 3.69 (s, 

3H, -CH3), 4.23 (s, 2H, -NH2), 4.92 (s, 1H, -CH), 6.57 (s, 1H, Ar-H), 

7.19−7.55 (m, 9H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 32.4, 

51.5, 52.1, 59.9, 103.6, 112.6, 118.9, 120.5, 122.5, 125.0, 127.7, 

129.7, 131.2, 132.2, 135.1, 137.1, 141.3, 150.1, 154.3, 157.5, 163.0, 

165.3 ppm; ESI-MS, m/z: 430.1 [M+H]
+
; Anal. Calc. for C24H19N3O5 

(%): C, 67.13, H, 4.46, N, 9.79; found: C, 67.18, H, 4.41, N, 9.74. 

Diethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-phenyl-1,4-

dihydropyridine-2,3-dicarboxylate (5b): 

Yellow crystal; m.p 182–183 °C; IR (ν cm
-1

): 3325, 2952, 2190, 1752, 

1651, 1221; 
1
H NMR (500 MHz, CDCl3): δ 1.19−1.22 (t, J = 7.0 Hz, 3H, 

-CH3), 1.39−1.42 (t, J = 7.0 Hz, 3H, -CH3), 4.20−4.25 (q, J = 7.0 Hz, 4H, 

-CH2), 4.85 (s, 2H, -NH2), 5.19 (s, 1H, -CH), 6.56 (s, 1H, Ar-H), 

7.13−7.55 (m, 9H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 14.6, 

15.3, 30.7, 56.9, 60.3, 61.7, 99.4, 107.0, 110.6, 113.5, 114.1, 118.5, 

121.0, 123.2, 126.0, 127.6, 129.6, 131.2, 142.9, 149.8, 156.1, 163.6, 

166.9, 169.2 ppm; ESI-MS, m/z: 458.1 [M+H]
+
; Anal. Calc. for 

C26H23N3O5 (%): C, 68.26, H, 5.07, N, 9.19; found: C, 68.34, H, 5.02, 

N, 9.11. 

Dimethyl-6-amino-4-(benzofuran-2-yl)-1-(4´-chlorophenyl)-5-

cyano-1,4-dihydropyridine-2,3-dicarboxylate (5c): 

Brown powder; m.p 118–119 °C; IR (ν cm
-1

): 3380, 2945, 2181, 

1743, 1621, 1205; 
1
H NMR (400 MHz, CDCl3): δ 3.51 (s, 3H, -CH3), 

3.69 (s, 3H, -CH3), 4.46 (s, 2H, -NH2), 5.29 (s, 1H, -CH), 6.57 (s, 1H, 

Ar-H), 7.19−7.54 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 

32.9, 52.4, 52.9, 59.9, 102.4, 111.3, 119.8, 121.1, 122.8, 124.0, 

128.5, 130.4, 131.5, 133.1, 133.8, 137.0, 142.4, 151.0, 155.2, 158.2, 

163.2, 165.2 ppm; ESI-MS, m/z: 464.0 [M+H]
+
; Anal. Calc. for 

C24H18ClN3O5 (%): C, 62.14, H, 3.91, N, 9.06; found: C, 62.19, H, 3.98, 

N, 9.03. 

Diethyl-6-amino-4-(benzofuran-2-yl)-1-(4´-chlorophenyl)-5-cyano-

1,4-dihydropyridine-2,3-dicarboxylate (5d):  

Yellow crystal; m.p 151–152 °C;IR (ν cm
-1

): 3390, 2983, 2105, 1745, 

1668, 1217;
1
H NMR (400 MHz, CDCl3): δ 1.21−1.25 (t, J = 6.8 Hz, 3H, 

-CH3), 1.37−1.40 (t, J = 6.8 Hz, 3H, -CH3), 4.07−4.12 (q, J = 6.8 Hz, 4H, 

-CH2), 4.85 (s, 2H, -NH2), 5.19 (s, 1H, -CH), 7.25−7.65 (m, 9H, Ar-H) 

ppm;
13

C NMR (100 MHz, CDCl3): δ 13.7, 14.3, 29.0, 57.1, 60.1, 62.2, 

94.9, 106.3, 112.4, 112.5, 113.7, 119.4, 122.3, 123.3, 124.8, 127.3, 

129.1, 130.2, 143.7, 148.6, 156.9, 163.3, 167.0, 168.5 ppm; ESI-MS, 

m/z: 492.1 [M+H]
+
; Anal. Calc. for C26H22ClN3O5 (%): C, 63.48, H, 

4.51, N, 8.54; found: C, 63.55, H, 4.59, N, 8.59. 

Dimethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-p-tolyl-1,4-

dihydropyridine-2,3-dicarboxylate (5e):  

Yellow powder; m.p 133–134 °C; IR (ν cm
-1

): 3325, 2978, 2105, 

1755, 1632, 1219; 
1
H NMR (400 MHz, CDCl3): δ 2.36 (s, 3H, -CH3), 

3.10 (s, 3H, -CH3), 3.47 (s, 3H, -CH3), 4.54 (s, 2H, -NH2), 4.80 (s, 1H, -

CH), 6.82 (s, 1H, Ar-H), 7.20−7.62 (m, 8H, Ar-H) ppm; 
13

C NMR (100 

MHz, CDCl3): δ 24.5, 31.1, 51.5, 52.1, 58.8, 103.1, 112.4, 120.0, 

122.8, 124.2, 126.4, 128.7, 130.6, 131.4, 132.6, 133.7, 137.3, 143.6, 

149.5, 153.7, 156.9, 161.8, 163.9 ppm; ESI-MS, m/z: 444.1 [M+H]
+
; 

Anal. Calc. for C25H21N3O5 (%): C, 67.71, H, 4.77, N, 9.48; found: C, 

67.79, H, 4.85, N, 9.42. 

Diethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-p-tolyl-1,4-

dihydropyridine-2,3-dicarboxylate (5f): 

Yellow crystal; m.p 218–219 °C;IR (ν cm
-1

): 3397, 2938, 2143, 1751, 

1653, 1981; 
1
H NMR (400 MHz, CDCl3): δ 0.92−0.95 (t, J = 6.8 Hz, 3H, 

-CH3), 1.26−1.29 (t, J = 6.8 Hz, 3H, -CH3), 2.39 (s, 3H, -CH3), 

4.19−4.24 (q, J = 6.8 Hz, 4H, -CH2), 4.59 (s, 2H, -NH2), 4.79 (s, 1H, -

CH), 6.84 (s, 1H, Ar-H), 7.21−7.59 (m, 8H, Ar-H) ppm; 
13

C NMR (100 

MHz, CDCl3): δ 14.9, 15.6, 30.5, 55.5, 61.3, 62.5, 101.7, 108.0, 110.7, 

113.7, 115.5, 118.0, 120.6, 123.2, 125.0, 128.6, 131.8, 135.1, 142.9, 

150.5, 155.5, 162.7, 166.7, 169.2 ppm; ESI-MS, m/z: 472.1 [M+H]
+
; 
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Anal. Calc. for C27H25N3O5 (%): C,68.78, H, 5.34, N, 8.91; found: C, 

68.69, H, 5.38, N, 8.98. 

Dimethyl 6-amino-4-(benzofuran-2-yl)-5-cyano-1-(4´-nitrophenyl)-

1,4-dihydropyridine-2,3-dicarboxylate (5g):  

Yellow powder; m.p 159–160 °C; IR (ν cm
-1

): 3341, 2930, 2176, 

1752, 1634, 1203; 
1
H NMR (400 MHz, CDCl3): δ 3.45 (s, 3H, -CH3), 

3.70 (s, 3H, -CH3), 4.37 (s, 2H, -NH2), 5.29 (s, 1H, -CH), 6.62 (s, 1H, 

Ar-H), 7.24−7.72 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 

32.9, 52.3, 52.8, 58.5, 104.1, 112.4, 121.4, 122.7, 123.8, 124.6, 

125.5, 127.1, 128.2, 130.1, 131.9, 137.1, 143.6, 151.0, 155.0, 158.7, 

162.2, 164.2 ppm; ESI-MS, m/z: 475.1 [M+H]
+
; Anal. Calc. for 

C24H18N4O7 (%): C, 60.76, H, 3.82, N, 11.81; found: C, 60.84, H, 3.89, 

N, 11.88. 

Diethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-(4´-nitrophenyl)-

1,4-dihydropyridine-2,3-dicarboxylate (5h): 

Yellow powder; m.p 148–149 °C; IR (ν cm
-1

): 3322, 2943, 2195, 

1748, 1670, 1233; 
1
H NMR (400 MHz, CDCl3): δ 1.12−1.15 (t, J = 6.8 

Hz, 3H, -CH3), 1.28−1.31 (t, J = 6.8 Hz, 3H, -CH3), 4.16−4.21 (q, J = 6.8 

Hz, 4H, -CH2), 5.43 (s, 1H, -CH), 6.85 (s, 2H, -NH2), 7.22−7.72 (m, 9H, 

Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 15.0, 15.1, 29.4, 57.4, 60.3, 

61.5, 101.0, 106.5, 112.0, 112.6, 116.1, 119.6, 123.5, 125.1, 126.9, 

129.1, 130.2, 135.4, 144.0, 148.3, 156.6, 163.8, 166.6, 167.5 ppm; 

ESI-MS, m/z: 503.1 [M+H]
+
; Anal. Calc. for C26H22N4O7 (%): C, 62.15, 

H, 4.41, N, 11.15; found: C, 62.21, H, 4.47, N, 11.17. 

Dimethyl-6-amino-4-(benzofuran-2-yl)-1-(2´-chlorophenyl)-5-

cyano-1,4-dihydropyridine-2,3-dicarboxylate (5i): 

Golden yellow powder; m.p 203–204 °C; IR (ν cm
-1

): 3327, 2938, 

2185, 1747, 1631, 1246; 
1
H NMR (500 MHz, CDCl3): δ 3.47 (s, 3H, -

CH3), 3.68 (s, 3H, -CH3), 4.19 (s, 2H, -NH2), 4.88 (s, 1H, -CH), 6.61 (s, 

1H, Ar-H), 7.19−7.62 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): 

δ 33.5, 52.6, 53.2, 60.1, 103.6, 110.5, 118.7, 120.8, 122.5, 124.7, 

128.5, 130.0, 132.6, 135.5, 137.1, 142.3, 146.9, 150.6, 155.5, 157.5, 

162.5, 165.4 ppm; ESI-MS, m/z: 464.0 [M+H]
+
; Anal. Calc. for 

C24H18ClN3O5 (%): C, 62.14, H, 3.91, N, 9.06; found: C, 62.19, H, 3.98, 

N, 9.02. 

Diethyl-6-amino-4-(benzofuran-2-yl)-1-(2´-chlorophenyl)-5-cyano-

1,4-dihydropyridine-2,3-dicarboxylate (5j): 

Golden yellow powder; m.p 172–173 °C; IR (ν cm
-1

): 3321, 2943, 

2156, 1739, 1669, 1287; 
1
H NMR (500 MHz, CDCl3): δ 1.18−1.21 (t,  J 

= 7.0 Hz, 3H, -CH3), 1.36−1.39 (t, J = 7.0 Hz, 3H, -CH3), 4.07−4.12 (q, J 

= 7.0 Hz, 4H, -CH2), 4.42 (s, 2H, -NH2), 4.78 (s, 1H, -CH), 6.46 (s, 1H, 

Ar-H), 7.09−7.73 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 

13.9, 14.5, 30.0, 56.8, 60.2, 61.4, 99.5, 107.3, 111.6, 112.5, 115.0, 

119.7, 121.3, 123.0, 119.7, 121.3, 123.0, 125.1, 125.7, 129.6, 131.6, 

143.0, 148.6, 157.1, 163.7, 166.6, 168.4 ppm; ESI-MS, m/z: 492.1 

[M+H]
+
; Anal. Calc. for C26H22ClN3O5 (%): C, 63.48, H, 4.51, N, 8.54; 

found: C, 63.42, H, 4.50, N, 8.59. 

Dimethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-(4-

methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5k):  

Yellow powder; m.p 160–161 °C; IR (ν cm
-1

): 3314, 2955, 2163, 

1745, 1638, 1209; 
1
H NMR (400 MHz, CDCl3): δ 3.50 (s, 3H, -OCH3), 

3.68 (s, 3H, -CH3), 3.85 (s, 3H, -CH3), 4.20 (s, 2H, -NH2), 4.91 (s, 1H, -

CH), 6.56 (s, 1H, Ar-H), 7.18−7.54 (m, 8H, Ar-H) ppm; 
13

C NMR (100 

MHz, CDCl3): δ 33.4, 51.6, 52.3, 56.3, 60.0, 103.9, 112.0, 120.6, 

121.8, 123.0, 124.5, 128.7, 130.9, 131.6, 133.2, 134.0, 138.0, 140.9, 

149.9, 156.4, 159.5, 162.2, 164.6 ppm; ESI-MS, m/z: 460.1 [M+H]
+
; 

Anal. Calc. for C25H21N3O6 (%): C, 65.35, H, 4.61, N, 9.15; found: C, 

65.21, H, 4.66, N, 9.17. 

