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Abstract The effect of rotation on the onset of ther-
mal convection in a horizontal layer of ferrofluid sat-
urated Brinkman porous medium is investigated in the
presence of a uniform vertical magnetic field using a
local thermal non-equilibrium (LTNE) model. A two-
field model for temperature representing the solid and
fluid phases separately is used for energy equation.
The condition for the occurrence of stationary and os-
cillatory convection is obtained analytically. The sta-
bility of the system has been analyzed when the mag-
netic and buoyancy forces are acting together as well
as in isolation and the similarities as well as differ-
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ences between the two are highlighted. In contrast to
the non-rotating case, it is shown that decrease in the
Darcy number Da and an increase in the ratio of ef-
fective viscosity to fluid viscosity Λ is to hasten the
onset of stationary convection at high rotation rates
and a coupling between these two parameters is identi-
fied in destabilizing the system. Asymptotic solutions
for both small and large values of scaled interphase
heat transfer coefficient Ht are presented and com-
pared with those computed numerically. Besides, the
influence of magnetic parameters and also parameters
representing LTNE on the stability of the system is dis-
cussed and the veracity of LTNE model over the LTE
model is also analyzed.

Keywords Ferromagnetic convection · Porous
medium · Rotation · Thermal non-equilibrium model

1 Introduction

Ferromagnetic fluids are colloidal suspensions of per-
manently magnetized nanoparticles in carrier liquids
like water, heptane, kerosene or various oils. The
nanoparticles typically have sizes of about 3 ∼ 10 nm
and each particle is encapsulated by a surfactant to
provide short range steric repulsion between particles
to prevent particle agglomeration in the presence of
magnetic field. These fluids are also termed as mag-
netic fluids or magnetic nanofluids and they are not
found in nature but are artificially synthesized in the
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laboratory. The peculiarity of ferrofluids is the com-
bination of normal liquid behavior with a magnetic
control of their flow and properties. This possibility
originates from the fact that each of the particles can
be treated as a thermally agitated single domain par-
ticle in the carrier liquid. The continuum description
of the ferrofluid flow termed as ferrohydrodynamics
has been in existence since 1960s and the field of fer-
rofluid research has gained its momentum over the
years because of the importance of these wonder flu-
ids in many technological applications of commercial
value (Rosensweig [1]; Berkovsky et al. [2]; Blums et
al. [3]; Hergt et al. [4]; Alexiou et al. [5]).

Thermal convection of ferrofluids in non-porous
and porous domains heated uniformly from below in
the presence of a uniform magnetic field, known as
ferromagnetic convection, has attracted considerable
attention in the literature. Ganguly et al. [6] have given
an overview of prior research on heat transfer in fer-
rofluid flows and also discussed the heat transfer aug-
mentation due to the thermomagnetic convection. In
his review article, Odenbach [7] has focused on re-
cent developments in the field of rheological investi-
gations of ferrofluids and their importance for the gen-
eral treatment of ferrofluids. Thermal convective in-
stability in a ferrofluid saturated porous domain has
also been investigated extensively owing to their im-
portance in controlled emplacement of liquids or treat-
ment of chemicals, and emplacement of geophysically
imageable liquids into particular zones for subsequent
imaging etc. Rosensweig et al. [8] have studied ex-
perimentally the penetration of ferrofluids in the Hele-
Shaw cell. The stability of the magnetic fluid penetra-
tion through a porous medium in high uniform mag-
netic field oblique to the interface is studied by Zahn
and Rosensweig [9]. The thermal convection of fer-
rofluid saturating a porous medium in the presence of
a vertical magnetic field is studied by Vaidyanathan
et al. [10] by employing the Brinkman equation. The
experimental results of the behavior of ferrofluids in
porous media consisting of sands and sediments are
presented in detail by Borglin et al. [11]. Sunil and
Mahajan [12] have used generalized energy method
to study nonlinear convection in a magnetized fer-
rofluid saturated porous layer heated uniformly from
below for the stress-free boundaries case. Shivaku-
mara et al. [13, 14] have investigated theoretically
the onset of convection in a layer of ferrofluid satu-
rated porous medium for various types of velocity and

temperature boundary conditions. Nanjundappa et al.
[15] have investigated the onset of buoyancy-driven
convection in a ferromagnetic fluid saturated sparsely
packed porous medium with fixed heat flux condi-
tion at the lower rigid boundary and a general thermal
boundary condition at the upper free boundary.

In many practical applications involving hyper-
porous materials and also media in which there is
a large temperature difference between the fluid and
solid phases, it has been realized that the assump-
tion of local thermal equilibrium (LTE) is inadequate
for proper understanding of the heat transfer prob-
lems. In such circumstances, the local thermal non-
equilibrium (LTNE) effects are to be taken into consid-
eration. Therefore, the recent trend in the study of ther-
mal convective instability problems in porous media is
to account for LTNE effects by considering a two-field
model for energy equation each representing the fluid
and solid phases separately. Copious literature is avail-
able on natural convection in an ordinary viscous fluid
saturating a porous layer using a LTNE model (Rees
and Pop [16], Nield and Bejan [17]; Shivakumara et
al. [18] and references therein). Nonetheless, limited
attention has been given to assess LTNE effects on the
criterion for the onset of ferromagnetic convection in
a porous medium despite its relevance and importance
in many heat transfer problems as mentioned above
[19–22].

Ferrofluids are known to exhibit strange character-
istics when they are set to rotation and hence inves-
tigating the effects of rotation on ferromagnetic con-
vection in a rotating porous medium is scientifically
and technologically important. Sekar et al. [23] and
Vaidyanathan et al. [24] have discussed the effect of
rotation on convective instability in a ferrofluid satu-
rated porous layer heating uniformly from below. In
the latter paper, the effect of magnetic field depen-
dent viscosity is also taken into consideration. Subse-
quently, many researchers have extended these works
to include various additional effects. Sunil and Maha-
jan [25] have performed nonlinear stability analysis
for rotating magnetized ferrofluid heated from below
saturating a porous medium for free boundaries. Shiv-
akumara et al. [26] have studied the effect of Coriolis
force on the onset of ferromagnetic convection in a ro-
tating horizontal ferrofluid saturated porous layer in
the presence of a uniform vertical magnetic field con-
sidering the bounding surfaces of the porous layer to
be either stress-free or rigid. Contrary to their stabiliz-
ing effect in the absence of rotation, they have shown
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that increasing the ratio of viscosities Λ and decreas-
ing the Darcy number Da hasten the onset of stationary
ferromagnetic convection in the presence of rotation.
All the above studies are based on LTE model.

The combined effect of rotation and LTNE on linear
and nonlinear thermal convection in an ordinary vis-
cous fluid saturating a porous medium has been stud-
ied by Straughan [27]. He has established the equiv-
alence of the linear instability and nonlinear stabil-
ity boundaries for the thermal convection in a rotating
porous layer with the Darcy law using a LTNE model.
Malashetty et al. [28] have studied linear and weakly
nonlinear thermal convection in a rotating densely
packed porous layer using a LTNE model. Nonethe-
less, the problem involving the simultaneous effect of
rotation and LTNE on ferromagnetic convection has
not been given due attention despite its importance in
many heat transfer related problems except the study
undertaken by Sunil et al. [29].

