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The effect of couple stresses on linear and weakly nonlinear stability of a triply diffusive fluid layer is
investigated. Several departures not observed either in singly or doubly diffusive couple stress fluid layer
have been identified while analyzing the linear stability of the problem. In contrast to the doubly diffu-
sive couple stress fluid system, oscillatory convection is found to occur even if the diffusivity ratios are
greater than unity. The presence of couple stress is to increase the threshold value of solute Rayleigh
number beyond which oscillatory convection is preferred. Moreover, disconnected closed oscillatory neu-
tral curves are identified for certain choices of physical parameters indicating the requirement of three
critical values of Rayleigh number to specify the linear stability criteria instead of the usual single value.
Besides, heart-shaped oscillatory neutral curves are also found to occur in some cases and the effect of
couple stress parameter on some of these unusual behaviors is analyzed. A weakly nonlinear stability
analysis is performed using modified perturbation technique and the stability of steady bifurcating
non-trivial equilibrium solution is discussed. Heat and mass transfer are calculated in terms of Nusselt
numbers and the influence of various physical parameters on the same is discussed in detail.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Double diffusive convection is characterized by well mixed con-
vecting layers and occurs if gradients of two competing stratifying
agencies (heat and salt or any two solute concentrations) having
different diffusivities are simultaneously present. One of the most
interesting aspects of double diffusive instabilities is that even sta-
bilizing overall density gradient can destabilize the system when
the density gradients caused by individual components are op-
posed. It is observed that when the two individual diffusing com-
ponents are opposed, salt fingers occur when the component
with the smaller diffusivity is destabilizing, while oscillatory con-
vection occurs when the faster diffusing component is destabiliz-
ing. The subject has attracted considerable interest over the last
few decades and the significant developments took over have been
largely due to its relevance and applications in many fields such as
oceanography, astrophysics, geophysics and engineering. Copious
literature is available on double diffusive convection and the topic
has been reviewed extensively [1–7].

However, fluid dynamical systems cited above provide many
examples of convective phenomena in which the density depends
on three or more stratifying agencies having different molecular
diffusivities. Thus one can expect multicomponent convection. As
a first step towards understanding multicomponent convection,
knowledge about how a triple diffusive system behaves differently
from those of double diffusive systems is warranted. This is be-
cause, with the addition of a more slowly diffusing property to
the bottom layer of a double diffusive system that would otherwise
have produced a finger interface could cause a diffusive interface to
form. Similarly, addition of the same property to the top layer of
another system may change the resulting interface from a diffusive
to a salt finger kind. The possibilities of existing of such interesting
situations have prompted researchers to study convective instabil-
ity in triple diffusive fluid systems both theoretically and
experimentally.

Griffiths [8] was the first to investigate theoretically the linear
stability of triple diffusive convection in a horizontal fluid layer,
while Griffiths [9,10] and Turner [3] reported the related experi-
mental works. Coriell et al. [11] and Noulty and Leaist [12] pre-
sented explicit situations in which triple diffusive convection has
practical significance. Pearlstein et al. [13] performed a detailed
study on the linear stability of a triply diffusive fluid layer. They
have completely captured the physics of the onset of convection
and showed that the triple diffusive system is capable of support-
ing several remarkable departures from what occurs in the singly
and doubly diffusive fluid systems which were overlooked previ-
ously. Terrones and Pearlstein [14] generalized the linear stability

https://core.ac.uk/display/72803281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2013.09.051&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.051
mailto:shivakumarais@gmail.com
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.051
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

Ci (i = 1,2) solute concentration of the ith component
d depth of couple stress fluid layer
~g acceleration due to gravity
k̂ unit vector in the z-direction
‘, m wave numbers in the x and y directions
p pressure
Pr = m/jt Prandtl number
Rt = btgd3DT/mjt thermal Rayleigh number
Rsi = bcigd3DCi/mjt (i = 1,2) solute Rayleigh number of the ith

component
~q ¼ ðu;v;wÞ velocity vector
t time
T temperature
(x,y,z) Cartesian co-ordinates

Greek symbols
a horizontal wave number
bt thermal expansion coefficient
bci (i = 1,2) solute analog of bt for the ith component
r growth rate
jt thermal diffusivity
jc1, jc2 solute analogs of jt

l dynamic viscosity
lc couple stress viscosity
m = l/q kinematic viscosity
w(x,z, t) stream function
Kc = lc/ld2 couple stress parameter
q fluid density
q0 reference density
si = jci/jt (i = 1,2) ratio of diffusivities of the ith component
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analysis to an arbitrary number of components in a horizontal fluid
layer. In the context of nonlinear stability analysis, Moroz [15] con-
sidered the linear stability problem originally discussed by Grif-
fiths [8]. Lopez et al. [16] revealed the effect of rigid boundaries
on convective instability in a triply diffusive fluid layer. The effects
of cross-diffusion on the onset of convective instability in a hori-
zontally unbounded triply cross-diffusive fluid layer have been
investigated by Terrones [17]. Straughan and Walker [18] analyzed
various aspects of penetrative convection in a triply diffusive fluid
layer, while multicomponent convection – diffusion with internal
heating or cooling in a fluid layer is considered by Straughan and
Tracey [19].