Diethyl-6-amino-4-(benzofuran-2-yl)-5-cyano-1-(4´-

methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5l):  

Yellow powder; m.p 144–145 °C; IR (ν cm
-1

): 3357, 2917, 2182, 

1746, 1616, 1211; 
1
H NMR (400 MHz, CDCl3): δ 0.90−0.94 (t, J = 6.8 

Hz, 3H, -CH3), 1.26−1.29 (t, J = 6.8 Hz, 3H, -CH3), 2.29 (s, 3H, -OCH3), 

4.12−4.16 (q, J = 6.8 Hz, 4H, -CH2), 4.53 (s, 2H, -NH2), 4.82 (s, 1H, -

CH), 6.84 (s, 1H, Ar-H), 7.21−7.59 (m, 8H, Ar-H) ppm; 
13

C NMR (100 

MHz, CDCl3): δ 13.0, 13.7, 28.4, 52.7, 55.5, 61.6, 62.5, 99.2, 106.6, 

112.5, 114.0, 115.1, 118.4, 121.5, 123.4, 125.0, 128.0, 130.4, 134.2, 

143.6, 151.7, 157.1, 163.8, 166.1, 167.8 ppm; ESI-MS, m/z: 488.1 

[M+H]
+
; 

Anal. Calc. for C27H25N3O6(%): C, C, 66.52, H, 5.17, N, 8.62; found: C, 

66.59, H, 5.12, N, 8.60. 

Dimethyl-6-amino-4-(benzofuran-2-yl)-1-(3´-chlorophenyl)-5-

cyano-1,4-dihydropyridine-2,3-dicarboxylate (5m): 

Yellow powder; m.p 177–178 °C; IR (ν cm
-1

): 3356, 2957, 2128, 

1751, 1676, 1219; 
1
H NMR (400 MHz, CDCl3): δ 3.51 (s, 3H, -CH3), 

3.68 (s, 3H, -CH3), 4.96 (s, 2H, -NH2), 5.29 (s, 1H, -CH), 6.73 (s, 1H, 

Ar-H), 7.20−7.49 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 

33.8, 53.4, 54.1, 62.3, 103.6, 112.5, 119.4, 121.1, 124.2, 125.8, 

128.5, 130.1, 132.0, 133.1, 134.5, 137.00, 141.5, 151.5, 154.7, 

159.3, 162.1, 166.5 ppm; ESI-MS, m/z: 464.0 [M+H]
+
; Anal. Calc. for 

C24H18ClN3O5 (%): C, 2.14, H, 3.91, N, 9.06; found: C, 62.11, H, 3.97, 

N, 9.01. 

Diethyl-6-amino-4-(benzofuran-2-yl)-1-(3´-chlorophenyl)-5-cyano-

1,4-dihydropyridine-2,3-dicarboxylate (5n): 

Yellow powder; m.p 161–162 °C; IR (ν cm
-1

): 3319, 2979, 2167, 

1742, 1636, 1269; 
1
H NMR (400 MHz, CDCl3): δ 1.17−1.21 (t, J = 6.8 

Hz, 3H, -CH3), 1.33−1.36 (t, J = 6.8 Hz, 3H, -CH3), 4.10−4.15 (q, J = 6.8 

Hz, 4H, -CH2), 4.79 (s, 2H, -NH2), 5.05 (s, 1H, -CH), 6.62 (s, 1H, Ar-H), 

7.20−7.45 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 15.3, 

16.1, 30.6, 56.4, 60.3, 61.5, 99.7, 107.9, 111.5, 113.8, 115.6, 119.5, 

120.7, 123.6, 127.6, 131.7, 133.4, 136.4, 142.7, 148.9, 157.3, 163.8, 

165.6, 170.2 ppm; ESI-MS, m/z: 492.1 [M+H]
+
; Anal. Calc. for 

C26H22ClN3O5 (%): C, 63.48, H, 4.51, N, 8.54; found: C, 63.43, H, 4.48, 

N, 8.59. 