The intent of the present study is, therefore, to per-
form the linear stability analysis of thermal convection
in a rotating sparsely packed horizontal ferromagnetic
fluid saturated Brinkman porous layer using a LTNE
model and to elucidate that the dynamical system con-
sidered is capable of supporting some new results not
observed in the absence of rotation and also in the pre-
vious investigation. The criterion for the onset of sta-
tionary and oscillatory convection is obtained analyti-
cally and some interesting observations on the stabil-
ity characteristics of the system have been unfolded
through numerical calculations. In addition, the verac-
ity of LTNE model over the LTE model is also ana-
lyzed. Besides, the asymptotic analysis has been car-
ried out for very small and large values of interphase
heat transfer coefficient to calculate critical Rayleigh
and wave numbers. Since the ferromagnetic fluids are
considered to be good carriers of heat, a possible engi-
neering application of the findings of the current study
may be useful in understanding the cooling of elec-
tronic circuits found in rotating radars. Besides, the
study helps in understanding control of ferroconvec-
tion by the Coriolis force due to rotation.

2 Formulation of the problem

We consider an initially quiescent incompressible con-
stant viscosity ferromagnetic fluid saturated horizontal
porous layer of characteristic thickness d in the pres-
ence of a uniform applied magnetic field H0 in the ver-
tical direction as shown in Fig. 1. The lower surface is

Fig. 1 Physical configuration

held at constant temperature TL, while the upper sur-
face is at TU (< TL). A Cartesian co-ordinate system
(x, y, z) is used with the origin at the bottom of the
porous layer and the z-axis directed vertically upward
in the presence of gravitational field. The entire system
is rotating with constant angular velocity �Ω = Ωk̂,
where k̂ is the unit vector in the vertical direction. It is
assumed that the rotation does not disrupt the isotropy
of the porous medium. The flow in the porous medium
is described by the Brinkman–extended–Darcy equa-
tion with fluid viscosity different from effective vis-
cosity and the Boussinesq approximation on the den-
sity is made. The solid and fluid phases of the porous
medium are assumed to be in LTNE and a two-field
model for temperatures is used. The basic equations
are:

∇ · �q = 0 (1)

ρ0

[
1

ε

∂ �q
∂t

+ 1

ε2
(�q.∇)�q

]

= −∇
(

ρ0

2

(| �Ω × �r|) + p

)

+ ρf �g − μf

k
�q + μ̃f ∇2 �q + μ0( �M · ∇) �H

+ ρ0cF√
k

|�q|�q + 2
ρ0

ε
(�q × �Ω) (2)

ε(ρ0c)f
∂Tf

∂t
+ (ρ0c)f (�q · ∇)Tf = εkf ∇2Tf

+ h(Ts − Tf ) (3)

(1 − ε)(ρ0c)s
∂Ts

∂t
= (1 − ε)ks∇2Ts − h(Ts − Tf ) (4)

ρf = ρ0
[
1 − αt (Tf − Ta)

]
(5)

where, �q the velocity vector, p the pressure, �M the
magnetization, �H the magnetic field intensity, ρf the
fluid density, k the permeability of the porous medium,
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cF the dimensionless form drag constant, ε the poros-
ity of the porous medium, μf the fluid viscosity, μ̃f

is the effective viscosity, μ0 the magnetic permeabil-
ity of vacuum, Tf the temperature of the fluid phase,
Ts the temperature of the solid phase, c the specific
heat, kf the thermal conductivity of the fluid, ks the
thermal conductivity of the solid, h is the inter-phase
heat transfer coefficient, ρ0 the reference value, αt the
thermal expansion coefficient, Ta = (TL + TU)/2 the
average temperature. It may be noted that large values
of h correspond to a rapid transfer of heat between the
phases which represents the LTE case, while moderate
values of h correspond to relatively strong LTNE ef-
fects. In other words, it measures the ease with which
heat is transferred between the phases. In (3) and (4),
Tf and Ts are intrinsic averages of the temperature
fields, and this allows one to set Tf = Ts = Tb when-
ever the boundary of the porous medium is maintained
at the temperature Tb .

The Maxwell equations in the magnetostatic limit
are:

∇. �B = 0 (6a)

∇ × �H = 0 or �H = ∇φ (6b)

where, �B is the magnetic induction and φ is the mag-
netic potential. Further, �B, �M and �H are related by

�B = μ0( �M + �H). (7)

It is assumed that the magnetization is aligned with
the magnetic field, but allowed a dependence on the
magnitude of the magnetic field as well as temperature
(Finlayson [30]) and thus

�M = M(H,Tf )
�H

H
(8)

where M = | �M| and H = | �H |. The magnetic equation
of state, following (Finlayson [30]), is taken as

M = M0 + χ(H − H0) − K(Tf − Ta) (9)

where, χ = (∂M/∂H)H0 ,Ta , the magnetic suscepti-
bility, K = −(∂M/∂Tf )H0,Ta , the pyromagnetic co-
efficient and M0 = M(H0, Ta).

2.1 Basic state

The basic state is quiescent and there exists the follow-
ing solution for the basic state:

�qb = 0

pb(z) = p0 − ρ0gz − 1

2
ρ0αtgβz(z − d) − μ0M0Kβ

1 + χ
z

− μ0K
2β2

2(1 + χ)2
z(z − d)

Tf b(z) = Ta − β(z − d/2) = Tsb(z)

�Hb(z) =
[
H0 − Kβ

1 + χ

(
z − d

2

)]
k̂

�Mb(z) =
[
M0 + Kβ

1 + χ

(
z − d

2

)]
k̂ (10)

where, β = �T/d = (TL − TU)/d is the temperature
gradient, k̂ is the unit vector in the z-direction and the
subscript b denotes the basic state. It may be noted that
the fluid and solid phases have the same temperatures
at the bounding surfaces of the porous layer.

2.2 The perturbed state

To investigate the conditions under which the quies-
cent solution is stable against small disturbances, we
consider a perturbed state in the form

�q = �q ′, p = pb(z) + p′, Tf = Tf b(z) + T ′
f ,

Ts = Tsb(z) + T ′
s ,

�H = �Hb(z) + �H ′, (11)

�M = �Mb(z) + �M ′

where, �q ′ = (u′, v′,w′), p′, T ′
f , T ′

s , �H ′ = (H ′
x,H

′
y,H

′
z)

and �M ′ = (M ′
x,M

′
y,M

′
z) are perturbed variables and

are assumed to be small.
Substituting Eq. (11) into Eqs. (7) and (8), and

using Eqs. (6a), (6b), we obtain (after dropping the
primes)

Hx + Mx = (1 + M0/H0)Hx

Hy + My = (1 + M0/H0)Hy (12)

Hz + Mz = (1 + χ)Hz − KTf .

Using Eq. (11) in Eq. (2), linearizing and taking curl
on the resulting equation (after neglecting primes), the
z-component can be written as

ρ0

ε

∂ζ

∂t
= μ̃f ∇2ζ − μf

k
ζ + 2

ρ0

ε
Ω

∂w

∂z
(13)

which is the vorticity transport equation and ζ =
∂v/∂x − ∂u/∂y is the z-component of vorticity.

Again substituting Eq. (11) into momentum Eq. (2),
linearizing, eliminating the pressure term by taking
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curl twice and using Eq. (12) the z-component of the
resulting equation can be obtained as (after dropping
the primes):
(

ρ0

ε

∂

∂t
+ μf

k
− μ̃f ∇2

)
∇2w

= −2
ρ0

ε
Ω

∂ζ

∂z
− μ0Kβ

∂

∂z

(∇2

hφ
)

+ μ0K
2
β

1 + χ
∇2

hTf + ρ0αtg∇2

hTf (14)

where, ∇2
h = ∂2/∂x2 +∂2/∂y2 is the horizontal Lapla-

cian operator.
Equations (3) and (4), after using Eq. (11) and lin-

earizing, take the following form (after dropping the
primes):

ε(ρ0c)f
∂Tf

∂t
+ (ρ0c)f w

dTf b

dz

= εkf ∇2Tf + h(Ts − Tf ) (15)

(1 − ε)(ρ0c)s
∂Ts

∂t
= (1 − ε)ks∇2Ts − h(Ts − Tf ).