All the aforementioned investigations on triple diffusive con-
vection have been dealt with Newtonian fluids. In the study of
many triply diffusive fluid dynamical problems mentioned above,
the hypothesis of a Newtonian fluid will be too restrictive and can-
not precisely describe the characteristics of the fluid flow involved
therein. Therefore, probing the problems considering non-Newto-
nian effects are quite desirable and appropriate. Unlike Newtonian
fluids, there are different kinds of non-Newtonian fluids and obvi-
ously they do not lend themselves to a unified treatment. In partic-
ular, polar fluids have received wider attention in recent years.
These fluids deform and produce a spin field due to the microrota-
tion of suspended particles. As far as these types of non-Newtonian
fluids are concerned, there are two important theories proposed by
Eringen [20] and Stokes [21] and these are, respectively, referred to
as micropolar fluid theory and couple stress fluid theory. The
micropolar fluids take care of local effects arising from microstruc-
ture and as well as the intrinsic motions of microfluidics. The spin
field due to microrotation of freely suspended particles setsup an
antisymetric stress, known as couple stress, and thus forming cou-
ple stress fluid. The couple-stress fluid theory represents the sim-
plest generalization of the classical viscous fluid theory that
allows for polar effects and whose microstructure is mechanically
significant in fluids. For such a special kind of non-Newtonian flu-
ids, the constitutive equations are given by Stokes [21] which al-
lows the sustenance of couple stresses in addition to usual
stresses. This fluid theory shows all the important features and ef-
fects of couple stresses and results in equations that are similar to
Navier–Stokes equations. Couple-stress fluids have applications in
a number of processes that occur in industry such as the extrusion
of polymer fluids, solidification of liquid crystals, cooling of
metallic plates in a bath, exotic lubricants and colloidal fluids, elec-
tro-rheological fluids to mention a few.
Based on the formulation of Stokes [21], convective instability
in a singly and doubly diffusive couple-stress fluid layer has been
investigated in the recent past. Malashetty and Basavaraja [22]
investigated the onset of Rayleigh–Benard convection in a layer
of couple stress fluid under the influence of thermal/gravity mod-
ulation. The linear and non-linear double diffusive convection with
Soret effect in couple stress liquids has been considered by Malash-
etty et al. [23], while Gaikwad et al. [24] reported the results on lin-
ear and non-linear double diffusive convection by considering both
Soret and Dufour effects in couple stress liquids.

The effect of couple stresses on single and double diffusive fluid
systems is considered in the past. Nonetheless, many fluid dynam-
ical systems occurring in nature and engineering applications en-
tail three or more diffusing components. Examples include
molten polymers, salt solutions, slurries, geothermally heated
lakes, magmas and their laboratory models, synthesis of chemical
compounds and so on in which the fluid flow involved can be well
characterized by couple stress fluid theory rather than Newtonian
relationship. Moreover, there is all possibility of displaying variety
of behavior by the fluid dynamical system, not observed in singly
and doubly diffusive couple stress fluid systems, with three or
more diffusing components. Under the circumstances, it is of inter-
est to gain a general understanding of the manner in which the
presence couple stresses affects the convective instability of a tri-
ply diffusive fluid layer. The main objective of the present study
is therefore to investigate the effects of couple stresses on the lin-
ear and weakly nonlinear stability of a triply diffusive fluid layer
and uncover the presence of couple stresses on some of the unu-
sual behaviors of the system under certain conditions and also
on the heat and mass transport.
2. Mathematical formulation

We consider an initially quiescent horizontal incompressible
couple stress fluid layer of thickness d in which the density de-
pends on three stratifying agencies namely, temperature T as well
as solute concentrations C1 and C2 having different diffusivities.
The density is assumed constant everywhere except in the body
force and the off-diagonal contributions to the fluxes of the strati-
fying agencies are neglected. A Cartesian coordinate system (x,y,z)
is used with the origin at the bottom of the fluid layer and the z-
axis vertically upward. The gravity is acting vertically downwards
with the constant acceleration, ~g ¼ �gk̂ where k̂ is the unit vector
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in the vertical direction. The lower boundary z = 0 of the fluid layer
is maintained at higher temperature T0 + DT and higher solute con-
centration Ci0 + DCi (i = 1,2), while the upper boundary z = d is
maintained at temperature T0 and solute concentration Ci0

(i = 1,2). Then the governing equations are as follows:
The continuity equation is:

r �~q ¼ 0; ð1Þ

where ~q is the velocity vector.
The momentum equation, following Stokes [21], is:

q0
@~q
@t
þ ð~q � rÞ~q

� �
¼ �rpþ q~g þ l� lcr2

� �
r2~q; ð2Þ

where p is the pressure, l is the dynamic viscosity, lc is the cou-
ple stress viscosity, q is the fluid density and q0 is the reference
density. As propounded by Stokes [21], in case of polar fluids
the action of one part of the body on its neighborhood cannot
be represented by a force alone but rather by a force and couple.
The last term on the right-hand side of Eq. (2) represents the effect
of couple stresses in an incompressible fluid in the absence of
body couples.

