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Graphene–platinum nanocomposite as a sensitive and selective
voltammetric sensor for trace level arsenic quantification

R. Kempegowdaa, D. Antonyb and P. Malingappaa*

aDepartment of Chemistry, Bangalore University, Central College Campus, Bangalore 560001,
India; bRaman Research Institute, C.V. Raman Avenue, Bangalore 560080, India

(Received 1 November 2013; final version received 23 February 2014)

A simple protocol for the chemical modification of graphene with platinum nanopar-
ticles and its subsequent electroanalytical application toward sensitive and selective
determination of arsenic has been described. Chemical modification was carried out by
the simultaneous and sequential chemical reduction of graphene oxide and hexachlor-
oplatinic acid in the presence of ethylene glycol as a mild reducing agent. The
synthesized graphene–platinum nanocomposite (Gr–nPt) has been characterized
through infrared spectroscopy, x-ray diffraction study, field emission scanning electron
microscopy and cyclic voltammetry (CV) techniques. CV and square-wave anodic
stripping voltammetry have been used to quantify arsenic. The proposed nanostructure
showed linearity in the concentration range 10–100 nM with a detection limit of 1.1
nM. The proposed sensor has been successfully applied to measure trace levels of
arsenic present in natural sample matrices like borewell water, polluted lake water,
agricultural soil, tomato and spinach leaves.

Keywords: arsenic; graphene–platinum nanocomposite; chemical modification;
square-wave anodic stripping voltammetry; spinach leaves

1. Introduction

The presence of heavy metal ions even at trace level in the environment has been
considered as a major concern in recent years due to their toxicity and prolonged
distribution [1]. Hence, quantification of these ions at trace level becomes a major area
of research in the field of environmental science and technology. Arsenic is considered to
be one of the naturally occurring highly toxic elements which are widely distributed in
nature and cause serious threat to both mankind and aquatic systems even at ultra trace
level [2]. Therefore, the World Health Organization (WHO) has recommended a max-
imum threshold limit value of 10 ppb for arsenic in drinking water [3]. Generally, arsenic
exists in +3 and +5 oxidation states, former is approximately 60 times more toxic than the
latter, and hence its concentration measurement is essentially required toward environ-
mental concern [4]. Several methods have been employed for the determination of arsenic
including spectroscopic methods like atomic absorption spectroscopy (AAS), inductively
coupled plasma atomic emission spectroscopy (ICPAES) and UV-Vis spectroscopy. These
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methods can be successfully applied in the determination of arsenic well below the
guideline levels prescribed by WHO. However, these methods are time intensive and
require high capital cost, skilled personnel to operate the instruments, prolonged sampling
procedures and expensive day-to-day maintenance. In contrast, electrochemical methods
offer comparably superior merits over these methods. The superiority of the electroche-
mical methods is due to their high sensitivity, field applicability and possibility of
determining multiple analytes in single measurement [5]. Therefore, significant focus
has been made in recent years to develop electrochemical sensors to quantify arsenic at
trace level. In all these methods, chemical modification of working electrode toward the
arsenic plays a key role in achieving the required selectivity, sensitivity and desired
detection limit [6]. Modification of electrode surface using metal nanoparticles is one of
the fascinating approaches in designing electrochemical interface for the electrocatalysis.
The nanosized transition metal particles are of great interest due to their unique catalytic,
electronic properties and noble performance over their bulk counterparts [7]. The catalytic
properties of the metal nanoparticles are associated with the quantum scale dimensions
and large surface-to-volume ratio, and availability of specific binding sites on the surface
of the particles constitutes the driving force in the nanoparticle-based electroanalysis [8].
Gold, iridium oxide and cobalt oxide nanoparticles have been widely used in the deter-
mination of arsenic, whereas very few reports are available on the use of platinum [9–13].
Therefore, it is worthwhile to develop a sensing platform using platinum nanoparticles. It
is generally accepted that the shape, size, surface structure of the nanoparticles and the
catalyst support have tremendous influence on their catalytic properties [7]. Graphene-
modified electrodes have been widely used as substrate material for wide variety of
applications due to its fast electron transfer sites. In order to improve its analytical
performance toward particular applications, they have been modified with nanoparticles.
Various carbon-based supports have been used to anchor the nanoparticles, which include
graphite, glassy carbon, carbon nanotubes and thin diamond films, among which graphene
became a significant substrate material to anchor the metal nanoparticles due to the
availability of large surface area to accommodate the nanoparticles. These nanoparticle-
modified graphene composites were used as sensing and biosensing platforms [14–17]. In
this report, we have made an attempt in designing chemically modified graphene sheets
with platinum nanoparticles in the presence of ethylene glycol as a chemical reducing
agent. The fabricated nanocomposite was used in the electrochemical determination of
arsenic and subsequently applied to wide variety of environmental sample matrices using
square-wave anodic stripping voltammetry (SWASV), with least interference from most of
the common cations and anions.