(16)

Equations (6a), (6b), after substituting Eq. (11) and
using Eq. (12), may be written as (after dropping the
primes)

(
1 + M0

H0

)
∇2

hφ + (1 + χ)
∂2φ

∂z2
− K

∂Tf

∂z
= 0. (17)

3 Linear stability theory

To solve the above linear stability equations, we as-
sume the normal mode expansion of the dependent
variables in the form

{w,Tf ,Ts,φ, ζ } = {
W(z),Θf (z),Θs(z),Φ(z),Z(z)

}
× exp

[
i(�x + my + σ t)

]
(18)

where, � and m are wave numbers in the x and y direc-
tions, respectively, W(z) is the amplitude of vertical
component of perturbed velocity, Θf (z) is the ampli-
tude of perturbed fluid temperature, Θs(z) is the am-
plitude of perturbed solid temperature, Φ(z) is the am-
plitude of perturbed magnetic potential and Z(z) is the
amplitude of perturbed vertical component of vorticity
and σ is the growth rate which is complex, in general.

Substituting Eq. (18) into Eqs. (13)–(17), and non-
dimensionalizing the variables by setting

(
x∗, y∗, z∗) =

(
x

d
,
y

d
,
z

d

)
, t∗ = κf

d2
t,

W ∗ = d

εκf

W, Θ∗
f = 1

βd
Θf (19)

Θ∗
s = 1

βd
Θs, Φ∗ = (1 + χ)

Kβd2
Φ, Z∗ = d2

ν
Z

where κf = kf /(ρ0c)f is the effective thermal diffu-
sivity of the fluid, we obtain (after dropping the aster-
isks for simplicity)

[
Λ

(
D2 − a2) − Da−1 − σ

Pr

](
D2 − a2)W

= −a2R
[
M1DΦ − (1 + M1)Θf

] + Ta1/2DZ (20)(
D2 − a2 − σ

)
Θf + Ht(Θs − Θf ) = −W (21)(

D2 − a2 − ασ
)
Θs + γHt(Θf − Θs) = 0 (22)(

D2 − a2M3
)
Φ − DΘf = 0 (23)[

Λ
(
D2 − a2) − Da−1 − σ

Pr

]
Z = −Ta1/2DW. (24)

Here, D = d/dz is the differential operator, a =√
�2 + m2 is the overall horizontal wave number, R =

ρ0αtgβd4/εμf κf is the Rayleigh number and it is the
ratio of buoyant to viscous forces, Ta = 4Ω2d4/ν2ε2

is the Taylor number and it is the ratio of Coriolis
to viscous forces, Pr = ν/εκf is the Prandtl num-
ber, Λ = μ̃f /μf is the ratio of viscosities, Da = k/d2

is the Darcy number, M1 = μ0K
2β/(1 + χ)αtρ0g is

the magnetic number and it is the ratio of magnetic
to gravitational forces, M3 = (1 + M0/H0)/(1 + χ)

is the measure of nonlinearity of magnetization and
M3 = 1 corresponds to linear magnetization, Ht =
hd2/εkf is the scaled inter-phase heat transfer co-
efficient, α = κf /κs is the ratio of diffusivities, and
γ = εkf /(1− ε)ks is the porosity modified conductiv-
ity ratio and σ is the growth rate.

The boundaries are considered to be stress-free, fer-
romagnetic, and perfect conductors of heat. The corre-
sponding boundary conditions are:

W = 0 = D2W, Θf = 0 = Θs,

DΦ = 0 = DZ at z = 0,1.
(25)
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Equations (20)–(24) admit solution satisfying the
boundary conditions in the form

W = A1 sinπz, Θf = A2 sinπz,

Θs = A3 sinπz, (26)

Φ = −(A4/π) cosπz, Z = −(A5/π) cosπz

where A1–A5 are constants. Substitution of (26) into
(20)–(24) and eliminating the constants A1–A5 from
the resulting equations yields the following character-
istic equation:

∣∣∣∣∣∣∣∣∣∣

δ2( σ
Pr + Λδ2 + Da−1) −a2R(1 + M1) 0 a2RM1 −√

Ta
−1 (ασ + δ2 + Ht) −Ht 0 0
0 −γHt (σ + δ2 + γHt) 0 0
0 π2 0 −(π2 + M3a

2) 0
π2

√
Ta 0 0 0 ( σ

Pr + Λδ2 + Da−1)

∣∣∣∣∣∣∣∣∣∣
= 0 (27)

where, δ2 = π2 +a2. Expanding the above determinant gives the following expression for the Rayleigh number R:

R =

[
(π2 + M3a

2){π2Pr2Ta + δ2(Da−1Pr + Prδ2Λ + σ)2}×
{(δ2 + σ)(δ2 + σα) + Ht(1 + γ )δ2 + Ht(α + γ )σ }

]

Pra2{π2 + M3(1 + M1)a2}(δ2 + γHt + ασ)(Da−1Pr + Prδ2Λ + σ)
. (28)

To examine the stability of the system, the real part of σ is set to zero and we take σ = iω. Substituting σ = iω in
(28) and clearing the complex quantities from the denominator, we get

R = (π2 + M3a
2)

Pra2{π2 + M3(1 + M1)a2}{(δ2 + γHt)2 + α2ω2}{Pr2(Da−1 + δ2Λ)2 + ω2} (�1 + iω�2) (29)

where the expressions for �1 and �2 are given in the
Appendix. Since the Rayleigh number R is a physi-
cal quantity, it must be real. Hence, from (29) it im-
plies either ω = 0 or �2 = 0 (ω �= 0), and accordingly
the condition for the onset of stationary and oscillatory
convection is obtained.

3.1 Stationary convection (ω = 0)

The stationary convection occurs at R = Rs , where

Rs = (π2 + M3a
2)δ2{π2Ta + δ2(Da−1 + δ2Λ)2}{Ht(1 + γ ) + δ2}

{π2 + M3(1 + M1)a2}a2(δ2 + γHt)(Da−1 + δ2Λ)
. (30)

The critical Rayleigh number Rs
c and the correspond-

ing critical wave number ac are determined numeri-
cally for various values of Ta,Da,Λ, M1, M3, γ and
Ht because the expression for the Rayleigh number
is complicated for analytical treatment. Equation (30)
coincides with the one obtained by Sunil et al. [29].
It is also interesting to check (30) under some limiting
cases. When M1 = 0 (i.e., ordinary viscous fluid case),

(30) reduces to

Rs = δ2{δ2 + Ht(1 + γ )}{π2Ta + δ2(Da−1 + δ2Λ)2}
a2(δ2 + γHt)(Da−1 + δ2Λ)

.

(31)

The above expression coincides with those of
Straughan [27] and Malashetty et al. [28] when Λ = 0
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and after rescaling the Rayleigh and Taylor numbers
with the Darcy number. When Ta = 0, (30) reduces to

Rs = δ4(Da−1 + δ2Λ){Ht(1 + γ ) + δ2}(π2 + M3a
2)

a2{π2 + M3(1 + M1)a2}(δ2 + γHt)

(32)

which coincides with the expression obtained by Shiv-
akumara et al. [20].

When Ht = 0 (LTE case) and M1 = 0, (30) reduces
to

Rs = δ2{π2Ta + δ2(Da−1 + δ2Λ)2}
a2(Da−1 + δ2Λ)

(33)

which coincides with the one given by Shivakumara et
al. [31].