The energy equation is:

@T
@t
þ ð~q � rÞT ¼ jtr2T; ð3Þ

where jt is the thermal diffusivity.
The solute concentrations equations are:

@C1

@t
þ ð~q � rÞC1 ¼ jc1r2C1; ð4Þ

@C2

@t
þ ð~q � rÞC2 ¼ jc2r2C2; ð5Þ

where jc1 and jc2 are the solute analogs of jt.
The equation of state is:

q ¼ q0½1� btðT � T0Þ þ bc1ðC1 � C10Þ þ bc2ðC2 � C20Þ�; ð6Þ

where bt is the thermal volume expansion coefficient, bc1 and bc2

are the solute analogs of bt. The basic state is quiescent and the
solution for the steady-state satisfying the boundary conditions
T = T0 + DT, Ci = Ci0 + DCi (i = 1,2) at z = 0 and T = T0, Ci = Ci0 at
z = d, is
~qb ¼ 0; Tb ¼ T0 þ DTð1� z=dÞ; Cib ¼ Ci0 þ DCið1� z=dÞ ði ¼ 1;2Þ;

pbðzÞ ¼ p0 � q0g z� bt
DT
2d

z2 þ bc1
DC1

2d
z2 þ bc2

DC2

2d
z2

� �
;

ð7Þ

where the subscript b denotes the basic state. To study the stabil-
ity of this quiescent basic state the variables are perturbed in the
form

~q ¼~qb þ~q0; T ¼ Tb þ T 0; Ci ¼ Cib þ C 0i ði ¼ 1;2Þ; p ¼ pb þ p0;

q ¼ qb þ q0; ð8Þ

where ~q0; T 0; C0i ði ¼ 1;2Þ, p0 and q0 are respectively the perturbed
velocity, temperature, solute concentration pressure and fluid den-
sity. Substituting Eq. (8) into Eqs. (1)–(6) and rendering the equa-
tions to non-dimensional form by choosing d, jt/d, d2/jt, ljt/d2,
DT and DCi (i = 1,2) as the units of length, velocity, time, pressure,
temperature and solute concentrations, we obtain (after dropping
the primes for simplicity)

r �~q ¼ 0; ð9Þ
1
Pr

@ ~q
@ t
þ ð~q � rÞ~q

� �
¼ �rpþ ðRtT � Rs1C1 � Rs2C2Þk̂þ ð1� Kcr2Þr2~q; ð10Þ

@

@t
�r2

� �
T þ ð~q � rÞT ¼ w; ð11Þ

@

@t
� s1r2

� �
C1 þ ð~q � rÞC1 ¼ w; ð12Þ

@

@t
� s2r2

� �
C2 þ ð~q � rÞC2 ¼ w; ð13Þ

where Rt = btgd3DT/mjt is the thermal Rayleigh number, Rs1 =
bc1gd3DC1/mjt and Rs2 = bc2gd3DC2/mjt are the solute Rayleigh
numbers, Kc = lc/ld2 is the couple stress parameter, Pr = m/jt is the
Prandtl number, s1 = jc1/jt and s2 = jc2/jt are the ratios of diffusivi-
ties. For the present configuration it is convenient to eliminate the
pressure term from the equation of motion by taking the curl of
Eq. (10) and to express the result in terms of the stream function
w(x,z, t) defined by

~q ¼ ðu;0;wÞ ¼ @w
@z

;0;� @w
@x

� �
: ð14Þ

We then obtain the equations in the form

1
Pr

@

@t
�r2 þKcr4

� �
r2w ¼ �Rt

@T
@x
þ Rs1

@C1

@x
þ Rs2

@C2

@x
þ 1

Pr
Jðw;r2wÞ; ð15Þ

@

@t
�r2

� �
T ¼ � @w

@x
þ Jðw; TÞ; ð16Þ

@

@t
� s1r2

� �
C1 ¼ �

@w
@x
þ Jðw;C1Þ; ð17Þ

@

@t
� s2r2

� �
C2 ¼ �

@w
@x
þ Jðw;C2Þ; ð18Þ

where r2 = @2/@x2 + @2/@z2 is the Laplacian operator and J(��, ��)
stands for the Jacobian with respect to x and z.

The above equations are to be solved subject to appropriate
boundary conditions. The boundaries are considered to be stress-
free and perfect conductors of heat and solute concentrations.
Accordingly, the boundary conditions are:

w ¼ @
2w
@z2 ¼

@4w
@z4 ¼ T ¼ C1 ¼ C2 ¼ 0 at z ¼ 0;1: ð19Þ
3. Linear stability analysis

The linear stability analysis proceeds by ignoring the Jacobian
terms in Eqs. (15)–(18). In this section, the thresholds of both stea-
dy and oscillatory convection are predicted using linear theory. We
assume the solution for w, T, C1 and C2 satisfying the respective
boundary conditions in the form

w ¼ A1ert sinðaxÞ sinðpzÞ;
ðT;C1;C2Þ ¼ ðA2;A3;A4Þert cosðaxÞ sinðpzÞ; ð20Þ

where a is the horizontal wave number, r is the growth rate and A1

to A4 are constants. Substituting Eq. (20) into Eqs. (15)–(18), elimi-
nating the constants A1 to A4 and solving for Rt we obtain an expres-
sion in the form

Rt ¼
ðrþ d2Þ
ðrþ s1d

2Þ
Rs1 þ

ðrþ d2Þ
ðrþ s2d

2Þ
Rs2

þ d2

a2 ðrþ d2Þ r
Pr
þ d2 þKcd

4
n o

; ð21Þ

where d2 = p2 + a2. To investigate the stability of the system, now
we set the real part of r equal to zero and let r = ix in the above
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equation. After clearing the complex quantities from the denomina-
tor, Eq. (21) yields

Rt ¼
ðx2 þ s1d

4Þ
ðx2 þ s2

1d
4Þ

Rs1 þ
ðx2 þ s2d

4Þ
ðx2 þ s2

2d
4Þ

Rs2

þ d2

a2

�x2

Pr
þ d4ð1þKcd

2Þ
� 	

þ ixd2N; ð22Þ

where

N ¼ ðs1 � 1Þ
x2 þ s2

1d
4
 �Rs1 þ

ðs2 � 1Þ
x2 þ s2

2d
4
 �Rs2

þ d2

a2

1
Pr
þ ð1þKcd

2Þ
� 	

: ð23Þ

Since Rt is a physical quantity, it implies either x = 0 (N – 0) or
N = 0 (x – 0) in Eq. (22). The case x = 0 corresponds to stationary
convection and the case N = 0 (x – 0) corresponds to oscillatory
convection.