2. Materials and methods

2.1. Apparatus

All electrochemical measurements were carried out using electrochemical analyzer (CH
Instruments, 3700, Tennison Hill Drive, Austin, TX, USA, Model: CHI 619B) at room
temperature in an electrochemical cell of 10 mL volume with a standard three-electrode
configuration. Graphene–platinum nanoparticle-modified glassy carbon electrode (GCE)
(diameter = 5 mm) acted as the working electrode, a Pt (purity 99.99%) wire as the
counter electrode and Ag/AgCl (3M KCl) as reference electrode (CH Instruments). Before
electrochemical measurements, all the solutions were degassed using ultra pure nitrogen
gas for about 15 minutes. SWASV was used in the potential range –0.2 to 0.8 V with an
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amplitude of 0.025 V, frequency of 40 Hz and 0.004 V of potential increment. All pH
measurements were carried out using Control Dynamics pH meter (Model: APX 175,
Control Dynamics Instruments, Mumbai, India). Infrared spectrometric measurements
were recorded using Fourier transform infrared spectroscopy (FTIR) Shimadzu spectro-
meter (Model: 8400S, Shimadzu Corporation, Kyoto, Japan) in the range 1000–4000 cm
−1 with a resolution of 4 cm−1. The surface morphology and particle size of platinum
nanoparticle-decorated graphene sheets were characterized using field emission scanning
electron microscope (FESEM) (Ultra plus, Carl Zeiss, Jena, Germany). The samples for
FESEM analysis were prepared by the drop casting of dilute ethanolic solution of Gr–nPt
composite on ITO slides. Powder x-ray diffraction (XRD) studies were carried out using
Bruker aXS Model D8 Advance powder x-ray diffractometer with a Cu Kα radiation
(λ = 0.154 nm). The diffraction data were recorded for 2θ angles between 5° and 85°.

2.2. Chemicals and reagents

All reagents used were analar grade and used without any further purification. Graphite,
hexachloroplatinic acid (H2PtCl6·6H2O), ethylene glycol and potassium bromide were
purchased from Sigma-Aldrich (Bangalore, India). Buffer solutions of known pH in the
range pH 1–12 were prepared using deionized water from MilliQ water purifier (Denvers,
MA, USA) with a resistivity of not less than 18.2 MΩ cm at 27 ± 2°C. Arsenic stock
solution (1 mM) was prepared by dissolving 0.012 g of analar grade NaAsO2 in 100 mL
distilled water. Working standards were prepared by diluting the standard stock solution
on the day of analysis.

2.3. Preparation of graphene oxide and graphene–nanoplatinum composite

Graphene oxide (GO) was synthesized according to the modified Hummer’s method by
the exfoliation of graphite [18]. Two grams each of graphite and sodium nitrate was taken
in 1 L round-bottom flask to which 100 mL of concentrated sulfuric acid was added
slowly at 0°C. Twelve grams of solid potassium permanganate was added into the reaction
vessel, and the reaction mixture was stirred continuously for 1 hour. Then, 400 mL of
distilled water was added and the stirring was continued for another 15 minutes. Then,
hydrogen peroxide (30% v/v) was added to the reaction vessel dropwise until the gas
evolution completely ceases. The reaction mixture was centrifuged to separate the unex-
foliated graphite from the exfoliated one. The residue was separated by decantation and
washed several times using small quantities of hydrochloric acid 5% (v/v) solution, until
the filtrate solution gave a negative test for the presence of sulfate with barium chloride.
Then, the residue was further washed with copious amounts of double-distilled water and
dried in vacuum to obtain yellow-brown solid of GO.