When Ht → ∞, (30) reduces to

Rs

(
γ

1 + γ

)
= ρ0αtgβd4

{εκf + (1 − ε)κs}μ

= Rs
Mp = δ2{π2Ta + δ2(Da−1 + δ2Λ)2}

a2(Da−1 + δ2Λ)

× (π2 + M3a
2)

{π2 + M3(1 + M1)a2} . (34)

Here, it may be noted that the expression for the
Rayleigh number is based on the mean properties of
the porous medium and coincides for the LTE case.
When M1 = 0 = Λ, then the above equation coincides
with the classical result obtained by Palm and Tyvand
[32] for the problem of thermal instability in a rotat-
ing viscous fluid saturated porous layer. For very large
M1, the results for the magnetic mechanism alone
operating in the absence of buoyancy effects is ob-
tained. The corresponding magnetic Rayleigh number
Rm(= RsM1) is expressed as follows:

Rm = RsM1

= δ2{δ2 + Ht(1 + γ )}{π2Ta + δ2(Da−1 + δ2Λ)2}
a2(δ2 + γHt)(Da−1 + δ2Λ)

× (π2 + M3a
2)

M3a2
. (35)

In addition, when M3 → ∞, we note that (35) turns
out to be the same as (31) (i.e., Rm = Rs ).

3.2 Oscillatory convection (ω �= 0)

The oscillatory onset corresponds to �2 = 0 (ω �= 0)

in (29) and this gives a dispersion relation of the form

A1
(
ω2

i

)2 + A2
(
ω2

i

) + A3 = 0 (36)

where,

A1 = α2δ2{Ht + Da−1Pr + δ2(1 + PrΛ)
}

A2 = (
Da−1)3

Pr3α2δ2 + H 2
t γ δ4(1 + γ

+ PrαΛ + PrγΛ) + (
Da−1)2

Pr2α2δ2

× {
Ht + δ2(1 + 3PrΛ)

}
+ δ2{π2Pr2α2Ta(PrΛ − 1)

+ δ6(1 + PrΛ)
(
1 + Pr2α2Λ2)}

+ Ht

{
δ6(1 + 2γ + 2PrΛγ + Pr2α2Λ2)

− π2Prα2Ta
}

+ Da−1

⎧⎨
⎩

π2Pr2α2Ta + δ2(H 2
t PrΛ(α + γ ))

+2HtPrδ4(γ + Prα2Λ)

+δ6(1 + 2Prα2Λ + 3Pr2α2Λ2)

⎫⎬
⎭

A3 = (
Da−1)3

Pr2δ2{H 2
t γ Pr(α + γ ) + 2Htγ δ2

+ δ4} + (
Da−1)2

Pr2δ8(1 + 3PrΛ)

+ (
Da−1)2

Pr2δ4{H 2
t γ (1 + γ + 3PrαΛ

+ 3PrγΛ) + Htδ
2(1 + 2γ + 6PrγΛ)

}
+ Da−1Pr2{δ4π2PrTa + δ10Λ(2 + 3PrΛ)

+ 2Ht

{
π2PrTaδ2 + δ8Λ(1 + 2γ + 3PrΛγ )

}}
+ Da−1Pr2H 2

t γ
{
π2PrTa(α + γ )

+ δ6Λ(2 + 2γ + 3PrαΛ + 3PrγΛ)
}

+ δ6{π2α2Ta(PrΛ − 1)
}

+ δ8Λ2Pr2(1 + PrΛ)

+ δ2H 2
t γ

{
π2Ta

(
γ (PrΛ − 1) − 1 + PrγΛ

)
+ δ6Λ2(1 + γ + PrαΛ + PrγΛ)

}
+ Htδ

2Pr2{π2Ta
(
2γ (PrΛ − 1) − 1

)
+ δ6Λ2(1 + 2γ (1 + PrΛ)

)}
.

The oscillatory convection occurs at R = Ro, where
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Ro = (π2 + M3a
2)�1

Pra2{π2 + M3(1 + M1)a2}{(δ2 + γHt)2 + α2ω2}{Pr2(Da−1 + δ2Λ)2 + ω2} (37)

and ω2 is given by (36). For the existence of oscil-
latory convection, ω2

i should be positive. From (36)
it can be seen that the occurrence of oscillatory con-
vection depends on the values of various physical pa-
rameters involved therein. In the absence of rotation
(i.e., Ta = 0), a glance at (36) reveals that ω2

i will not
have any positive roots since Ai > 0 (i = 1,2,3). Thus
the occurrence of oscillatory convection does not de-
pend on LTE or LTNE model but it is only due to the
presence of Coriolis force due to rotation. For the LTE
model in the presence of rotation, it is shown that os-
cillatory convection is not a preferred mode of insta-
bility unless the value of the Prandtl number is less
than unity and the Taylor number exceeds a threshold
value (Shivakumara [26]). Under the circumstances, it
is obvious to reason out that for the problem under in-
vestigation oscillatory convection will be a preferred
mode of instability only if the Prandtl number is less
than unity. Since the Prandtl number is greater than
unity for ferromagnetic fluids (whether they are water
based or any other organic liquid based), oscillatory

convection is not a preferred mode of instability and
hence we have limited our discussion to only station-
ary onset.

4 Asymptotic values of Rs for small and large
values of Ht

An asymptotic analysis is being carried out to obtain
an expression for the Rayleigh number Rs and the cor-
responding wave number for small as well as large val-
ues of Ht .

4.1 Case 1: Ht � 1

For this case, the Rayleigh number Rs is slightly above
the corresponding value for the LTE case. Accord-
ingly, we expand Rs given by (30) in a power series in
Ht as

Rs = (π2 + a2){π2Ta + (π2 + a2)(Da−1 + (π2 + a2)Λ)2}(π2 + M3a
2)

a2{Da−1 + (π2 + a2)Λ}{π2 + M3(1 + M1)a2}

×
[

1 + Ht

(π2 + a2)
− γH 2

t

(π2 + a2)2
+ · · ·

]
(38)

To minimize Rs up to O(H 2
t ), we set ∂Rs/∂a = 0

and obtain an expression of the form

B1γH 2
t + B2Ht + B3 · · · = 0 (39)

where B1, B2 and B3 are lengthy expressions and they
are not given here.

We also expand a in power series of Ht as

a = a0 + a1Ht + a2H
2
t + · · · (40)

where, a0 is the critical wave number for the LTE
case. Substituting (40) into (39) and equating the co-
efficients of like powers of Ht , we find a1 and a2 and

are given by

a1 = �′
1

�′ , a2 = �′
2

�′ (41)

where �′,�′
1 and �′

2 are lengthy expressions and they

are not given here but these expressions are used dur-

ing numerical calculations. With the values of a0, a1

and a2, (40) gives the critical wave number and con-

sequently using this in (38) one can obtain the critical

Rayleigh number for small Ht .
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Table 1 Comparison of the asymptotic (A) and exact (E) values of the critical Rayleigh number (Rs
c ) and the critical wave number

(ac) for different values of log10 Ht with M1 = 1, M3 = 1, Da−1 = 100,Ta = 100,Λ = 1 and γ = 1

log10 Ht Rs
c(A) ac(A) Rs

c(E) ac(E)

−2.0 3144.52 3.366 3144.51 3.372

−1.0 3157.75 3.373 3157.74 3.378

0.0 3282.81 3.426 3283.09 3.431

1.0 3963.00 3.098 4122.12 3.630

2.0 5754.34 3.488 5726.71 3.495

3.0 6220.59 3.381 6220.55 3.386

4.0 6279.42 3.368 6279.4 3.373

5.0 6285.41 3.366 6285.39 3.371

4.2 Case 2: Ht � 1

For this case, the Rayleigh number takes the form

Rs = (π2 + a2){π2Ta + (π2 + a2)(Da−1 + (π2 + a2)Λ)2}(π2 + M3a
2)

a2(Da−1 + (π2 + a2)Λ){π2 + M3(1 + M1)a2}

×
(

1 + γ

γ

)[
1 − (π2 + a2)

γ (1 + γ )Ht

+ (π2 + a2)2

γ 2(1 + γ )H 2
t

+ · · ·
]

(42)

We minimize this with respect to a in a similar way as
we did in the small Ht case and obtain the following
expression:

C1
1

γ 3H 2
t

+ C2
1

γ 2Ht

+ C3
1 + γ

γ
+ · · · = 0 (43)

where C1, C2 and C3 are lengthy expressions and not
presented here.