3.1. Stationary convection (x = 0,N – 0)

The stationary convection occurs at the thermal Rayleigh num-
ber Rt ¼ Rs

t , where

Rs
t ¼

Rs1

s1
þ Rs2

s2
þ ð1þKcd

2Þd6

a2 : ð24Þ

For a doubly diffusive system (Rs2 = 0, say), Eq. (24) reduces to

Rs
t ¼

Rs1

s1
þ ð1þKcd

2Þd6

a2 ; ð25Þ

which coincides with the result obtained by Malashetty et al. [23].
In the absence of couple stresses (Kc = 0), Eq. (24) reduces to

Rs
t ¼

Rs1

s1
þ Rs2

s2
þ d6

a2 ð26Þ

and coincides with Griffiths [8] and Pearlstein et al. [13]. We note
that Rs

t given by Eq. (24) attains its critical value at a2 ¼ a2
c , where

a2
c satisfies the quadratic equation

3Kc a2
c


 �2 þ 2ðKcp2 þ 1Þa2
c � p2ðKcp2 þ 1Þ ¼ 0: ð27Þ

It is seen that the critical wave number is independent of additional
diffusing components as observed in the case of classical Newtonian
fluids but depends on the couple stress parameter.

We note that

a2
c � p2=2 as Kc ! 0;

a2
c � p2=3 as Kc !1:

ð28Þ

Thus increase in the value of couple-stress parameter is to decrease
the critical wave number. In other words, the presence of couple
stresses is to increase the size of convection cells.

3.2. Oscillatory convection (x – 0,N = 0)

The expression N = 0 yields a dispersion relation of the form

D1ðx2Þ2 þ D2ðx2Þ þ D3 ¼ 0; ð29Þ

where

D1 ¼ d2ðPrþ1þPrKcd
2Þ; ð30Þ

D2 ¼ d6ðPrþ1þPrKcd
2Þ s2

1þs2
2


 �
þPrRs1a2ðs1�1ÞþPrRs2a2ðs2�1Þ; ð31Þ

D3 ¼ d10ðPrþ1þPrKcd
2Þs2

1s
2
2þPrRs1a2d4s2

2ðs1�1ÞþPrRs2a2d4s2
1ðs2�1Þ:

ð32Þ

Eq. (29) shows that, for a suitable combination of parameters Rs1,
Rs2, Kc, s1, s2 and Pr, it is possible to have as many as two different
real positive values of x2 at the same a. In that case, for each one of
these frequency values (x2 > 0), there is a corresponding real value
of the thermal Rayleigh number on the oscillatory neutral curve.
From the Descartes’ rule of signs, in order for Eq. (29) to have two
positive roots, it is necessary that, D2 < 0 and D3 > 0. Then from
Eqs. (31) and (32) it follows, respectively, that

d6ðPr þ 1þ PrKcd
2Þ s2

1 þ s2
2


 �
þ PrRs1a2ðs1 � 1Þ

< PrRs2a2ð1� s2Þ ð33Þ

and

PrRs2a2ð1�s2Þ< d6ðPrþ1þPrKcd
2Þs2

2þPrRs1a2 s2
2

s2
1

ðs1�1Þ: ð34Þ

From Eqs. (33) and (34), it follows that

0 < d6ðPr þ 1þ PrKcd
2Þs2

1 <
PrRs1a2

s2
1

ðs1 � 1Þ s2
2 � s2

1


 �
; ð35Þ

which is equivalent to satisfying one of the conditions

s2 > s1 > 1 or s2 < s1 < 1: ð36Þ

It is interesting to note that oscillatory convection is possible even if
the diffusivity ratios are greater than unity; a result which is not
true in the case of double diffusive convection in a couple stress
fluid layer (i.e., when Rs1 = 0 or Rs2 = 0). If Rs2 = 0 (say) then it is ob-
served that oscillatory convection occurs provided

x2 ¼ ð1� s1ÞPrRs1a2

d2fPrð1þKcd
2Þ þ 1g

� s2
1d

6 > 0: ð37Þ

Thus the necessary conditions for the occurrence of oscillatory con-
vection are

s1 < 1 and Rs1 >
d6s2

1fprð1þKcd
4Þ þ 1g

Pra2ð1� s1Þ
: ð38Þ

From Eq. (38) it is evident that in a doubly diffusive couple stress
fluid layer oscillatory convection occurs only when the ratio of dif-
fusivities is less than unity and also the solute Rayleigh number ex-
ceeds a threshold value. We also note that the presence of couple
stresses is to increase the threshold value of Rs1 for the occurrence
of oscillatory convection.