The Gr–nPt was prepared by the simultaneous and sequential reduction of hexachlor-
oplatinic acid (H2PtCl6·6H2O) and GO in one step. In order to convert GO into graphene,
5 mL solution of GO (1 mg mL−1 of water) and 1 mM of H2PtCl6·6H2O were taken in
100 mL volumetric flask and mixed thoroughly. Then, 40 mL of ethylene glycol was
added and sonicated for about 1 hour to obtain homogeneous dispersion. Then, the
reduction was carried out at 120°C with constant stirring under reflux conditions. The
pale yellow color of the reaction mixture turns to black, which is an indication of
formation of platinum nanoparticles [19]. The resulting Gr–nPt composite material was
filtered and washed thoroughly with distilled water and dried in vacuum desiccator under
ambient conditions. Similarly, the nanocomposite with different loadings of Pt
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nanoparticles was obtained by varying the concentration of H2PtCl6 with the same amount
of GO (1 mg mL−1 of water).

2.4. Modification of GCE

GCE was used as a conducting substrate for the development of the sensing platform.
Prior to its modification, the GCE was polished thoroughly using 1.0, 0.3 and 0.05 µm
alumina slurry and then repeatedly washed with double-distilled water followed by
sonication in distilled water and ethanol for 10 minutes each. The preparation of modified
electrode was carried out by the drop casting of 10 μL of aqueous colloidal dispersion of
Gr–nPt (1 mg mL−1) on the surface of pretreated GCE and dried at room temperature
(27 ± 2°C).

2.5. Analytical procedure

The electrochemical determination of As(III) was carried out using SWASV in the
potential range –0.2 to 0.8 V under optimized conditions. Known amounts of As(III)
were taken in an electrochemical cell of 10 mL volume containing 8 mL of hydrochloric
acid (1 M) as supporting electrolyte which is fitted with a tab-controlled magnetic stirrer.
As(III) was preconcentrated by the electroreduction of As(III) to As(0) at a potential of –
0.4 V for 80 seconds from the bulk of the electrolytic solution onto the surface of
modified electrode at the interface and subsequently stripped off from the electrode
surface into the bulk of the solution by scanning the potential in a positive direction
after 15 seconds of equilibration time.

2.6. Sample preparation

Water samples from borewell and polluted lakes were collected and stored in polyethylene
containers as per the standard protocols. The collected water samples were filtered using
Whatman filter paper to remove any suspended particulate matter. After filtration, known
volumes of the water samples were treated with 0.5 mL each of potassium iodide (5%)
and hydrochloric acid (5 M) solutions to reduce any As(V) present in the sample to
As(III). The presence of excess of iodine, indicated by pale brown color, was destroyed by
adding few drops of ascorbic acid [20]. Known aliquots of these solutions were analyzed
for arsenic content according to the procedure described above.

Soil samples were collected from agricultural field, dried and milled to break the
lumps into fine powder. The grinded soil powder samples were sieved to get homoge-
neous powder. One gram of powdered sample was weighed and transferred into 100 mL
beaker. To this, 2 mL of water and 0.5 g of potassium hydroxide pellets were added, and
the mixture was heated on hot plate until the water evaporates and fuses. Then, it was
diluted up to 100 mL, and known aliquot of this sample solution was used to determine
arsenic content [21].

The tomato and spinach leaves were dried under sunlight and grinded and sieved in
the form of fine powder. About 100 g of the powdered sample was placed in a 250 mL
beaker, and 10 mL each of nitric and sulfuric acids was added. This content was heated to
100°C for 20 minutes in fume hood and then cooled to room temperature. To this, 10 mL
of perchloric acid was added and heated again in fume hood for 5 minutes, until the dense
white fumes of sulfur dioxide cease. The sample was then cooled and 1 mL of concen-
trated HCl was added to remove any heavy metal ions present in the sample. The solution
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was heated for 15 minutes and washed with distilled water. Then, As(V) if present was
reduced to As(III) by the process described as above. The solution was washed and
diluted to 100 mL with distilled water in a calibrated flask. Known aliquots of the diluted
solution were used for the determination of arsenic.

3. Results and discussions

3.1. Characterization of the composite

The formation of GO from native graphite and its decoration with platinum nanoparticles
was characterized by studying FTIR, XRD and FESEM techniques.