Similarly, we expand a in the form

a = a0 + a′
1

Ht

+ a′
2

H 2
t

+ · · · (44)

where a0 is the critical wave number for the LTE case
and a′

1 and a′
2 are to be determined. Substituting (44)

into (43) and equating the coefficients of like powers
of Ht , we find a′

1 and a′
2 and are given by

a′
1 = �′′

1

�′′ , a′
2 = �′′

2

�′′ (45)

where, �′′�′′
1 and �′′

2 are quite lengthy expressions
and they are not given here. But they are used dur-
ing numerical calculations of the critical wave number.

Again with the values of a0, a′
1 and a′

2, we compute
the critical wave number ac from (44) and finally us-
ing this value of ac one can obtain the critical Rayleigh
number from (42) for large Ht .

The critical Rayleigh number Rs
c (i.e., the critical

value of Rs obtained with respect to the wave num-
ber a) and the corresponding critical wave number ac

are obtained for both small as well as large Ht using
the asymptotic formulae. The critical stability param-
eters (Rs

c, ac) so obtained are compared with the exact
values obtained from (30) in Table 1 for representa-
tive values of M1 = 1, M3 = 1, Da−1 = 100 = Ta,
Λ = 1 with γ = 1. From the table, it is observed
that an increasingly good agreement amongst the crit-
ical stability parameters as the value of Ht either de-
creases or increases. The asymptotic (A) and exact (E)
critical Darcy-Rayleigh (Rs

Dc = Rs
cDa) and the cor-

responding wave numbers obtained under the limit-
ing case of an ordinary viscous fluid (i.e., M1 = 0,
M3 = 0) saturating a densely packed (i.e., Λ = 0)
rotating porous layer for two values of Darcy-Taylor
number TaD = 0 and 25 with γ = 1 are compared with
those of Malashetty et al. [28] in Table 2. It may be
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Table 2 Comparison of the asymptotic (A) and exact (E) values of the critical Darcy-Rayleigh number (Rs
Dc) and the critical wave

number (ac) for different values of log10 Ht with γ = 1,M1 = 0,M3 = 0,Λ = 0 and TaD = 0 and 25

TaD log10 Ht Malashetty et al. [28] Present analysis

Rs
c(A) ac(A) Rs

c(E) ac(E) Rs
c(A) ac(A) Rs

c(E) ac(E)

0 −2.0 39.498 3.142 39.498 3.142 39.498 3.142 39.498 3.142

−1.0 39.677 3.149 39.677 3.149 39.677 3.149 39.677 3.149

0.0 41.356 3.211 41.362 3.211 41.358 3.210 41.362 3.211

1.0 49.346 3.131 52.360 3.436 49.752 2.829 52.360 3.436

2.0 72.622 3.250 72.340 3.271 72.625 3.270 72.340 3.271

3.0 78.191 3.157 78.191 3.157 78.191 3.157 78.191 3.157

4.0 78.879 3.143 78.879 3.143 78.879 3.143 78.879 3.143

5.0 78.949 3.142 78.949 3.142 78.949 3.142 78.949 3.142

25 −2.0 397.191 7.096 397.191 7.096 397.191 7.096 397.191 7.096

−1.0 367.738 7.112 367.738 7.112 367.738 7.112 367.738 7.112

0.0 373.012 7.262 373.014 7.262 373.012 7.261 373.014 7.262

1.0 414.289 8.141 414.019 8.198 414.416 7.611 414.019 8.198

2.0 644.433 6.744 576.92 9.280 644.02 6.145 576.92 9.280

3.0 712.760 7.421 712.665 7.426 712.760 7.428 712.665 7.426

4.0 732.055 7.127 732.055 7.127 732.055 7.127 732.055 7.127

5.0 734.039 7.097 734.039 7.097 734.039 7.097 734.039 7.097

seen that the results presented for different values of
log10 Ht agree very well with each other.

5 Results and discussion

The combined effect of LTNE and Coriolis force due
to rotation on thermal convection in a ferromagnetic
fluid saturated horizontal Brinkman porous layer in the
presence of a uniform vertical magnetic field is inves-
tigated. The condition for the occurrence of stationary
and oscillatory onset is established analytically. It is
observed that oscillatory convection is not a preferred
mode of instability and the results are discussed for
stationary convection. By performing careful numeri-
cal calculations it is shown that the rotating ferrofluid
saturated porous layer is capable of supporting some
new results which are not found in the previous inves-
tigation.

From (30), we note that ∂Rs/∂Ta > 0, ∂Rs/∂M1 <

0 and ∂Rs/∂M3 < 0. Hence, the effect of increasing
Ta is to delay and increasing M1 as well as M3 is to
hasten the onset of ferromagnetic convection. Further,

it is observed that

∂Rs

∂Da−1
= (a2M3 + π2){Ht(1 + γ ) + δ2}δ2

a2{a2(1 + M1)M3 + π2}(Htγ + δ2)

×
[

2δ2 − π2Ta + δ2(Da−1 + δ2Λ)2

(Da−1 + δ2Λ)2

]
(46)

∂Rs

∂Λ
= (a2M3 + π2){H(1 + γ ) + δ2}δ4

a2{a2(1 + M1)M3 + π2}(Hγ + δ2)

×
[

2δ2 − π2Ta + δ2(Da−1 + δ2Λ)2

(Da−1 + δ2Λ)2

]
. (47)

When Ta = 0, from the above equations it is seen that
Rs is an increasing function of Da−1 and Λ indicating
their effect is to stabilize the system. When Ta �= 0,
however, it is observed that the right-hand side of (46)
and (47) may be either negative or positive depending
on the parametric values. That is to say that an increase
in the value of Da−1 and Λ might lead to instability of
a rotating ferromagnetic fluid saturated porous layer.

To visualize this behavior, the variation of Rs
c as a

function of Da−1 is shown in Fig. 2 for different val-
ues of Λ when Ta is fixed at 106 for M1 = 1, M3 = 1,
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Fig. 2 Variation of Rs
c with Da−1 for different values of Λ with

Ta = 106, M1 = 1, M3 = 1, γ = 0.5 and Ht = 100

γ = 0.5 and Ht = 100. From the figure, it is observed
that the destabilization due to Da−1 manifests itself
as minimum in the Rs

c − Da−1 curve. The range of
Da−1 up to which the system becomes destabilized
decreases with an increase in the value of Λ. This
may be due to a delicate balance between the Coriolis
and Darcy frictional forces, while elsewhere a strong
‘two-dimensionality’ prevails, being provided at lower
values of Da−1 by Coriolis forces, and at higher val-
ues of Da−1 by frictional forces. This phenomenon is
similar to the one observed by Chandrasekhar [33] in
the study of thermal convective instability in a rotating
fluid layer in the presence of vertical magnetic field;
where it is observed that rotation/magnetic field desta-
bilizes the system although their individual effect is
to make the system more stable. Moreover, it is found
that Rs

c attains its minimum value with Da−1, denoted
by (Rs

c)min, at Da−1 = Da−1
m , where

Da−1
m = π

√
Ta

√
π2 + a2

c − a4
cΛ(π4 + 1) − 2π2a2

cΛ

π2 + a2
c

.