Dimethyl-6-amino-1-(4´-chlorophenyl)-5-cyano-4-(3´´,4´´,5´´-

trimethoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5o): 

Yellow powder; m.p 217–218 °C; IR (ν cm
-1

): 3319, 2979, 2167, 

1742, 1636, 1269; 
1
H NMR (400 MHz, CDCl3): δ 3.53 (s, 3H, -CH3), 

3.65 (s, 3H, -CH3), 3.86 (s, 3H, -OCH3), 3.90 (s, 6H, -OCH3),  4.63 (s, 

2H, -NH2), 5.31 (s, 1H, -CH), 6.59 (s, 2H, Ar-H), 7.25−7.49 (m, 4H, Ar-

H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 38.0, 55.1, 55.2, 62.0, 62.6, 

63.0, 103.4, 105.3, 115.1, 120.1, 127.7, 130.9, 138.0, 140.6, 141.9, 

150.1, 153.0, 160.9, 163.8, 165.5 ppm; ESI-MS, m/z: 514.1 [M+H]
+
; 

Anal. Calc. for C25H24ClN3O7 (%): C, 58.43, H, 4.71, N, 8.18; found: C, 

58.31, H, 4.80, N, 8.29. 

Dimethyl-6-amino-4-(4´-chlorophenyl)-5-cyano-1-p-tolyl-1,4-

dihydropyridine-2,3-dicarboxylate (5p): 
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Yellow powder; m.p 187–188 °C; IR (ν cm
-1

): 3363, 2921, 2110, 

1735, 1659, 1227; 
1
H NMR (400 MHz, CDCl3): δ 2.4 (s, 3H, -CH3), 

3.45 (s, 3H, -OCH3), 3.59 (s, 3H, -OCH3), 4.11 (s, 2H, -NH2), 4.68 (s, 

1H, -CH), 7.18−7.29 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 

22.0, 38.5, 52.6, 62.6, 105.6, 112.6, 121.1, 128.5, 129.3, 130.3, 

131.1, 132.5, 133.1, 141.0, 142.0, 142.8, 149.1, 162.1, 165.6 ppm; 

ESI-MS, m/z: 438.1 [M+H]
+
; Anal. Calc. for C23H20ClN3O4 (%): C, 

63.09, H, 4.60, N, 9.60; found: C, 63.18, H, 4.67, N, 9.72. 

Dimethyl-6-amino-1,4-bis(4´-chlorophenyl)-5-cyano-1,4-

dihydropyridine-2,3-dicarboxylate (5q): 

Yellow powder; m.p 128–129 °C; IR (ν cm
-1

): 3360, 2989, 2119, 

1746, 1643, 1210; 
1
H NMR (400 MHz, CDCl3): δ 3.41 (s, 3H, -CH3), 

3.69 (s, 3H, -CH3), 4.13 (s, 2H, -NH2), 4.63 (s, 1H, -CH), 7.22−7.47 (m, 

8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 18.8, 36.7, 50.5, 51.1, 

56.4, 61.8, 104.6, 120.5, 127.7, 128.4, 129.9, 130.0, 130.7, 131.4, 

132.1, 132.6, 134.0, 135.8, 140.8, 141.2, 143.5, 149.7, 157.2, 159.2, 

163.9, 164.7 ppm; ESI-MS, m/z: 458.1 [M+H]
+
; Anal. Calc. for 

C22H17Cl2N3O4 (%): C, 57.66, H, 3.74, N, 9.17; found: C, 57.50, H, 

4.03, N, 8.95. 

Dimethyl-6-amino-5-cyano-4-(3´-nitrophenyl)-1-p-tolyl-1,4-

dihydropyridine-2,3-dicarboxylate (5r): 

Yellow powder; m.p 213–214 °C; IR (ν cm
-1

): 3382, 2942, 2120, 

1749, 1610, 1237; 
1
H NMR (400 MHz, CDCl3): δ 2.49 (s, 3H, -CH3), 

3.46 (s, 3H, -OCH3), 3.59 (s, 3H, -OCH3), 4.18 (s, 2H, -NH2), 4.82 (s, 

1H, -CH), 7.26−8.28 (m, 8H, Ar-H) ppm; 
13

C NMR (100 MHz, CDCl3): δ 

18.1, 20.2, 37.3, 50.8, 51.3, 58.2, 60.3, 103.9, 120.5, 121.6, 122.5, 

129.3, 130.1, 130.7, 131.5, 132.6, 134.1, 141.1, 142.5, 146.7, 148.1, 

151.9, 162.4 163.9 ppm; ESI-MS, m/z: 449.1 [M+H]
+
; Anal. Calc. for 

C23H20N4O6 (%): C, 61.60, H, 4.50, N, 12.49; found: C, 61.49, H, 4.85, 

N, 12.11. 
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Appendix A. Supporting Information 
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available free of charge via the Internet. Single crystal data for 
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been deposited in the Cambridge Crystallographic Data Center. 
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