The FTIR spectra of native graphite, GO and Gr–nPt composite are shown in Figure 1.
The samples were uniformly mixed with KBr in 1:100 ratio using pestle and mortar and
compressed into a thin pellet using pellet press. The spectra of GO (Figure 1b) showed a
strong and broad band at 3250 cm−1 due to –OH stretching vibration. The carbonyl
(–C=O) stretching of carboxylic groups present at the edge planes of the GO sheets was
observed at 1728 cm−1. The absorption due to –OH bending, epoxide groups and skeletal
ring vibrations were observed at 1616 cm−1. The deformation stretching frequency of
–OH groups attached to the aromatic ring was found to be at 1387 cm−1 [22]. However,
the peaks pertaining to the oxygen-containing functional groups are absent in the spectra
of graphite (Figure 1a). All these studies reveal the formation of GO from native graphite
and also the generation of oxygen-containing functionalities during oxidation process.
However, in case of Gr–nPt composite, the intensity of the peaks pertaining to the
oxygen-containing functional groups significantly decreases, and some of the peaks are
completely diminished, indicating the absence of oxygen-containing functional groups on
the surface of the composite (Figure 1c). All these observations are in good agreement
with the reported literature [11]. This is due to the reason that during simultaneous

4000
Wave number (cm –1)

a

b

c

Transmittance (%)

1000 2000 3000

Figure 1. FTIR spectra of (a) graphitic carbon, (b) graphene oxide and (c) graphene–platinum
nanocomposite (Gr–nPt).
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reduction of GO and Pt precursor in the presence of ethylene glycol as a reducing agent,
all the oxygen-containing functionalities present on the surface of GO get reduced and
converted into graphene material [15].

The XRD pattern of graphite, GO and Gr–nPt composite was recorded and compared
to confirm the formation of GO as well as the generation of platinum nanoparticles on the
layers of graphene (Figure 2). Native graphite showed a sharp peak at 2θ = 26.34 with a d
spacing of 0.38 nm, which is a characteristic peak of graphitic carbon which corresponds
to the diffraction of (002) plane. After chemical oxidation, the (002) peak of graphite has
been shifted to 10.5° with a d spacing of 0.94 nm. This shift might be attributed to the
introduction of oxygen-containing functional groups like epoxy, hydroxyl, carbonyl and
carboxylic groups at both the sides and edges of the graphene sheets, which in turn
confirms the formation of GO from natural graphite during oxidation process and also the
formation of platinum particles [23].

The XRD pattern of Gr–nPt showed four peaks at 39.8°, 46.6°, 67.7° and 81.4°
corresponding to the diffraction of (111), (200), (220) and (311) crystalline planes of
face-centered cubic lattice of platinum, respectively [24]. It confirms the presence of
platinum particles on the graphene substrate. The size and distribution of Pt nanopar-
ticles on the surface of Gr were studied by recording the images of Pt-containing
graphene sheets through FESEM. The selected region of FESEM images revealed that
the particles have the size distribution between 1.25 and 6.75 nm with an average size
distribution of 4 nm (Figure 3b), which is in good agreement with the XRD measure-
ments. Enlarged portion of FESEM image showed that the Pt particles are uniformly
distributed throughout the graphene layers without any agglomeration in the substrate
(Figure 3a).

10 20 30 40 50 60 70 80

2θ (°)

a

b

In
te

ns
it

y 
(a

.u
)

c

Figure 2. XRD peak patterns of (a) graphite, (b) graphene oxide and (c) graphene–platinum
nanocomposite.
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3.2. Electrochemistry of As(III) at Gr–nPt-modified GCE

The electrochemical behavior of Gr–nPt-modified GCE in presence of As(III) was
initially examined by using cyclic voltammetry (CV) in order to decipher the electro-
catalytic activity of Gr–nPt composite toward arsenic. Cyclic voltammetric profile of
10 µM of As(III) in 1 M HCl at graphene and Gr–nPt-modified electrode in the potential
range from 0.6 to 0.6 V with a scan rate 50 mV sec−1 is shown in Figure 4. The graphene-
modified GCE did not show any voltammetric signature for the presence of arsenic in the
potential window used in the present investigation. This indicates that the graphene alone
is not capable of favoring the redox process for arsenic; hence, it is insensitive and not
useful material for the construction of sensing platform in arsenic measurement. Whereas
Gr–nPt composite-modified GCE showed a voltammetric peak in the forward cathodic
sweep at –0.18 V which can be ascribed to the three-electron reduction process of As(III)
to As(0), and in the reversal anodic sweep an intense peak at 0.16 V was observed which
corresponds to reoxidation (stripping) of As(0) to As(III). The potential required for the
reduction of As(III) to As(0) is much less negative than that observed on Pt and Au