(48)

It is evident that Da−1
m decreases with an increase in

the value of Λ but increases with an increase in the
value of Ta. The above expression is same as the one
obtained for an ordinary viscous fluid case and also
independent of Ht and γ explicitly. The numerically

Fig. 3 Variation of Rs
c with Λ for different values of Da−1 with

Ta = 106, M1 = 1, M3 = 1, γ = 0.5 and Ht = 100

calculated values of (Rs
c)min and Da−1

m are tabulated in
Tables 3a, 3b for different values of Λ when M1 = 1,
M3 = 1, Ht = 100, 0 (LTE case) and γ = 0.5 for two
values of Ta = 106 (see Table 3a) and 2 × 106 (see
Table 3b). From the tables, it is seen that increasing Λ

is to decrease Da−1
m , while increase in Ta is to increase

the value of Da−1
m . An interesting and important point

to be noted here is that there is a coupling between
the values of Λ and Da−1

m such that (Rs
c)min remains

unaltered for a fixed value of Ta and also increase in
the value of Ta is to increase the value of (Rs

c)min. That
is, rotation has a stabilizing effect on the system.

A similar type of behavior is observed by varying
Λ and the results are presented in Fig. 3. The dual
role of viscosity ratio Λ on the onset of ferromagnetic
convection in a rotating ferromagnetic fluid saturated
porous layer is evident from this figure, where we note
that Rs

c passes through a minimum with an increase in
the value of Λ. In this case, Rs

c attains its minimum
value with Λ (i.e., (Rs

c)min) at Λ = Λm, where

Λm = − Da−1

(π2 + a2
c )

+ π
√

Ta

(π2 + a2
c )

√
(π2 + a2

c )
. (49)

From the above equation, it is noted that Λm decreases
with an increase in the value of Da−1, while it in-
creases with increasing Ta. The numerically calculated
values of Λm and the corresponding (Rs

c)min for dif-
ferent values of Da−1 when γ = 0.5, Ht = 100, 0
(LTE case), M1 = 1 and M3 = 1 for two values of



1150 Meccanica (2014) 49:1139–1157

Table 3a Values of (Rs
c)min, (Rmc)min and Da−1

m for various vales of Λ and M1 when M3 = 1, γ = 0.5 and Ta = 106

Ht Λ Simultaneous presence of
buoyancy and magnetic forces
(M1 = 1)

Buoyancy forces alone present
(M1 = 0)

Magnetic forces alone present
(M1 → ∞)

(Rs
c)min Da−1

m (Rs
c)min Da−1

m (Rmc)min Da−1
m

100 1 60349.023 300.08 110707.454 398.773 128860.00 227.995

1.5 60349.023 264.34 110707.454 374.18 128860.00 180.62

2 60349.023 228.59 110707.454 349.588 128860.00 133.245

2.5 60349.023 192.85 110707.454 324.996 128860.00 85.87

3 60349.023 157.11 110707.454 300.404 128860.00 38.495

0 1 30065.000 471.590 51284.000 547.741 68966.00 397.866

1.5 30065.000 452.587 51284.000 532.937 68966.00 373.192

2 30065.000 433.584 51284.000 518.133 68966.00 348.518

2.5 30065.000 414.581 51284.000 503.328 68966.00 323.844

3 30065.000 395.578 51284.000 488.524 68966.00 299.170

Table 3b Values of (Rs
c)min, (Rmc)min and Da−1

m for various vales of Λ and M1 when M3 = 1, γ = 0.5 and Ta = 2 × 106

Ht
Λ

Simultaneous presence of
buoyancy and magnetic forces
(M1 = 1)

Buoyancy forces alone present
(M1 = 0)

Magnetic forces alone present
(M1 → ∞)

(Rs
c)min Da−1

m (Rs
c)min Da−1

m (Rmc)min Da−1
m

100 1 85346.407 453.989 156564.00 584.322 182235.193 361.681

1.5 85346.407 418.245 156564.00 559.73 182235.193 314.306

2 85346.407 382.502 156564.00 535.138 182235.193 266.931

2.5 85346.407 346.759 156564.00 510.546 182235.193 219.556

3 85346.407 311.015 156564.00 485.954 182235.193 172.180

0 1 42518.400 682.671 72526.50 786.888 97532.000 583.108

1.5 42518.400 663.668 72526.50 772.083 97532.000 558.433

2 42518.400 644.665 72526.50 757.279 97532.000 533.759

2.5 42518.400 625.663 72526.50 742.475 97532.000 509.085

3 42518.400 606.660 72526.50 727.670 97532.000 484.411

Ta = 106 and 2 × 106 corroborate the above observa-
tions (see Tables 4a and 4b). As observed earlier, here
a coupling between Da−1 and Λm is found such that
(Rs

c)min value remains unaltered for a fixed value of
Ta and coincides with the one obtained previously by
varying Λ (see Tables 3a, 3b).

The variation of critical Darcy-Rayleigh number
Rs

c as a function of log10 Ht for different values of γ

with Ta = 100, M1 = 1, M3 = 1,Λ = 2 and Da−1 =
100 is presented in Fig. 4. We note that the curves of
different γ coalesce and asymptote to a single Rs

cvalue

when Ht is small and the critical Rayleigh number re-
mains almost independent of Ht for γ ≥ 10. This is
because, for very small values of Ht and higher values
of γ there is no significant transfer of heat between the
fluid and solid phases, and hence the condition for the
onset of convection is not affected by the properties
of the solid phase. This corresponds to classical LTE
limit. However, Rs

c varies with γ as the value of Ht

goes on increasing and remains independent of Ht at
higher values of Ht . The figure also indicates that for
moderate and large values of Ht , the critical Rayleigh
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Table 4a Values of (Rs
c)min, (Rmc)min and Λm for various vales of Da−1 and M1 when M3 = 1, γ = 0.5 and Ta = 106

Ht Da−1 Simultaneous presence of
buoyancy and magnetic
forces(M1 = 1)

Buoyancy forces alone present
(M1 = 0)

Magnetic forces alone
present (M1 → ∞)

(Rs
c)min Λm (Rs

c)min Λm (Rmc)min Λm

100 10 60349.023 5.058 110707.454 8.904 128860.00 3.301

20 60349.023 4.918 110707.454 8.701 128860.00 3.195

30 60349.023 4.778 110707.454 8.498 128860.00 3.099

50 60349.023 4.498 110707.454 8.091 128860.00 2.879

100 60349.023 3.799 110707.454 7.075 128860.00 2.351

0 10 30065.000 13.145 51284.000 19.162 68966.00 8.860

20 30065.000 12.882 51284.000 18.824 68966.00 8.657

30 30065.000 12.619 51284.000 18.486 68966.00 8.455

50 30065.000 12.093 51284.000 17.811 68966.00 8.049

100 30065.000 10.777 51284.000 16.122 68966.00 7.036

Table 4b Values of (Rs
c)min, (Rmc)min and Λm for various vales of Da−1 and M1 when M3 = 1, γ = 0.5 and Ta = 2 × 106

Ht Da−1 Simultaneous presence of
buoyancy and magnetic forces
(M1 = 1)

Buoyancy forces alone present
(M1 = 0)

Magnetic forces alone
present (M1 → ∞)

(Rs
c)min Λm (Rs

c)min Λm (Rmc)min Λm

100 10 85346.407 7.211 156564.00 12.677 182235.193 4.712

20 85346.407 7.071 156564.00 12.474 182235.193 4.606

30 85346.407 6.931 156564.00 12.270 182235.193 4.501

50 85346.407 6.651 156564.00 11.814 182235.193 4.290

100 85346.407 5.952 156564.00 10.847 182235.193 3.762

0 10 42518.400 18.699 72526.50 27.238 97532.000 12.614

20 42518.400 18.436 72526.50 26.901 97532.000 12.411

30 42518.400 18.173 72526.50 26.563 97532.000 12.208

50 42518.400 17.647 72526.50 25.887 97532.000 11.803

100 42518.400 16.331 72526.50 24.199 97532.000 10.790

number decreases with the increasing values of γ . In
other words, increasing γ is to hasten the onset of
ferromagnetic convection because heat is transported
to the system through both by solid and fluid phases.
Figures 5 and 6 respectively show that increasing M1

(i.e., increasing magnetic force) and decreasing Ta is
to hasten the onset of ferromagnetic convection but for
small values of Ht the curves of different M1 and Ta
do not coalesce. A similar trend is noticed on the sta-
bility characteristics of the system with increasing M3.