We can obtain important information about the neutral stabil-
ity curves in the (Rt,a)-plane by locating the bifurcation points at
which the steady and oscillatory neutral curves meet. These will
occur on the steady neutral curve at wave number ab for which
x = 0 is a root of Eq. (29). ThusD3(ab) = 0, or equivalently

PrKc a2
b


 �4 þ ðPr þ 1þ 4PrKcp2Þ a2
b


 �3

þ 3p2ðPr þ 1þ 2PrKcp2Þ a2
b


 �2

þ 3p4 Pr þ 1þ 4
3

PrKcp2
� �

þ Pr
Rs1

s2
1

ðs1 � 1Þ þ Pr
Rs2

s2
2

ðs2 � 1Þ
� �

a2
b


 �
þ p6ðPr þ 1þ PrKcp2Þ ¼ 0: ð39Þ

From the above equation, it can be seen that if the coefficient of a2
b


 �
is

negative then there are two sign changes and hence by Descartes’ rule of
signs it follows that there will be either two or no bifurcation points.

When N = 0, from Eq. (22), we note that oscillatory convection
occurs at Rt ¼ Ro

t , where

Ro
t ¼
ðx2 þ s1d

4Þ
x2 þ s2

1d
4
 �Rs1 þ

ðx2 þ s2d
4Þ

x2 þ s2
2d

4
 �Rs2

þ d2

a2

�x2

Pr
þ d4ð1þKcd

2Þ
� 	

ð40Þ

and x2 is given by Eq. (29). For any chosen parametric values, the
critical value of Ro

t with respect to the wave number, denoted by
Ro

tc, is determined as follows. Eq. (29) is solved first to determine
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the positive values of x2. If there are none, then no oscillatory con-
vection is possible. If there is only one positive value of x2 then the
critical value of Ro

t with respect to the wave number is computed
numerically from Eq. (40). If there are two positive values of x2,
then the least of Ro

t amongst these two x2 is retained to find the
critical value of Ro

t with respect to the wave number.

4. Weakly nonlinear stability analysis

The linear theory presented in the previous section does not
give any information about the stability of bifurcating finite ampli-
tude solution. In this section, we discuss this aspect for the steady
case using modified perturbation theory. For the steady case, Eqs.
(15)–(18) take the form

ðKcr4 �r2Þr2wþ Rt
@T
@x
� Rs1

@C1

@x
� Rs2

@C2

@x
¼ 1

Pr
Jðw;r2wÞ; ð41Þ

@w
@x
�r2T ¼ Jðw; TÞ; ð42Þ

@w
@x
� s1r2C1 ¼ Jðw;C1Þ; ð43Þ

@w
@x
� s2r2C2 ¼ Jðw;C2Þ: ð44Þ

The dependent variables (i.e., w,T,C1 and C2) and the thermal Ray-
leigh numbers Rt are expanded in terms of a small parameter e iden-
tified with the amplitude, such that

w ¼ ew1 þ e2w2 þ � � � ; T ¼ eT1 þ e2T2 þ � � � ;
C1 ¼ eC11 þ e2C12 þ � � �C2 ¼ eC21 þ e2C22 þ � � � ;
Rt ¼ Rs

t þ eRs
t1 þ e2Rs

t2 þ � � � ð45Þ

while the other parameters Rs1, Rs2, Kc, s1 and s2 are taken as given.
At each stage in the expansion, a column vector may be defined as

~fn ¼ ½wn; Tn;C1n;C2n�t; n ¼ 1;2;3 . . . ð46Þ

Substituting Eqs. (45) and (46) into Eqs. (41)–(44), we note that at
leading order in e the equations are linear homogeneous and can
be written in the form

L f1

!
¼ 0; ð47Þ

where L is a self-adjoint differential operator given by

L ¼

ðKcr4 �r2Þr2 Rs
t
@
@x �Rs1

@
@x �Rs2

@
@x

�Rs
t
@
@x Rs

tr2 0 0

Rs1
@
@x 0 Rs1s1r2 0

Rs2
@
@x 0 0 Rs2s2r2

0
BBBBB@

1
CCCCCA
: ð48Þ

Eq. (47) represents the eigenvalue problem which is discussed in
Section 3.1. The eigenvalue is

Rs
t ¼

Rs1

s1
þ Rs2

s2
þ ð1þKcd

2Þd6

a2 ð49Þ

and the eigenfunction is

~f1 ¼ 2
ffiffiffi
2
p d

a

� � sinax sinpz
a
d2 cos ax sin pz
a
d2 cos ax sin pz
a
d2 cos ax sin pz

0
BBBB@

1
CCCCA; ð50Þ

where the normalization is chosen for subsequent convenience.
Since the operator L is self-adjoint, the identity

~ft
1; L~fn

D E
¼ ~ft

n; L~f1

D E
¼ 0 ð51Þ

holds for all n, where h� � �i ¼
R 1

0

R p=a
0 ð� � �Þdxdz.
To the second order in e, the equations are inhomogeneous and
are given by

L f2

!
¼

Rs
t1

@T1
@x �

Jðw1 ;r2w1Þ
Pr

Rs
t Jðw1; T1Þ

Rs1Jðw1;C11Þ
Rs2Jðw1;C21Þ

0
BBBB@

1
CCCCA: ð52Þ

Using Eq. (50), it is found that J(w1,r2w1) = 0. The solvability condi-
tion on this in-homogeneous equation is obtained by applying Eqs.
(51) and (52) and then it is found that Rs

t1 ¼ 0 as expected from the
symmetry of the problem. If we impose the orthogonality condition