Figure 3. FESEM images of (a) graphene–platinum composite and (b) particle size profile.
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nanoparticle-modified GCE [24,25]. These observations revealed that the arsenic reduc-
tion process is more favorable at Gr–nPt-modified GCE with low overpotential. Such
voltammetric response was not observed in graphene, showing that the observed response
at Gr–nPt electrode is due to the presence of Pt nanoparticles. Hence, Gr–nPt composite-
modified GCE showed potential affinity toward arsenic, and therefore, the feasible redox
reaction of As(III) and the enhancement in the peak current can be attributed to the high
electrocatalytic activity of the platinum nanoparticles toward As(III).

It is evident from the Figure 4 that the oxidation peak (stripping) is sharper and more
significant than the corresponding reduction peak; hence, the oxidation peak was system-
atically studied using SWASV in order to achieve the desired detection limit. The
stripping voltammetric determination of arsenic proceeds through the following two steps.

(1) Preconcentration of As(III) from the bulk of the electrolytic solution onto the
modified electrode surface under the applied potential of –0.4 V for preselected
time of 80 seconds under constant stirring.

(2) Stripping (oxidation) of As(0) from the electrode surface into the bulk of the
electrolytic solution as As(III). This anodic stripping step generates quantifiable
analytical signal, and the signal current has been correlated to the arsenic con-
centration.

The general scheme for the preconcentration and stripping of arsenic into the electrolytic
solution has been shown in the Scheme 1. In a typical stripping voltammogram of arsenic
measurement (data not shown), the Gr–nPt composite electrode did not show any
voltammetric peak in the absence of arsenic in the potential window used in present
study. Hence, it can be applied for the quantification of analytes (metal ions) which are

Figure 4. Overlaid cyclic voltammograms recorded at (a) graphene and (b) Gr–nPt composite-modified
glassy carbon electrodes in 1 M HCl in the presence of 10 µM As(III). Scan rate –50 mV sec−1.

24 R. Kempegowda et al.
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active in this potential region. Whereas in the presence of arsenic, it showed a well-
defined and sharp oxidation peak at 0.14 V, indicating that that the Gr–nPt-modified GCE
showed potential affinity toward arsenic, and hence this kind of modified electrode can be
used for the electrochemical measurement of arsenic at very low concentration level.

3.3. Optimization study

In order to obtain maximum efficiency of the proposed electrode toward the electroche-
mical measurement of arsenic, the reaction variables like platinum loading, electrolytic
solution, deposition potential and deposition time which controls the analytical response
have been optimized.

The amount of platinum nanoparticles present on the graphene layers plays a very
important role in the electrochemical determination of arsenic as they behave as catalyst
for the redox process of arsenic. Therefore, the Gr–nPt of different loadings of platinum
nanoparticles was prepared by varying the concentration of H2PtCl6 from 0.2 to 1.4 mM
with the same amount of GO (1 mg mL−1 of water). The electrochemical performance
of each composite has been studied with respect to As(III) using CV. The cyclic
voltammetric response increases with increase of platinum loading up to 1 mM; there-
after, there is no significant improvement in the electrochemical performance of arsenic.
Therefore, platinum loading of 1 mM of H2PtCl6 has been used in the composite
preparation.