The variation of critical modified Rayleigh number
Rs

Mpc, which is defined in terms of the mean prop-
erties of the porous medium, is represented in Fig. 7
as a function of log10 Ht for different values of γ for
two values of Ta(= 0,1000) with M1 = 1, M3 = 1,
Da−1 = 100 and Λ = 2. From the figure, it is noted
that Rs

Mpc approaches a common limit for different
values of γ as Ht → ∞, however the approach to the
common limit is different for different values of Ta.
It is also interesting to note that the critical Rayleigh
number based on the mean properties remains almost
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Fig. 4 Variation of Rs
c with log10 Ht for different values of γ

with Ta = 100,M1 = 1, M3 = 1, Λ = 2 and Da−1 = 100

Fig. 5 Variation of Rs
c with log10 Ht for different values of M1

with γ = 0.5, Ta = 100, M3 = 1, Λ = 2 and Da−1 = 100

invariant for very small values of Ht as well as large γ

indicating the complete suppression of ferromagnetic
convection under these conditions.

It will be interesting and intuitive to know the re-
sponse of the system when the magnetic forces alone
are present (i.e., in the absence of buoyancy forces).
In such a case, the magnetic Rayleigh number Rm

(= RsM1) turns out to be the eigenvalue. From (27),
we note that ∂Rm/∂Ta > 0 and ∂Rm/∂M3 < 0. Thus

Fig. 6 Variation of Rs
c with log10 Ht for different values of Ta

with γ = 0.5, M1 = 1, M3 = 1, Λ = 2 and Da−1 = 100

Fig. 7 Variation of Rs
MPc with log10 Ht for different values of

γ and Ta with M1 = 1, M3 = 1, Λ = 2 and Da−1 = 100

increasing Ta is to make the system more stable, while
increasing M3 is to make the system more unstable.
We further note that,

∂Rm

∂Da−1
= (a2M3 + π2){Ht(1 + γ ) + δ2}δ2

a4M3(Htγ + δ2)

×
[

2δ2 − π2Ta + δ2(Da−1 + δ2Λ)2

(Da−1 + δ2Λ)2

]

(50)
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Fig. 8 Variation of Rmc with Da−1 for different values of Λ

with γ = 0.5, Ta = 106,M3 = 1 and Ht = 100

∂Rm

∂Λ
= (a2M3 + π2){Ht(1 + γ ) + δ2}δ4

a4M3(Htγ + δ2)

×
[

2δ2 − π2Ta + δ2(Da−1 + δ2Λ)2

(Da−1 + δ2Λ)2

]
. (51)

It is seen that the right hand side of (50) and (51) may
be either positive or negative depending on the choices
of parametric values. In other words, Da−1 and Λ can
have a destabilizing effect on the system even in this
case. However, Rm is an increasing function of Da−1

and Λ when Ta = 0 and thus their effect is to delay the
onset of ferromagnetic convection in a ferromagnetic
fluid saturated porous layer.

The variation of Rmc (i.e., the critical value of Rm

with respect to the wave number a) as a function of
Da−1 for various values of Λ and as a function of Λ

for various values of Da−1 when Ta = 106, M3 = 1,
γ = 0.5 and Ht = 100 is shown in Figs. 8 and 9, re-
spectively. From the figures, it is observed that Rmc

passes through a minimum with increasing Da−1 and
Λ indicating their destabilizing effect on ferromag-
netic convection in a rotating layer of ferromagnetic
fluid saturated porous medium. Moreover, there is a
coupling between the values of Da−1 and Λ in desta-
bilizing the system with respect to these parameters.
Also, the coupling between Λ and Da−1

m or Da−1 and
Λm is such that the (Rmc)min, the minimum value of
Rmc with respect to Da−1 or Λ, as the case may be, is

Fig. 9 Variation of Rmc with Λ for different values of Da−1

with Ta = 106, M3 = 1, γ = 0.5 and Ht = 100

Fig. 10 Variation of Rmc with log10 Ht for different values of
γ with Ta = 100,M3 = 1, Λ = 2 and Da−1 = 100

the same for a fixed value of Taylor number. The val-
ues tabulated in Tables 3a, 3b and 4a, 4b for different
values of Λ and Da−1 for two values of Ta = 106 and
2 × 106 confirm this result. Except for a quantitative
change, the effect of γ and Ta on Rmc is akin to their
behavior on Rs

c (see Figs. 10 and 11).
To identify the similarities and differences between

the magnetic mechanism alone and the combined ef-
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Fig. 11 Variation of Rmc with log10 Ht for different values of
Ta with γ = 0.5, M3 = 1, Λ = 2 and Da−1 = 100

fect of magnetic and buoyancy mechanisms on the
onset of ferromagnetic convection in a rotating layer
of porous medium, the values of Rmc as well as Rs

c

and the corresponding critical wave numbers obtained
as a function of log10 Ht are compared in Figs. 12
and 13, respectively for two values of γ and M3 when
Ta = 100,M1 = 1, Λ = 2 and Da−1 = 100. It is seen
that Rmc > Rs

c (see Fig. 12) and hence the system is
more stabilizing when the magnetic mechanism alone
is present (i.e., in the absence of buoyancy force). Sim-
ilar is the case with the critical wave number (see
Fig. 13). From the figures it is also observed that the
effect of γ and M3 on Rmc and ac is found to be more
pronounced when the magnetic mechanism alone is
present.

The values tabulated in Tables 3a, 3b and 4a, 4b for
different values of Λ and Da−1 for two values of Ta
(= 106 and 2 × 106) and Ht (= 100 and 0) also con-
firm the above observed behavior. From Tables 3a, 3b
and 4a, 4b, it is further seen that the results obtained
when the buoyancy and magnetic forces are acting to-
gether or in isolation as well as for LTNE (Ht = 100)
and LTE cases (Ht = 0) exhibit similar behavior. How-
ever, the values of Da−1

m for different values of Λ and
the values of Λm for different values of Da−1 as well
as for LTNE and LTE cases for a fixed value of Taylor
number are not the same when these forces are acting
together and in isolation despite the expressions for
Da−1

m and Λm (cf. (48) and (49)) are the same in all
the cases. This is because of change in the values of

Fig. 12 Variation of Rs
c and Rmc with log10 Ht for two values

of γ and M3 with Ta = 100, M1 = 1, Λ = 2 and Da−1 = 100

Fig. 13 Variation of amc and ac with log10 Ht for different
values of γ and M3 with Ta = 100, M1 = 1, Λ = 2 and
Da−1 = 100

critical wave number in all these different cases con-
sidered. Also, we note that
[
(Rmc)min

]
magnetic

>
[(

Rs
c

)
min

]
buoyancy

>
[(

Rs
c

)
min

]
buoyancy+magnetic

for a fixed value of Taylor number in both LTNE and
LTE cases. This indicates that the onset of ferromag-
netic convection in a rotating porous layer is delayed
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the most when the magnetic forces alone are present.
In other words, the combined effect of buoyancy and
magnetic forces is to reinforce together and to hasten
the onset of ferromagnetic convection in a rotating fer-
rofluid saturated porous layer. Also, values of (Rs

c)min

for the LTNE case are higher than those of the LTE
case. In addition,

[
Da−1

m

]
buoyancy

>
[
Da−1

m

]
buoyancy+magnetic

>
[
Da−1

m

]
magnetic

for all values of Λ considered, and

[Λm]buoyancy > [Λm]buoyancy+magnetic

> [Λm]magnetic

for all values of Da−1 considered. It is also seen that
Da−1

m and Λm values for the LTNE case are lower than
those of LTE case.