~ft
1; L~fn

D E
¼ 0 ðn – q1Þ; ð53Þ

then the solution of Eq. (52) is

f2

!
¼

0
� 1

p sin 2pz

� 1
s3

1p
sin 2pz

� 1
s3

2p
sin 2pz

0
BBBBB@

1
CCCCCA
: ð54Þ

At third order, now we have

L f3

!
¼

Rs
t2

@T1
@x

Rs
tJðw1; T2Þ

Rs1Jðw1;C12Þ
Rs2Jðw1;C22Þ

0
BBB@

1
CCCA: ð55Þ

From Eqs. (51) and (55), the solvability condition yields

Rs
t2 ¼

s2
1 � 1


 �
s3

1

Rs1 þ
s2

2 � 1

 �

s3
2

Rs2 þ
ð1þKcd

2Þd6

a2 : ð56Þ

This is the first non-trivial finite amplitude Rayleigh number and
note that Rs

t2 may be either positive or negative. The finite ampli-
tude solution is said to be stable (i.e. supercritical) if Rs

t2 > 0 and
unstable (i.e. sub-critical) if Rs

t2 < 0 when x2 < 0. In the absence of
additional diffusing components (i.e.,Rs1 = 0 = Rs2), we find that
Rs

t2 ¼ Rs
t , and hence sub-critical instability is not possible. For double

diffusive Newtonian fluid case (i.e., Kc = 0 = Rs2), Eq. (56) coincides
with that of Nagata and Thomas [25].
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5. Heat and mass transport

The vigor of convection can be measured in terms of either
heat/mass flux. However, it is convenient to introduce a normal-
ized heat/ mass flux, given by the Nusselt numbers

Nut ¼ �
@Ttotal

@z


 �
z¼0
; ð57Þ

where Ttotal = 1� z + T = 1� z + eT1 + e2T2 + � � � and the angular brack-
ets denote the horizontal average. Substituting for T1 and T2from
Eqs. (50) and (54), respectively then Eq. (57) gives

Nut ¼ 1þ
2 Rt � Rs

t


 �
Rs

t2
: ð58Þ

Similarly, the solute Nusselt numbers are defined and are given by

Nus1 ¼ 1þ
2 Rt � Rs

t


 �
Rs

t2s3
1

; ð59Þ

Nus2 ¼ 1þ
2 Rt � Rs

t


 �
Rs

t2s3
2

: ð60Þ

In the absence of convection (i.e., Rt ¼ Rs
t), the heat/mass transfer is

only by conduction and in that case Nut = 1 = Nus1 = Nus2.

6. Results and discussion

The effects of couple stresses on linear and weakly nonlinear
stability of a triply diffusive fluid layer are investigated. Several
departures not observed either in singly or doubly diffusive couple
stress fluid layer have been identified in analyzing the linear stabil-
ity problem. A study on the weakly nonlinear stability of the sys-
tem indicates that subcritical bifurcation is possible for a certain
choice of physical parameters and the heat and mass transport
are calculated in terms of Nusselt numbers.

To know the effect of couple stress on the linear stability of the
system, the critical Rayleigh numbers Rc

t (least among Rs
tc and Ro

tcÞ
calculated for different values of Kc are shown in Fig. 1 as a func-
tion of Rs2 for two values of Rs1 = �1000 and �2000 by setting the
property ratios at Pr = 10.2, s1 = 0.22 and s2 = 0.21. The negative va-
lue of Rs1 or Rs2 corresponds to the respective component is desta-
bilizing. From the figure it is seen that Rc

t is a piecewise linear
function of Rs2. The portion of each stability boundary lying to
the right of the discontinuity in slope corresponds to oscillatory
convection, while to the left the bifurcation is of direct type (steady
convection). The slope of Rc

t against Rs2 plot is more pronounced
with increasing Kc and jRs1j. The lowest locus for two values of
Rs1 considered corresponds to the Newtonian fluid case (i.e.,
Kc = 0). Thus the presence of couple stress is to stabilize the fluid
against both steady and oscillatory convection. Besides, increasing
the negative value of Rs1 from �1000 to �2000 is to hasten the on-
set of convection irrespective of Rs2 is positive or negative. Further
inspection of the figures reveals that for negative values of Rs2 only
steady convection is preferred; while for positive values of Rs2 both
steady and oscillatory types of convection are possible. The value
of Rs2 at which the preferred mode of instability changes is in-
creased with increasing Kc and jRs1j. Thus the presence of an addi-
tional stabilizing/destabilizing diffusing component and couple
stress exhibits a profound influence on the stability characteristics
of the system.

It is important to study systematically the topology of neutral
curves to unveil some of the striking features of a triply diffusive
couple stress fluid dynamical system. Necessary information about
the same can be obtained by locating the bifurcation points. A
bifurcation point on the stationary neutral curve is one at which
the oscillatory neutral curve intersects with the stationary neutral
curve and the frequency on the oscillatory neutral curve ap-
proaches zero as the intersection is approached. For chosen para-
metric values, the bifurcation points can be located by solving
Eq. (39). There may exist zero, one or two bifurcation points.
Accordingly, three types of neutral curves are identified in the
(Rt,a) plane depending on the choices of physical parameters
namely (i) only stationary neutral curve (ii) both stationary and
oscillatory neutral curves connecting at one or two bifurcation
points and (iii) a stationary neutral curve with disconnected closed
oscillatory neutral curve having no bifurcation points.