The shape and sensitivity of the stripping peak in any voltammetric experiment mainly
depend on the diffusion of the analyte species from bulk of the electrolytic solution
toward the interface and vice versa. The diffusion toward the electrode surface depends on
the surface structure and the diffusion from the surface into the bulk of the solution
depends on the ions of the electrolytic solution, which show potential interacting ability
toward the metal ion present at the interface to form their respective compounds. The Cl–

ions present in the HCl solution show a strong affinity toward ionic arsenic, resulting
through oxidation at the interface to form AsCl3 species [26]. Hence the choice of
supporting electrolyte governs the magnitude of the stripping current generated at the
electrode interface. Hence, the electrochemical response of arsenic at Gr–nPt composite-
modified GC electrode has been examined in the presence of some of the commonly used
electrolytes like HCl, H2SO4 and HNO3 at different concentration levels (Figure 5) [27].
Among these, HCl showed well-defined sharp and intense peak in comparison with other
electrolytes. The concentration of HCl was varied in the concentration range 0.1 to 2 M,
and it was found that the peak current increases from 0.1 to 1 M and then it decreases. The
increase of peak current might be due to the effective complexing ability of Cl– ions with
As(III) and the decrease of peak current might be due to the adsorption of Cl– ions on Pt

Preconcentration
(Reductioin)

Stripping
(Oxidation)

(c)(b)(a)

As(III)

Scheme 1. Schematic pathway of arsenic detection. (a) Bare glassy carbon electrode. (b) Glassy
carbon electrode modified with Gr–nPt composite. (c) Electrocatalysis of As(III) at Gr–nPt interface.
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surface at higher concentration level [28,29]. In case of H2SO4, least stripping response
was noticed which might be due to the bulky and less complexing nature of SO4

2– ions,
which results lower coordination number with As(III). Thus, more energy might be
required for its dissociation [27]. The peak intensity observed in the presence of hydro-
chloric acid as an electrolytic solution was better than nitric acid and sulfuric acids.
Hence, hydrochloric acid (1 M) has been used as an optimum electrolyte throughout the
study.

The effect of applied potential on the reduction of As(III) to As(0) at the modified
interface by holding the electrode at a particular potential was studied. It is well known
that higher reduction potential values can be expected to give the maximum current due to
the reduction of more and more As(III) ions. Therefore, the dependence of peak current
with respect to deposition potential was studied from –0.1 to –0.6 V (Figure 6). The peak
current increases with increase of potential from –0.1 to –0.4 V and then decreases. The
decrease of peak current is attributed to the inefficient deposition of arsenic. This might be
due to the reason that at more cathodic potentials, the water molecules compete with
arsenic to undergo reduction and result in the formation of H2 gas which further blocks the
surface and decreases the current response. In addition to this, at more cathodic potentials,
some of the elemental arsenic can be converted into As3– [25]. Due to this, a deposition
potential of –0. 4 V was used as an optimum potential in all further studies. The time
required for the accumulation of As(III) from the bulk of the electrolyte solution onto the
surface of the Gr–nPt-modified electrode plays a crucial role in trace level estimations.
Therefore, the dependence of peak current with respect to the preconcentration time is
studied from 20 to 120 seconds (Figure 7). It has been found that the peak current
increases with an increase of preconcentration time from 20 to 80 seconds, and then it

Figure 5. Overlaid stripping voltammograms of 50 nM of As(III) present in 1 M (a) HCl,
(b) HNO3 and (c) H2SO4.
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remained constant. This might be due to the saturation response of arsenic on the
electrode at higher concentration as it is a nonconducting semiconductor and does not
easily deposit on itself [30].

Figure 7. Effect of deposition time on the stripping peak current obtained for 50 nM of As(III)
present in 1 M HCl with a deposition potential of –0.4 V.

Figure 6. Effect of deposition potential on the stripping peak current obtained for 50 nM of As(III)
present in 1 M HCl with a deposition time of 80 seconds.
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3.4. Analytical merits

The calibration plot was constructed by measuring the peak currents produced by the
stripping of arsenic with the successive addition of 10 nM of As(III) into an electro-
chemical cell of 10 mL volume under optimized conditions. The Gr–nPt-modified elec-
trode showed a linear response in the concentration range up to 100 nM (Figure 8) with a
detection limit of 1.1 nM which is well below the threshold limit value of arsenic in
drinking water prescribed by WHO [3].