The critical wave number remains the same for dif-
ferent values of γ in both the small and large Ht limits
and this is evident from Fig. 13. However, at moder-
ate values of Ht , the critical wave number reaches its
peak value and increasing γ decreases the value of ac.
In other words, increase in the value of γ is to enlarge
the size of convection cells only at moderate values
of Ht and the size of convection cells remains inde-
pendent of γ when Ht � 1 and Ht � 1. We note that
increasing M3 is to decrease the critical wave num-
ber (i.e., to diminish the size of convection cells). Fur-
ther inspection of these figures reveals that the value of
critical wave number is higher when the onset of fer-
romagnetic convection is due to magnetic forces alone
as compared to the simultaneous presence of buoyancy
and magnetic forces.

6 Conclusions

The criterion for the onset of thermal convection in
a ferromagnetic fluid saturated horizontal rotating
Brinkman porous layer in the presence of a uniform
magnetic field with a thermal non-equilibrium model
is studied. Condition for the onset of stationary and
oscillatory onset is obtained analytically. Contrary to
their usual influence on the onset of convection in the
absence of rotation, both Da−1 and Λ show destabi-
lizing effects on the stationary onset at high rotation
rates. In other words, decrease in the permeability of

the porous medium and increase in the viscosity of
the fluid have destabilizing effect on the system. The
numerically computed double minimum of Rs or Rm

with respect to a and Da−1 or a and Λ, denoted by
(Rs

c)min or (Rmc)min, as the case may be, shows that
there is a coupling between the values of Da−1

m and
Λ or Λm and Da−1 such that (Rs

c)min and (Rmc)min

remain the same for a fixed value of Taylor number.
Increase in the value of Taylor number Ta is to re-
inforce stability on the system and the LTNE case is
found to have more stabilizing effect on the system
as compared to the LTE case. The porosity modified
conductivity ratio γ has no effect on the onset of fer-
romagnetic convection in the small-Ht limit, while for
the other values of Ht increase in the value of γ is
to hasten the onset of ferromagnetic convection. At
higher values of γ , the onset of convection remains
independent of Ht and tends to classical LTE case.
The effect of increase in the magnetic number M1 and
the nonlinearity of magnetization parameter M3 is to
advance the onset of ferromagnetic convection. The
system is more stabilizing when the magnetic force
alone is present and in that case M3 and γ show promi-
nence effect on the onset of ferromagnetic convection
when compared to the simultaneous presence of buoy-
ancy and magnetic forces. The critical Rayleigh num-
ber Rs

Mpc based on the mean properties of the porous
medium approaches a common limit as Ht → ∞ for
different values of γ and for any fixed value of Da−1,
Λ, Ta, M1 and M3. The critical wave number for dif-
ferent values of γ in the small-Ht and large-Ht limits
coincide, but attain a maximum value at the interme-
diate values of Ht and in that case increasing γ is to
decrease the critical wave number. The critical wave
number is higher when the onset of convection is only
due to magnetic forces as compared to the simultane-
ous presence of buoyancy and magnetic forces.
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Appendix

The expressions for �1 and �2 appearing in (21) are:

�1 = (
δ4 + α2ω2){π2Pr2Ta

(
Prδ4Λ + ω2)

+ δ2(Pr3δ8Λ3 + Prδ4Λω2
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− Pr2δ4Λ2ω2 − ω4)}
+ (

Da−1)3
Pr3δ4H 2

t γ (1 + γ ) + (
Da−1)3

× Pr3δ2{δ6 + α2δ2ω2

+ Ht(1 + 2γ )δ4 + α2ω2}
+ H 2

t γ δ2(Pr2δ4Λ + ω2)
× {

Pr(1 + γ )δ4Λ − (α + γ )ω2}
+ H 2

t γ π2Pr2Ta
{
Pr(1 + γ )δ4Λ + (α + γ )ω2}

+ Htδ
2π2Pr2Ta

{
δ4ΛPr(1 + 2γ )

+ (
2γ + Prα2Λ

)
ω2}

+ Htδ
4(Pr2δ4Λ2 + ω2)

{
PrΛ

(
δ4 + 2γ δ4 + α2ω2) − 2γω2}

+ (
Da−1)2

Pr2δ2(3Prδ4Λ − ω2)(δ4 + α2ω2)
+ (

Da−1)2
δ2H 2

t γ
{
3Prδ4Λ(1 + γ )

− (α + γ )ω2}
+ (

Da−1)2
δ4Ht

{
3PrΛ

(
δ4 + 2γ δ4 + α2ω2)

− 2γω2}
+ Da−1Prδ2(δ4 + α2ω2){π2Pr2Ta

+ δ2(3Pr2δ4Λ2 + ω2 − 2PrΛω2)}
+ Da−1δ2H 2

t γ π2Pr2Ta(1 + γ )

+ Da−1δ4H 2
t γ

{
(1 + γ )

(
3Pr2δ4Λ2 + ω2)

− 2Pr(α + γ )Λω2}
+ Da−1Htπ

2Pr2Ta
{
(1 + 2γ )δ4 + α2ω2}

+ Da−1Htδ
2{(δ4 + 2γ δ4 + α2ω2)

× (
3Pr2δ4Λ2 + ω2)Pr − 4γ δ4ΛPr2ω2}

�2 = (
Da−1)3

Pr3δ2{H 2
t γ (α + γ ) + 2Htγ δ2 + δ4

+ α2ω2} + δ2(δ4 + α2ω2){π2Pr2Ta

× (PrΛ − 1)
}

+ δ4(δ4 + α2ω2)(1 + PrΛ)
(
δ4Pr2Λ2 + ω2)

+ δ2H 2
t γ

{
π2Pr2Ta

(
γ (PrΛ − 1) − 1

+ αΛPr
)}

+ δ4H 2
t γ (1 + γ + PrαΛ + PrγΛ)

(
Pr2δ4Λ2 + ω2) + Ht

{
π2Pr2Ta

(
2γ (ΛPr − 1)

− 1
)
δ4 − α2ω2}

+ Htδ
2{(1 + 2γ + 2γ PrΛ)δ4 + α2ω2}

× (
Pr2δ4Λ2 + ω2)

+ (
Da−1)2

Pr2δ4{H 2
t γ (1 + γ + 3PrαΛ

+ 3PrγΛ)
}

+ (
Da−1)2

Pr2{δ4(1 + 3PrΛ)
(
δ4 + α2ω2)

+ Ht

(
(1 + 2γ + 6PrγΛ)δ6) + α2ω2δ2}

+ Da−1Pr
(
δ4 + α2ω2){π2Pr2Ta

+ Prδ6Λ(2 + 3PrΛ) + ω2δ2}
+ 2Da−1Htπ

2Pr2Taδ2

+ 2Da−1Htδ
4{δ4(γω2 + 3Pr2δ4Λ

)
+ PrΛ

(
δ4 + 2γ δ4 + α2ω2)}

+ Da−1H 2
t γ

{
π2Pr2Ta(α + γ )

}
+ Da−1H 2

t γ δ2{δ4ΛPr(2 + 2γ

+ 3PrαΛ + 3PrγΛ) + (α + γ )ω2}.
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