Fig. 2(a)–(f) exhibit the successive neutral stability curves for
various negative values of Rs2 ranging from �255 to �285 for the
transport property ratios Pr = 625, s1 = 0.8125, s2 = 0.28125 which
are appropriate for an aqueous NaCl–KCl – Sucrose system [8]. The
results presented here are for Rs1 = 43000 and Kc = 1. Fig. 2(a)–(c)
display the neutral curves for Rs2 = �255, �262 and �265, respec-
tively. It is seen that the oscillatory neutral curve is connected to
the stationary neutral curve at two bifurcation points initially
which move closer together as jRs2j is increased and in fact de-
taches from the stationary neutral curve. This fact is made clear
in Fig. 2(c1) which is on the expanded scale of Fig. 2(c). This figure
shows that the oscillatory neutral curve gets disconnected from the
stationary neutral curve. Besides, the oscillatory neutral curve
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loses its single-valued character in certain range of wave number
(two onset frequencies exist for a fixed value of wave number)
with twin maxima moving above the minimum of the stationary
neutral curve. Beyond the twin maxima there is only one value
of Rt and only one onset frequency. Till this stage the linear stabil-
ity of the system can be conveniently determined by a single value
of Rt. With further increase in the value of jRs2j, the closed
heart-shaped disconnected oscillatory neutral curve with twin
maxima moves further below the minimum of the stationary neu-
tral curve as shown in Fig. 2(d) and (e) for Rs2 = �275 and �280,
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respectively. Thus there are two distinct disturbances, with incom-
mensurable values of the frequency and wave number that simul-
taneously become unstable at the same Rayleigh number. The
significance of this type of disconnected oscillatory neutral curve
is the requirement of three critical values of Rt to specify the linear
stability criteria instead of the usual single value. From Fig. 2(e) it
is seen that there is a range of thermal Rayleigh numbers Rt2 < Rt <
Rt3 for which all solutions, oscillatory or steady, of the linear distur-
bance equations are stable at any wave number. Thus, the linear
stability criteria involve three values of Rt and may be stated as fol-
lows. For Rt < Rt1, and Rt2 < Rt < Rt3, the layer is linearly stable. For
Rt1 < Rt < Rt2, and Rt > Rt3, the layer is unstable. Fig. 2(f) shows that
the closed oscillatory neutral curve collapses to a point and subse-
quently disappears, leaving only the stationary neutral curve when
Rs2 = �285.

The stability boundaries for the same transport ratios consid-
ered in Fig. 2 (Pr = 625,s1 = 0.8125,s2 = 0.28125 and Kc = 1) are
shown in Fig. 3(a) and (b). The value of Rs2 is varied and Rs1 is fixed
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Fig. 5. Neutral curves for various Rs2 with Rs1 = 7600, Pr = 10.2, s1 = 0.22, s2 = 0.21 and Kc

(f) Rs2 = �6287.5.
at 43000. As can be seen from Fig. 3(a), the stability boundary can
be viewed separately in three regions depending on the values of
Rs2. To the right of the cusp (A) the onset is of oscillatory type for
Rs2 > �265 and moreover it occurs at a lower single value of Rc

t than
does stationary instability. To the left of the point of infinite slope
(B) the onset is of steady type and again there is a single value of Rc

t .
In Fig. 3(b), the region between the points A and B is shown en-
larged. It is observed that the single-valued stationary and
oscillatory portions of the stability boundary do not merely inter-
sect, but instead give rise to a multivalued Rc

t ;Rs2

 �

-curve. For
�283.7832 < Rs2 < �265, it is seen that three critical values of Rc

t

are needed to specify the linear stability criteria.
Fig. 4(a)–(h) display the evolution of neutral curves for the

property ratios Pr = 625, s1 = 0.8125, s2 = 0.28125 considered ear-
lier but for an increased value of Kc = 3. For this case, the pattern
of disconnected neutral curves was observed when Rs1takes the va-
lue 120000 and Rs2 is varied ranging from �425 to �696. The oscil-
latory neutral curve is connected to the stationary neutral curve at
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two bifurcation points (Fig. 4(a)–(c)) and gets disconnected with
increasing jRs2j (Fig. 4(c)–(g)). In contrast to Kc = 1 case, the oscil-
latory neutral curve loses its heart shape as the value of jRs2j is in-
creased and becomes a closed convex curve in the process. The
closed convex oscillatory neutral curve goes on diminishing and
eventually disappears leaving behind only the stationary neutral
curve at Rs2 = �696 (Fig. 4(h)).

The evolution of neutral curves for another set of transport
property ratios Pr = 10.2, s1 = 0.22, s2 = 0.21 and Kc = 1 is illus-
trated in Fig. 5(a)–(f). Here Rs1 is fixed at 7600 and Rs2is varied
ranging from �6215 to �6287.5. The scenario is same as the one
observed in Fig. 4(a)–(h). Initially, the oscillatory and stationary
neutral curves are connected at two bifurcation points (Fig. 5(a)
and (b)) and with increasing jRs2j they get disconnected
(Fig. 5(c)–(e)). It is also seen that the oscillatory neutral curve loses
its heart shape and becomes a closed convex curve. The closed con-
vex oscillatory neutral curve goes on diminishing and eventually
disappears leaving behind only the stationary neutral curve at
Rs2 = �6287.5 (Fig. 5(f)). The corresponding stability boundary is
presented in Fig. 6(a) and (b). In this case, the onset is of oscillatory
type for Rs2 > �6285.9 and steady for Rs2 < �6287.1806. However,
three critical values of Rc

t are needed to specify the linear stability
criteria for �6287.1806 < Rs2 < �6285.9.