The proposed sensor has been compared with some of the existing electrodes used for
arsenic measurement in terms of detection limits (Table 1). It signifies the importance of
the proposed sensor prepared using Gr–nPt composite in the detection of As(III). The
proposed sensor provides comparably low detection limits; hence, it can be used as an
alternative tool to the existing protocols.
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Figure 8. (a) Overlaid square-wave anodic stripping voltammograms of As(III) under optimized
conditions and (b) calibration plot.
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Precise and selective measurement of arsenic present in real sample matrices is a
challenging task, as the other commonly encountered cations and anions normally present
in the real samples along with arsenic may also get deposited and stripped off from the
electrode surface under the same optimized conditions used in the present study. The
efficiency of the proposed sensor electrode toward arsenic quantification has been exam-
ined in the presence of 50 nM of arsenic along with different concentrations of different
ions. The tolerance limits of these ions in the present investigation have been listed in
Table 2. Above these tolerance limits, the added ions interfere and alter the peak currents
produced by the stripping of arsenic. The developed sensor has showed least interference
from most of the common ions due to specific and selective interaction of the Gr–nPt
composite with As(III) ions. Hence, this sensor can be used for the selective quantification
of arsenic from most of the real sample matrices without any significant interference from
other ions.

The validation of the proposed electrode using Gr–nPt composite on the surface of
GCE toward As(III) measurement has been examined by applying it to the real sample
matrices like borewell, polluted water, agricultural soil, spinach and tomato leaf samples.
Known quantities of As(III) were added, and its recovery study was carried out. The
proposed electrode showed a linear range up to 100 nM, which is well within the limits of
As(III) present in the real sample matrices whose compositions are given in Table 3.
Hence, the modified electrode of this kind can be used to quantify As(III) from a variety
of water samples as well as vegetable samples.

For practical applications, reproducibility of the analytical results is very important as
they require very accurate and precise measurement. Therefore, the reproducibility has
been examined by using the same electrode for 15 repetitive measurements in 1 M HCl as
supporting electrolyte solution containing 50 nM of As(III) under identical conditions.

Table 1. Comparison of few existing electrodes with the proposed electrode in As(III)
measurement.

Modified carbon electrodes Method Limit of detection (LOD) Linear range Reference

Pt–GCE DPASV 0.48 µM 1–50 µM [25]
Au–GC/BPPG CV 0.8 µM 2–12 µM [31]
Pt-Pd-Polymer/GCE DPASV 2.4 µM 0–6 mM [32]
Co oxide–GCE CV 11 µM 0–4 µM [33]
rGO–PbO/GCE SWASV 0.01 µM 0.1–0.1 nM [34]
Gr–nPt/GC SWASV 1.1 nM 10–100 nM Present study

Notes: Pt, platinum nanoparticles; Au, gold nanoparticles; Pd, palladium nanoparticles; Co, cobalt; GC, glassy
carbon spheres; GCE, glassy carbon electrode; CNT, carbon nanotubes; BPPG, basal plane pyrolitic graphite;
rGO, reduced graphene oxide; PbO, lead oxide; Gr–nPt, graphene platinum nanoparticles; CV, cyclic voltam-
metry; LSV, linear sweep voltammetry; DPASV, differential pulse anodic stripping voltammetry; SWASV,
square-wave anodic stripping voltammetry.

Table 2. Interference study.

Interferents Tolerance limit (µM)

Pb2+, Cd2+, Cu2+, Hg2+ 100
Ba2+, Ca2+, Zn2+, Ni2+, Co2+, Fe2+ 380
Cl–, F–, I–, Br– 450
Na+, K+, Fe3+ 620
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The relative standard deviation for all these measurements was found to be ±4.6%.
Similarly, the reproducibility of the results has been checked using four different electro-
des of similar kind. The relative standard deviation for all these measurements was found
to be ±5%. These results indicate that the analytical performance of the fabricated
electrode is highly reproducible; hence the proposed sensor can be used for several
repetitive measurements with good accuracy and precision in its electrocatalytic activity
toward arsenic determination.

4. Conclusions

A simple protocol for the chemical modification of graphene with platinum nanoparticles
has been described using a mild and environmental friendly reducing agent, i.e., ethylene
glycol. The method has resulted in the formation of platinum nanoparticles with an
average particle size of 4 nm. The prepared Gr–nPt composite has been used as a sensing
platform in the determination of arsenic at nanomolar level from real sample matrices
without any severe interference from common cations and anions. The lowest detection
limit obtained can be attributed to the superior electrocatalytic activity of platinum
nanoparticles present on the graphene layers. The fabricated electrode is quite stable
and can be used for repetitive analytical measurements.
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