Fig. 9. Variation of Rs
t2c as a function of Rs1 for s1 = 0.8125, s2 = 0.28125.

Fig. 10. Variation of Nusselt numbers for Rs1 = 2000, Rs2 = �500, s1 = 0.8125 and
s2 = 0.28125 for different values of Kc.
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The sensitivity of the system to the presence of couple stress is
demonstrated in Figs. 7 and 8 for two sets of parameters. Fig. 7(a)
shows disconnected heart-shaped oscillatory neutral curve in the
(Rt,a)-plane for a Newtonian fluid (Kc = 0) for the parameters
Pr = 464, s1 = 0.5709, s2 = 0.5670, Rs1 = 13730.72 and
Rs2 = �11528.58. Whereas for the same parametric values in the
presence of couple stress with Kc = 0.1, it is seen that the onset
of convection switches over to stationary as shown in Fig. 7(b).
Fig. 8(a) and (b) illustrate the effect of small variation in Kc on
Fig. 11. Variation of Nusselt numbers for s1 = 0.8125, s2 = 0.28125 and Kc = 2 for
two values of Rs2 = �1000 (denoted by a) and 1000 (denoted by b).
the stability characteristic of the system for Pr = 10.2, s1 = 0.22,
s2 = 0.21, Rs1 = 44000 and Rs2 = �275. It is seen that the
oscillatory neutral curve is disconnected from the stationary one
when Kc = 1.03 (Fig. 8(a)) but it disappears when Kc = 1.04
(Fig. 8(b)) indicating the instability sets in via stationary
convection.

The critical value of steady bifurcating non-trivial equilibrium
solution Rs

t2 obtained with respect to ac for a fixed value of Kc is de-
noted by Rs

t2c. In Fig. 9, Rs
t2c is plotted as a function of Rs1 for

Rs2 = �50 and 50, Kc = 1, 2 and 3 when s1 = 0.8125 and
s2 = 0.28125. From the figure it is observed that the bifurcation
of non-trivial equilibrium steady solution becomes subcritical at
higher values of Rs1 with increasing Kc. Besides, the range of Rs1 be-
yond which Rs

t2c is negative increases when Rs2 is destabilizing
(Rs2 < 0), while opposite is the trend if Rs2 is stabilizing. Moreover,
the non-trivial equilibrium steady solution bifurcates always super
critically when Rs1 6 0.

The variation of Nusselt numbers Nut, Nus1 and Nus2 as a func-
tion of Rayleigh number Rt is shown in Figs. 10 and 11 for the prop-
erty ratios s1 = 0.8125 and s2 = 0.28125. From the figures it is
observed that the Nusselt numbers increase with increasing ther-
mal Rayleigh number. Fig. 10 shows the results for different values
of Kc when Rs1 = 2000 and Rs2 = �500. The results for Kc = 0 corre-
sponds to the Newtonian fluid case. It is clear that the Nusselt
numbers decrease with increasing Kc. Thus, the effect of increasing
couple stress parameter is to suppress convection and hence to de-
crease the rate of heat and mass transfer. Fig. 11 illustrates the re-
sults for Rs1 = 2000 and �2000 respectively for two values of
Rs2 = �1000 and 1000 and for a fixed value of Kc = 2. From the fig-
ures it is obvious that heat and mass transfer are increased when
the diffusing components are destabilizing. Also, it is observed that
Nut < Nus1 < Nus2.
7. Conclusions

The effect of couple stresses on linear and weakly nonlinear tri-
ple diffusive convection is investigated. It is observed that the pres-
ence of couple stresses show a significant influence on the
preferred mode of bifurcation. Even small variations in the couple
stress parameter allow the onset to be via stationary convection
rather than oscillatory convection and vice versa. This reiterates
the importance of considering couple stresses in the study of con-
vective instability problems. The results of the foregoing study may
be summarized as follows:

(i) Oscillatory convection is possible even if the diffusivity
ratios are greater than unity; a result of contrast compared
to doubly diffusive fluid systems. The presence of couple
stress is to increase the threshold value of solute Rayleigh
number for the existence of oscillatory convection.

(ii) Requirement of three critical Rayleigh numbers to specify
the linear stability criteria instead of the usual single value.
That is, existence of two non-zero frequencies at the same
wave number.

(iii) Existence of a heart-shaped oscillatory neutral curve with
twin maxima, in some cases. That is, occurrences of two dis-
tinct disturbances with incommensurable values of the fre-
quency and wave number which simultaneously become
unstable at the same Rayleigh number. This corresponds to
the multivalued nature of the stability boundaries.

(iv) Existence of finite range of Rayleigh number in which the
system is linearly stable, in addition to usual infinite range.

(v) The non-trivial finite amplitude steady solution bifurcates
either super critically or subcritically depending on the
choices of physical parameters.
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(vi) Heat and mass transfer decrease with increasing couple
stress parameter and increase when the diffusing compo-
nents are destabilizing.
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